The resurgence of cucurbit downy mildew has dramatically influenced production of cucurbits and disease management systems at multiple scales. Long-distance dispersal is a fundamental aspect of epidemic development that influences the timing and extent of outbreaks of cucurbit downy mildew. The dispersal potential of appears to be limited primarily by sporangia production in source fields and availability of susceptible hosts and less by sporangia survival during transport. Uncertainty remains regarding the role of locally produced inoculum in disease outbreaks, but evidence suggests multiple sources of primary inoculum could be important. Understanding pathogen diversity and population differentiation is a critical aspect of disease management and an active research area. Underpinning advances in our understanding of pathogen biology and disease management has been the research capacity and coordination of stakeholders, scientists, and extension personnel. Concepts and approaches developed in this pathosystem can guide future efforts when responding to incursions of new or reemerging downy mildew pathogens.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams ML, Quesada-Ocampo LM. 1.  2014. Evaluation of fungicides for control of downy mildew on cucumber, Kinston 2013. Plant Dis. Manag. Rep. 8:V240 [Google Scholar]
  2. Adhikari BN, Savory EA, Vaillancourt B, Childs KL, Hamilton JP. 2.  et al. 2012. Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis. PLOS ONE 7:e34954 [Google Scholar]
  3. Arauz LF, Neufeld KN, Lloyd AL, Ojiambo PS. 3.  2010. Quantitative models for germination and infection of Pseudoperonospora cubensis in response to temperature and duration of leaf wetness. Phytopathology 100:959–67 [Google Scholar]
  4. Arens K. 4.  1929. Untersuchungen über Pseudoperonospora humuli (Miyabe u. Takah.), den Erreger der neuen Hopfenkrankheit. Phyto Ztschr. 1:169–93 [Google Scholar]
  5. Aylor DE. 5.  1986. A framework for examining inter-regional aerial transport of fungal spores. Agric. For. Meteorol. 38:263–88 [Google Scholar]
  6. Aylor DE. 6.  1999. Biophysical scaling and the passive dispersal of fungus spores: relationship to integrated pest management strategies. Agric. For. Meteorol. 97:275–92 [Google Scholar]
  7. Aylor DE. 7.  2003. Spread of plant disease on a continental scale: role of aerial dispersal of pathogens. Ecology 84:1989–97 [Google Scholar]
  8. Aylor DE, Fry WE, Mayton H, Andrade-Piedra JL. 8.  2001. Quantifying the rate of release and escape of Phytophthora infestans sporangia from a potato canopy. Phytopathology 91:1189–96 [Google Scholar]
  9. Barnes WC. 9.  1948. The performance of Palmetto, a new downy mildew resistant cucumber variety. Proc. Am. Soc. Hortic. Sci. 51:437–41 [Google Scholar]
  10. Barnes WC. 10.  1966. Development of multiple disease resistant hybrid cucumbers. Proc. Am. Soc. Hortic. Sci. 89:390–93 [Google Scholar]
  11. Berkeley MS, Curtis A. 11.  1868. Peronospora cubensis. J. Linn. Soc. Bot. 10:363 [Google Scholar]
  12. Bressman EN, Nichols RA. 12.  1933. Germination of the oospores of Pseudoperonospora humuli. Phytopathology 23:485–87 [Google Scholar]
  13. Call A, Criswell A, Wehner T, Ando K, Grumet R. 13.  2012. Resistance of cucumber cultivars to a new strain of cucurbit downy mildew. HortScience 47:171–78 [Google Scholar]
