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Abstract

Plants are constantly exposed to would-be pathogens and pests, and thus have
a sophisticated immune system to ward off these threats, which otherwise can
have devastating ecological and economic consequences on ecosystems and
agriculture. Plants employ receptor kinases (RKs) and receptor-like proteins
(RLPs) as pattern recognition receptors (PRRs) to monitor their apoplas-
tic environment and detect non-self and damaged-self patterns as signs of
potential danger. Plant PRRs contribute to both basal and non-host re-
sistances, and treatment with pathogen-/microbe-associated molecular pat-
terns (PAMPs/MAMPs) or damage-associated molecular patterns (DAMPs)
recognized by plant PRRs induces both local and systemic immunity. Here,
we comprehensively review known PAMPs/DAMPs recognized by plants
as well as the plant PRRs described to date. In particular, we describe the
different methods that can be used to identify PAMPs/DAMPs and PRRs.
Finally, we emphasize the emerging biotechnological potential use of PRRs
to improve broad-spectrum, and potentially durable, disease resistance in
crops.
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INTRODUCTION

Plants rely solely on innate immunity to perceive and ward off potential pathogens. They em-
ploy cell surface–localized pattern recognition receptors (PRRs) to detect apoplastic elicitors and
intracellular nucleotide-binding site–leucine-rich repeat (LRR) receptors (NLRs) to detect cyto-
plasmic effectors delivered into host cells. In this review, we focus on plant PRRs, and the reader
is otherwise directed to comprehensive recent reviews on plant NLRs (36, 87, 116).

Plant PRRs are either plasma membrane–localized receptor kinases (RKs) or receptor-like pro-
teins (RLPs) (249) (Figure 1). RKs contain a ligand-binding ectodomain, a single-pass transmem-
brane domain, and an intracellular kinase domain, whereas RLPs lack any obvious intracellular
signaling domains. PRRs typically perceive pathogen- or microbe-associated molecular patterns
(PAMPs/MAMPs; hereafter, referred to as PAMPs) (Table 1) as well as damage-associated molec-
ular patterns (DAMPs) (Table 2), which are host-derived molecules released upon pathogen attack
or cell damage (12). PAMPs are often highly conserved molecules with signatures characteristic
of a whole class of microbes. However, it is now clear that specific patterns/epitopes recog-
nized as PAMPs within otherwise conserved molecules are under selective pressure and are thus
more polymorphic than previously thought (34). Interestingly, the perception of DAMPs (altered-
self ), in addition to the non-self surveillance enabled by PAMP recognition, allows plant cells to
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Figure 1
Proven and potential plant pattern recognition receptors (PRRs) with known ligands/agonists. (a) Receptor kinases (RKs).
(b) Receptor-like proteins (RLPs). Ligands (shown at the top of each panel ) are described in detail in Tables 1 and 2, and PRRs are
described in detail in Table 3. Solid arrows indicate demonstrated direct binding; dashed arrows indicate a current lack of evidence for
direct binding. Abbreviations: EGF, epidermal growth factor; EIX, ethylene-inducing xylanase; EPS, extracellular polysaccharides;
GPI, glycophosphatidylinositol; LPS, lipopolysaccharide; LRR, leucine-rich repeat; OGs, oligogalacturonides; PGN, peptidoglycan;
TM, transmembrane.
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Table 1 Examples of apoplastic elicitors of plant immunity

Elicitor Identificationa Originb Plantc References

BACTERIA

PROTEINS

Harpin Purification Erwinia amylovora Nicotiana tabacum,
Arabidopsis thaliana

46, 226

Siderophore Genetics Pseudomonas fluorescens,
Pseudomonas putida

A. thaliana, Raphanus
sativus, Solanum
lycopersicum, Phaseolus
vulgaris

113, 139

Flagellin and epitopes: flg22 to
flg15

Purification Pseudomonas syringae pv.
tabaci

A. thaliana,
S. lycopersicum, Solanum
peruvianum, Solanum
tuberosum, N. tabacum

53

Flagellin epitope: flgII-28 Signature P. syringae pv. tomato S. lycopersicum, Nicotiana
benthamiana

20

Flagellin epitope: CD2-1 Deletion series Acidovorax avenae Oryza sativa 94

Nep1-like protein (NLP) and
epitope: nlp20

Sequence
homology

Streptomyces coelicolor,
Bacillus halodurans

A. thaliana,
N. benthamiana

11, 152, 168

Cold shock protein (CSP) and
epitopes: csp22 and csp15

Purification Staphylococcus aureus N. tabacum,
S. lycopersicum

52

EF-Tu and epitopes: elf18 to
elf26

Purification Escherichia coli A. thaliana, Brassica
oleracea, Brassica
alboglabra, Sinapis alba

107

EF-Tu epitope: EFa50 Purification A. avenae O. sativa 59

Superoxide dismutase (SOD) Purification Xanthomonas campestris
pv. campestris, E. coli