  14. Cespedes-Sanchez MC, Naegele RP, Kousik CS, Hausbeck MK. 14.  2015. Field response of cucurbit hosts to Pseudoperonospora cubensis in Michigan. Plant Dis. 99676–82 [Google Scholar]
  15. Choi YJ, Hong SB, Shin HD. 15.  2005. A re-consideration of Pseudoperonospora cubensis and P. humuli based on molecular and morphological data. Mycol. Res. 109:841–48 [Google Scholar]
  16. Cohen Y. 16.  1977. The combined effects of temperature, leaf wetness, and inoculum concentration on infection of cucumbers with Pseudoperonospora cubensis. Can. J. Bot. 55:1478–87 [Google Scholar]
  17. Cohen Y, Rotem J. 17.  1969. The effects of lesion development, air temperature, and duration of moist period on sporulation of Pseudoperonospora cubensis in cucumbers. Isr. J. Bot. 18:135–40 [Google Scholar]
  18. Cohen Y, Rubin AE. 18.  2012. Mating type and sexual reproduction of Pseudoperonospora cubensis, the downy mildew agent of cucurbits. Eur. J. Plant Pathol. 132:577–92 [Google Scholar]
  19. Cohen Y, Rubin AE, Galperin M. 19.  2013. Host preference of mating type in Pseudoperonospora cubensis, the downy mildew causal agent of cucurbits. Plant Dis. 97:292 [Google Scholar]
  20. Cohen Y, Rubin AE, Galperin M, Ploch S, Runge F, Thines M. 20.  2014. Seed transmission of Pseudoperonospora cubensis. PLOS ONE 9:e109766 [Google Scholar]
  21. Cohen Y, Rubin AE, Liu XL, Wang WQ, Zhang YL, Hermann D. 21.  2013. First report on the occurrence of A2 mating type of the cucurbit downy mildew agent Pseudoperonospora cubensis in China. Plant Dis. 97:559 [Google Scholar]
  22. Coley-Smith JR. 22.  1962. Overwintering of hop downy mildew Pseudoperonospora humuli (Miy. & Tak.) Wilson. Ann. Appl. Biol. 50:235–43 [Google Scholar]
  23. Colucci SJ. 23.  2008. Host range, fungicide resistance and management of Pseudoperonospora cubensis, causal agent of cucurbit downy mildew MS Thesis, N. C. State Univ., Raleigh. http://repository.lib.ncsu.edu/ir/bitstream/1840.16/2795/1/etd.pdf [Google Scholar]
  24. Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE. 24.  1996. On the Lambert W function. Adv. Comput. Math. 5:329–59 [Google Scholar]
  25. Csanady GT. 25.  1973. Turbulent Diffusion in the Environment Dordrecht, Neth: Reidel Publ. [Google Scholar]
  26. Diekmann O. 26.  1978. Thresholds and travelling waves for the geographical spread of infection. J. Math. Biol. 6:109–30 [Google Scholar]
  27. Doruchowski RW, Lakowska-Ryk E. 27.  1992. Inheritance of resistance to downy mildew (Pseudoperonospora cubensis Berk. & Curt.) in Cucumis sativus. Proc. Eucarpia Cucurbitaceae Symp., 5th, Warsaw, Pol., July27–31132–38 Alexandria, VA: ASHS Press [Google Scholar]
  28. Draxler RR, Hess GD. 28.  1998. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust. Meteorol. Mag. 47:295–308 [Google Scholar]
  29. Estep LK, Sackett KE, Mundt CC. 29.  2014. Influential disease foci in epidemics and underlying mechanisms: a field experiment and simulations. Ecol. Appl. 24:1854–62 [Google Scholar]
  30. Ferrandino FJ. 30.  1993. Dispersive epidemic waves. I. Focus expansion within a linear planting. Phytopathology 83:795–802 [Google Scholar]
  31. Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G. 31.  et al. 2012. The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 109:11872–77 [Google Scholar]
  32. Gent DH, Mahaffee WF, McRoberts N, Pfender WF. 32.  2013. The use and role of predictive systems in disease management. Annu. Rev. Phytopathol. 51:267–89 [Google Scholar]
  33. Gent DH, Nelson ME, Farnsworth JL, Grove GG. 33.  2009. PCR detection of Pseudoperonospora humuli in air samples from hop yards. Plant Pathol. 58:1081–91 [Google Scholar]
  34. Georgopoulos SG, Grigoriu AC. 34.  1981. Metalaxyl-resistant strains of Pseudoperonospora cubensis in cucumber greenhouses of southern Greece. Plant Dis. 65:729–31 [Google Scholar]
  35. Gisi U, Sierotzki H. 35.  2007. Fungicide modes of action and resistance in downy mildews. Eur. J. Plant Pathol. 122:157–67 [Google Scholar]
  36. Granke LL, Hausbeck MK. 36.  2011. Dynamics of Pseudoperonospora cubensis sporangia in commercial cucurbit fields in Michigan. Plant Dis. 95:1392–400 [Google Scholar]
  37. Granke LL, Morrice JJ, Hausbeck MK. 37.  2014. Relationships between airborne Pseudoperonospora cubensis sporangia, environmental conditions, and cucumber downy mildew severity. Plant Dis. 98:674–81 [Google Scholar]
  38. Grünwald NJ, Goss EM. 38.  2011. Evolution and population genetics of exotic and re-emerging pathogens: novel tools and approaches. Annu. Rev. Phytopathol. 49:249–67 [Google Scholar]
  39. Guo S, Zhang J, Sun H, Salse J, Lucas WJ. 39.  et al. 2013. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat. Genet. 45:51–58 [Google Scholar]
  40. Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S. 40.  et al. 2005. The spatial spread of invasions: new developments in theory and evidence. Ecol. Lett. 8:91–101 [Google Scholar]
  41. Hausbeck MK, Linderman SD. 41.  2014. Evaluation of fungicides for control of downy mildew of cucumber, 2013. Plant Dis. Manag. Rep. 8:V304 [Google Scholar]
  42. Henning JA, Gent DH, Twomey MC. 42.  et al. 2015. Precision QTL mapping of downy mildew resistance in hop (Humulus lupulus L.). Euphytica 202:487–98 [Google Scholar]
  43. Hobbs RJ, Humphries SE. 43.  1995. An integrated approach to the ecology and management of plant invasions. Conserv. Biol. 9:761–70 [Google Scholar]
  44. Hoerner GR. 44.  1940. The infection capabilities of hop downy mildew. J. Agric. Res. 61:331–34 [Google Scholar]
  45. Holdsworth WL, Summers C, Glos M, Smart CD, Mazourek M. 45.  2014. Development of downy mildew–resistant cucumbers for late season production in the Northeastern United States. HortScience 49:10–17 [Google Scholar]
  46. Holmes G, Wehner T, Thornton A. 46.  2006. An old enemy re-emerges. Am. Veg. Grow. 54:14–15 [Google Scholar]
  47. Holmes GJ, Ojiambo PS, Hausbeck MK, Quesada-Ocampo L, Keinath AP. 47.  2015. Resurgence of cucurbit downy mildew in the United States: a watershed event for research and extension. Plant Dis. 99:428–41 [Google Scholar]
  48. Huang S, Li R, Zhang Z, Li L, Gu X. 48.  et al. 2009. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41:1275–81 [Google Scholar]
  49. Irwin ME. 49.  1999. Implications of movement in developing and deploying integrated pest management strategies. Agric. For. Meteorol. 97:235–48 [Google Scholar]
  50. Isard SA, Barnes CW, Hambleton S, Ariatti A, Russo J. 50.  et al. 2011. Predicting soybean rust incursions into the North American continental interior using crop monitoring, spore trapping, and aerobiological modeling. Plant Dis. 95:1346–57 [Google Scholar]
  51. Isard SA, Gage SH, Comtois P, Russo JM. 51.  2005. Principles of the atmospheric pathway for invasive species applied to soybean rust. Bioscience 55:851–62 [Google Scholar]