N. tabacum 225

Acyl homoserine lactones (AHL) Homology Serratia liquefaciens,
P. putida

A. thaliana,
S. lycopersicum

155, 189

PeBL1 Purification Brevibacillus laterosporus N. benthamiana 221

RaxX and epitope RaxX21-sY Genetics Xanthomonas oryzae pv.
oryzae

O. sativa (carrying
XA21)

166

Xanthine/uracil permease and
epitope xup25

Signature P. syringae A. thaliana 142

CARBOHYDRATES

Extracellular polysaccharides
(EPSs)

Abundance X. campestris pv.
vesicatoria

Capsicum annuum 176

LIPIDS

Lipoteichoic acid (LTA) Homology S. aureus A. thaliana 240

cis-11-methyl-2-dodecenoic acid
(DSF)

Serendipity X. campestris pv.
campestris

A. thaliana,
N. benthamiana,
O. sativa

90

GLYCOPROTEINS

Peptidoglycans (PGNs) Homology S. aureus A. thaliana 65

LIPOPEPTIDES

Cyclic lipopeptides Serendipity/
abundance

Bacillus subtilis A. thaliana, P. vulgaris,
S. lycopersicum

68, 151

(Continued )
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Table 1 (Continued )

Elicitor Identificationa Originb Plantc References

GLYCOLIPIDS

Lipopolysaccharides (LPSs) Homology P. fluorescens A. thaliana, Dianthus
caryophyllus

47, 213

Rhamnolipids Serendipity Pseudomonas aeruginosa A. thaliana, Vitis vinifera 181, 214

FUNGI

PROTEINS

Cellulase Serendipity/
Abundance

Trichoderma viridae,
Rhizoctonia solani

A. thaliana, C. annum 128, 224

Avr9 Purification Cladosporium fulvum S. lycopersicum 188

Ethylene-inducing xylanase (EIX) Purification T. viride A. thaliana, N. tabacum 9, 57

Avr4 Purification C. fulvum S. lycopersicum 88

Necrosis- and ethylene-inducing
protein 1 (Nep1)

Purification Fusarium oxysporum f. sp.
erythroxyli

A. thaliana, Erythroxylum
coca

6, 97

Necrosis-inducing protein1
(NIP1)

Purification Rhynchosporium commune Hordeum vulgare 175

Ecp2 Purification C. fulvum S. lycopersicum 112

Cerato-platanin Purification Ceratocystis fimbriata f.
sp. platani, Magnaporthe
grisea

A. thaliana, N. tabacum,
Platanus × acerifolia

155, 239

Ecp1, Ecp4, Ecp5 Purification C. fulvum S. lycopersicum 111

Avr2 cDNA C. fulvum S. lycopersicum 126

Endopolygalacturonase Purification Botrytis cinerea A. thaliana, V. vinifera 165, 244

Avr3/Six1 Purification F. oxysporum f. sp.
lycopersici

S. lycopersicum 172

Avr4E Purification C. fulvum S. lycopersicum 229

PemG1 Purification M. grisea A. thaliana, Cucumis
sativus, N. tabacum,
O. sativa, Pisum
sativum, S. lycopersicum

162, 167

Nascent polypeptide-associated
complex (NAC) α-polypeptide

Purification Alternaria tenuissima,
B. cinerea

N. tabacum 132, 246

Ave1 Genetics /
Expression

Verticillium dahlia,
Verticillium albo-atrum,
F. oxysporum f. sp.
lycopersici, Cercospora
beticola

S. lycopersicum 40

PevD1 Purification V. dahliae N. tabacum 217

Hypersensitive response-inducing
protein (HRIP)

Purification A. tenuissima N. tabacum 106

Serine protease (AsES) Purification Acremonium strictum Fragaria × ananassa,
A. thaliana

25

Avr5 Genetics C. fulvum S. lycopersicum 138

(Continued )
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Table 1 (Continued )

Elicitor Identificationa Originb Plantc References

Cutinase Serendipity Sclerotinia sclerotiorum A. thaliana, Brassica
napus, Glycine max,
N. benthamiana,
N. tabacum, O. sativa,
Triticum aestivum, Zea
mays

243

Hydrophobin Purification Trichoderma
longibrachiatum strain
MK1

S. lycopersicum 179

Cyclodipeptides Purification Eupenicillium
brefeldianum

N. tabacum 27

CS20EPd Purification F. oxysporum strain
CS-20

S. lycopersicum 196

Rapid alkalinization factor
(RALF)