  52. Ishii H, Fraaije BA, Sugiyama T, Noguchi K, Nishimura K. 52.  et al. 2001. Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew. Phytopathology 91:1166–71 [Google Scholar]
  53. Jeger MK, Pautasso M. 53.  2008. Comparative epidemiology of zoosporic plant pathogens. Eur. J. Plant Pathol. 122:111–26 [Google Scholar]
  54. Kanetis L, Holmes GJ, Ojiambo PS. 54.  2010. Survival of Pseudoperonospora cubensis sporangia exposed to solar radiation. Plant Pathol. 59:313–23 [Google Scholar]
  55. Kousik CS, Ikerd JL. 55.  2014. Evaluation of commercial melon cultivars for tolerance to downy mildew in South Carolina, 2010. Plant Dis. Manag. Rep. 8:V310 [Google Scholar]
  56. Langston DB, Sanders FH. 56.  2013. Evaluation of fungicides for control of downy mildew on cucumber in Georgia II, 2012. Plant Dis. Manag. Rep. 7:V109 [Google Scholar]
  57. Lebeda A, Cohen Y. 57.  2011. Cucurbit downy mildew (Pseudoperonospora cubensis): biology, ecology, epidemiology, host-pathogen interaction and control. Eur. J. Plant Pathol. 129:157–92 [Google Scholar]
  58. Lebeda A, Pavelková J, Sedláková B, Urban J. 58.  2013. Structure and temporal shifts in virulence of Pseudoperonospora cubensis populations in the Czech Republic. Plant Pathol. 62:336–45 [Google Scholar]
  59. Lebeda A, Widrlechner MP. 59.  2003. A set of Cucurbitaceae taxa for differentiation of Pseudoperonospora cubensis pathotypes. J. Plant Dis. Prot. 110:337–49 [Google Scholar]
  60. Madden LV, Hughes G, van den Bosch F. 60.  2007. Spatial aspects of epidemics. II. A theory of spatiotemporal disease dynamics. The Study of Plant Disease Epidemics LV Madden, G Hughes, F Van den Bosch 211–33 St. Paul, MN: APS Press [Google Scholar]
  61. Mancino LE. 61.  2013. Investigating the evolutionary relationship of Pseudoperonospora cubensis and P. humuli through phylogenetic and host range analyses. BS Thesis, Univ. Or., Eugene. https://scholarsbank.uoregon.edu/xmlui/handle/1794/12930 [Google Scholar]
  62. McDonald BA, Linde C. 62.  2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40:349–79 [Google Scholar]
  63. Mitchell MN, Ocamb CM, Grünwald NJ, Mancino LE, Gent DH. 63.  2011. Genetic and pathogenic relatedness of Pseudoperonospora cubensis and P. humuli. Phytopathology 101:805–18 [Google Scholar]
  64. Mizubuti ESG, Aylor DE, Fry WE. 64.  2000. Survival of Phytophthora infestans sporangia exposed to solar radiation. Phytopathology 90:78–84 [Google Scholar]
  65. Moss MA. 65.  1987. Resistance to metalaxyl in the Pseudoperonospora cubensis population causing downy mildew of cucumber in South Florida. Plant Dis. 71:1045 [Google Scholar]
  66. Mundt CC, Sackett KE. 66.  2012. Spatial scaling relationships for spread of disease caused by a wind-dispersed plant pathogen. Ecosphere 3:24 [Google Scholar]
  67. Mundt CC, Sackett KE, Wallace LD, Cowger C, Dudley JP. 67.  2009. Long distance dispersal and accelerating waves of disease: empirical relationships. Am. Nat. 173:456–66 [Google Scholar]
  68. Mundt CC, Wallace LD, Allen TW, Hollier CA, Kemerait RC, Sikor EJ. 68.  2013. Initial epidemic area is strongly associated with the yearly extent of soybean rust spread in North America. Biol. Invasions 15:1431–38 [Google Scholar]
  69. Naegele RP, Kurjan J, Quesada-Ocampo LM, Hausbeck MK. 69.  2014. Temporal changes in Pseudoperonospora cubensis field populations in MI cucumber. Phytopathology 104:S3.84 [Google Scholar]
  70. Neufeld KN, Isard SA, Ojiambo PS. 70.  2013. Relationship between disease severity and escape of P. cubensis sporangia from a cucumber canopy during downy mildew epidemics. Plant Pathol. 62:1366–77 [Google Scholar]
  71. Neufeld KN, Ojiambo PS. 71.  2012. Interactive effects of temperature and leaf wetness duration on sporangia germination and infection of cucurbit hosts by Pseudoperonospora cubensis. Plant Dis. 96:345–53 [Google Scholar]
  72. Nusbaum CJ. 72.  1944. The seasonal spread and development of cucurbit downy mildew in the Atlantic coastal states. Plant Dis. Rep. 28:82–85 [Google Scholar]
  73. Ojiambo PS, Holmes GJ. 73.  2011. Spatiotemporal spread of cucurbit downy mildew in the eastern United States. Phytopathology 101:451–61 [Google Scholar]
  74. Ojiambo PS, Holmes GJ, Britton W, Keever T, Adams ML. 74.  et al. 2011. Cucurbit downy mildew ipmPIPE: a next generation web-based interactive tool for disease management and extension outreach. Plant Health Prog. doi:10.1094/PHP-2011-0411-01-RV [Google Scholar]
  75. Ojiambo PS, Kang EL. 75.  2013. Modeling spatial frailties in survival analysis of cucurbit downy mildew epidemics. Phytopathology 103:216–27 [Google Scholar]
  76. Ojiambo PS, Paul PA, Holmes GJ. 76.  2010. A quantitative review of fungicide efficacy for managing downy mildew in cucurbits. Phytopathology 100:1066–76 [Google Scholar]
  77. Olaya G, Kuhn P, Hert A, Holmes G, Colucci S. 77.  2009. Fungicide resistance in cucurbit downy mildew. Phytopathology 99:S171 [Google Scholar]
  78. Palti J, Cohen Y. 78.  1980. Downy mildew of cucurbits (Pseudoperonospora cubensis): the fungus and its hosts, distribution, epidemiology and control. Phytoparasitica 8:109–47 [Google Scholar]
  79. Parris GR. 79.  1959. A revised host index of Mississippi plant diseases. Miss. State Univ. Bot. Dept. Misc. Pub. 1:1–146 [Google Scholar]
  80. Pavan S, Jacobsen E, Visser R, Bai Y. 80.  2010. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol. Breed. 25:1–12 [Google Scholar]
  81. Polat İ, Baysal Ö, Mercati F, Kitner M, Cohen Y. 81.  et al. 2014. Characterization of Pseudoperonospora cubensis isolates from Europe and Asia using ISSR and SRAP molecular markers. Eur. J. Plant Pathol. 139:641–53 [Google Scholar]
  82. Preston DA, Dosdall L. 82.  1955. Minnesota plant diseases. Hortic. Crops Res. Br. Spec. Publ. 8:184 [Google Scholar]
  83. Qi J, Liu X, Shen D, Miao H, Xie B. 83.  et al. 2013. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat. Genet. 45:1510–15 [Google Scholar]
  84. Quesada-Ocampo LM, Granke LL, Olsen J, Gutting HC, Runge F. 84.  et al. 2012. The genetic structure of Pseudoperonospora cubensis populations. Plant Dis. 96:1459–70 [Google Scholar]
  85. Reuveni M, Eyal H, Cohen Y. 85.  1980. Development of resistance to metalaxyl in Pseudoperonospora cubensis. Plant Dis. 64:1108–9 [Google Scholar]
  86. Rotem J, Wooding B, Aylor DE. 86.  1985. The role of solar radiation, especially ultraviolet, in the mortality of fungal spores. Phytopathology 75:510–14 [Google Scholar]
  87. Royle DJ, Kremheller HTH. 87.  1981. Downy mildew of the hop. The Downy Mildews DM Spencer 395–419 New York: Academic [Google Scholar]
  88. Runge F, Choi YJ, Thines M. 88.  2011. Phylogenetic investigations in the genus Pseudoperonospora reveal overlooked species and cryptic diversity in the P. cubensis species cluster. Eur. J. Plant Pathol. 129:135–46 [Google Scholar]
  89. Runge F, Thines M. 89.  2009. A potential perennial host for Pseudoperonospora cubensis in temperate regions. Eur. J. Plant Pathol. 123:483–86 [Google Scholar]
  90. Runge F, Thines M. 90.  2011. Host matrix has major impact on the morphology of Pseudoperonospora cubensis. Eur. J. Plant Pathol. 129:147–56 [Google Scholar]
  91. Runge F, Thines M. 91.  2012. Reevaluation of host specificity of the closely related species Pseudoperonospora humuli and P. cubensis. Plant Dis. 96:55–61 [Google Scholar]
  92. Russell PE. 92.  2004. Sensitivity Baselines in Fungicide Resistance Research and Management. Brussels, Belgium: FRAC, 3rd ed.. [Google Scholar]
  93. Rybáček V. 93.  1991. Hop Production New York: Elsevier Sci. [Google Scholar]
  94. Sarris P, Abdelhalim M, Kitner M, Skandalis N, Panopoulos N. 94.  et al. 2009. Molecular polymorphisms between populations of Pseudoperonospora cubensis from Greece and the Czech Republic and the phytopathological and phylogenetic implications. Plant Pathol. 58:933–43 [Google Scholar]
  95. Savory EA, Granke LL, Quesada-Ocampo LM, Varbanova M, Hausbeck MK, Day B. 95.  2011. The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol. Plant Pathol. 12:217–26 [Google Scholar]
  96. Savory EA, Adhikari BN, Hamilton JP, Vaillancourt B, Buell CR, Day B. 96.  2012. mRNA-Seq analysis of the Pseudoperonospora cubensis transcriptome during cucumber (Cucumis sativus L.) infection. PLOS ONE 7:e35796 [Google Scholar]
  97. Savory EA, Zhou C, Adhikari BN, Hamilton JP, Buell CR. 97.  et al. 2012. Alternative splicing of a multi-drug transporter from Pseudoperonospora cubensis generates an RXLR effector protein that elicits a rapid cell death. PLOS ONE 7:e34701 [Google Scholar]
  98. Scherm H, Ngugi HK, Ojiambo PS. 98.  2006. Trends in theoretical plant epidemiology. Eur. J. Plant Pathol. 115:61–73 [Google Scholar]
  99. Severns PM, Estep LK, Sackett KE, Mundt CC. 99.  2014. Degree of host susceptibility in the initial disease outbreak influences subsequent epidemic spread. J. Appl. Ecol. 51:1622–30 [Google Scholar]
  100. Shan Q, Wang Y, Li J, Zhang Y, Chen K. 100.  et al. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31:686–88 [Google Scholar]
  101. Sherman J, Gent DH. 101.  2014. Concepts of sustainability, motivations for pest management approaches, and implications for communicating change. Plant Dis. 98:1024–35 [Google Scholar]
  102. Stohl A, Hittenberger M, Wotawa. 102.  1998. Validation of the Lagrangian particle dispersion model flexpart against large-scale tracer experiment data. Atmos. Environ. 32:4245–64 [Google Scholar]
  103. Sussman AS. 103.  1968. Longevity and survivability of fungi. The Fungi: An Advanced Treatise GC Ainsworth, AS Sussman 447–86 New York: Academic [Google Scholar]
  104. Thines M. 104.  2014. Phylogeny and evolution of plant pathogenic oomycetes: a global overview. Eur. J. Plant Pathol. 138:431–47 [Google Scholar]
  105. Thines M, Tele S, Ploch S, Runge F. 105.  2009. Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Mycol. Res. 113:532–40 [Google Scholar]
  106. Thomas A, Carbone I, Ojiambo PS. 106.  2013. Occurrence of the A2 mating type of Pseudoperonospora cubensis in the United States. Phytopathology 103:S2.145 [Google Scholar]
  107. Thomas A, Carbone I, Ojiambo PS. 107.  2014. Comparative genomic analysis of Pseudoperonospora cubensis to elucidate the genetic basis of host specialization. Phytopathology 104:S3.118 [Google Scholar]
  108. Thomas CE, Inaba T, Cohen Y. 108.  1987. Physiological specialization in Pseudoperonospora cubensis. Phytopathology 77:1621–24 [Google Scholar]
  109. Thomas CE, Jourdain EL. 109.  1992. Host effect on selection of virulence factors affecting sporulation by Pseudoperonospora cubensis. Plant Dis. 76:905–7 [Google Scholar]
  110. Tian M, Win J, Savory E, Burkhardt A, Held M. 110.  et al. 2011. 454 genome sequencing of Pseudoperonospora cubensis reveals effector proteins with a QXLR translocation motif. Mol. Plant-Microbe Interact. 24:543–53 [Google Scholar]
  111. Turechek WW, McRoberts N. 111.  2013. Considerations of scale in the analysis of spatial pattern of plant disease epidemics. Annu. Rev. Phytopathol. 51:453–72 [Google Scholar]
  112. Ulevičius V, Pečiulytė D, Lugauskas A, Andriejauskienė J. 112.  2004. Field study on changes in viability of airborne fungal propagules exposed to UV radiation. Environ. Toxicol. 19:437–41 [Google Scholar]
  113. Vanderplank JE. 113.  1968. Disease Resistance in Plants New York: Academic [Google Scholar]
  114. van Vliet GJA, Meysing WD. 114.  1977. Relation in the inheritance of resistance to Pseudoperonospora cubensis Rost. and Sphaerotheca fuliginea Poll. in cucumber (Cucumis sativus L.). Euphytica 26:793–96 [Google Scholar]
  115. Voglmayr H. 115.  2008. Progress and challenges in systematics of downy mildews and white blister rusts: new insights from genes and morphology. Eur. J. Plant Pathol. 122:3–18 [Google Scholar]
  116. Wallace EC, Adams ML, Ivors K, Ojiambo PS, Quesada-Ocampo LM. 116.  2014. First report of Pseudoperonospora cubensis causing cucurbit downy mildew on Momordica balsamina and M. charantia in North Carolina. Plant Dis. 98:1279 [Google Scholar]
  117. Wallace EC, Quesada-Ocampo LM. 117.  2014. In silico identification and analysis of microsatellite location and frequency in downy mildew transcriptomes. Phytopathology 104:S3.123 [Google Scholar]
  118. Waterhouse GM, Brothers MP. 118.  1981. The taxonomy of Pseudoperonospora. Mycol. Pap. 148:1–28 [Google Scholar]
  119. Wikle CK. 119.  2003. Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 84:1382–94 [Google Scholar]
  120. Withers S, Gongora-Castillo E, Bowman MJ, Childs KL, Gent DH. 120.  et al. 2014. Developing genomic resources for species-specific molecular diagnostics of cucurbit downy mildew. Phytopathology 104:S3.130 [Google Scholar]
  121. Wu L, Damicone JP, Duthie JA, Melouk HA. 121.  1999. Effects of temperature and wetness duration on infection of peanut cultivars by Cercospora arachidicola. Phytopathology 89:653–59 [Google Scholar]
  122. Yang X, Li M, Zhang Z, Hou Y. 122.  2007. Early warning model for cucumber downy mildew in unheated greenhouses. N. Z. J. Agric. Res. 50:1261–68 [Google Scholar]
  123. Yoshioka Y, Sakata Y, Sugiyama M, Fukino N. 123.  2014. Identification of quantitative trait loci for downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 198:265–76 [Google Scholar]
  124. Zhang Y, Pu Z, Qin Z, Zhou X, Liu D. 124.  et al. 2012. A study on the overwintering of cucumber downy mildew oospores in China. J. Phytopathol. 160:469–74 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error