Sequence
homology

F. oxysporum f. sp.
lycopersici

N. benthamiana,
S. lycopersicum

209

Avr1/Six4 Purification F. oxysporum f. sp.
lycopersici

S. lycopersicum 76

SnTox1 Functional
screening

Stagonospora nodorum T. aestivum 119

AvrStb6 Genetics Zymoseptoria tritici T. aestivum 247

CARBOHYDRATES

Chitin Abundance Agaricus bisporus A. thaliana, T. aestivum 151, 212

Oligochitosan Abundance Fusarium solani A. thaliana, P. sativum 19, 66

β-1,3-glucan Purification M. grisea O. sativa 234

GLYCOPEPTIDES

Invertase and epitope: gp8c Abundance Saccharomyces cerevisiae S. lycopersicum 7

LIPIDS

Ergosterol Purification C. fulvum S. lycopersicum 64

SECONDARY METABOLITES

Chrisophanol Purification Trichoderma harzianum Brassica oleracea var.
capitata

120

Cerebroside Purification Magnaporthe oryzae O. sativa 102

OOMYCETES

PROTEINS

Elicitin Purification Phytophthora cryptogea,
Phytophthora capsici

N. tabacum 173

Transglutaminase GP42 and
epitopes: Pep-13 and Pep-25

Purification Phytophthora megasperma Petroselinum crispum 149

Cellulose-binding elicitor lectin
(CBEL)/GP34

Purification Phytophthora parasitica
var. nicotianae

N. tabacum 194

CBEL epitope: CBD2synth Deletion series P. parasitica var.
nicotianae

A. thaliana, N. tabacum 60

NLP Purification Pythium aphanidermatum A. thaliana, N. tabacum 215

(Continued )
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Table 1 (Continued )

Elicitor Identificationa Originb Plantc References

NLP epitopes: nlp11 and nlp24 Deletion series Hyaloperonospora
arabidopsidis

A. thaliana 152

NLP epitope: nlp20 Deletion series P. parasitica A. thaliana, Arabids
alpina, Thlaspi arvense,
Draba rigida, Lactuca
sativa

11

PcF Purification Phytophthora cactorum S. lycopersicum, Fragaria
vesca × ananassa

153

Glycoside hydrolase (XEG1) Purification Phytophthora sojae G. max, S. lycopersicum,
C. annum,
N. benthamiana

129

CARBOHYDRATES

Heptaglucoside Purification P. megasperma f. sp.
glycinea

G. max 195

Glucan-chitosaccharides Purification Aphanomyces euteiches Medicago truncatula 145

LIPIDS

Eicosapentaenoic acid (EPA) Purification Phytophthora infestans S. tuberosum 13

Arachidonic acid (AA) Purification P. infestans A. thaliana, S. tuberosum 13, 183

VIRUSES

PROTEINS

Coat protein (CP) Purification Tobacco mosaic virus N. tabacum 5

NUCLEIC ACIDS

dsRNA Homology Oilseed rape mosaic virus A. thaliana 146

NEMATODES

PROTEIN

Gr-VAP1 Expression Globodera rostochiensis S. lycopersicum 123

GLYCOLIPIDS

Ascarosides (ascr#18) Purification Meloidogyne incognita,
Meloidogyne javanica,
Meloidogyne hapla

A. thaliana,
S. lycopersicum,
S. tuberosum, H. vulgare

131

INSECTS

CARBOHYDRATES

β-galactofuranose polysaccharide Purification Spodoptera littoralis A. thaliana 16

LIPOPEPTIDES

Fatty acid–amino acid conjugates
(FACs)

Purification Spodoptera exigua,
Schistocerca americana

A. thaliana, Z. mays 4, 186

PHOSPHOLIPIDS

Phosphatidylcholine (DLOPC) Purification Sogatella furcifera O. sativa 238

aMethods of identification. Functional characterization: serendipity, abundance, homology (active in other living organism/kingdom), and deletion series
(minimal active epitope); Biochemistry: purification from extract; Sequence and genome analysis: forward genetics, sequence homology, functional
screening of cDNA, functional screening of apoplastic effector, evolutionary signature, and expression profiling.
bOrganisms in which they were first identified.
cExamples of plants in which they are recognized. Studies demonstrating recognition in the model plant Arabidopsis thaliana are also indicated.
dRecognition of the purified protein not tested.
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indirectly monitor a greater diversity of pathogens and to amplify responses beyond those triggered
solely by PAMP perception (72, 233).

Ligand recognition by PRRs leads to what is alternately called PAMP-, pattern-, or PRR-
triggered immunity (PTI; a.k.a. surface immunity), which contributes to basal immunity to adapted
pathogens as well as non-host resistance to non-adapted pathogens through the induction of both
local and systemic immune responses (10, 12, 35, 231).

Although the hypersensitive response (HR), a form of programmed cell death, is often associ-
ated with NLR-triggered immunity (NTI; a.k.a. intracellular immunity) (36, 231), several PAMPs
(e.g., bacterial flagellin and oomycete elicitins) can also induce HR (173, 206). Similarly, although
PTI is often considered to confer only partial (quantitative) disease resistance, several PRRs lead
to complete (qualitative) resistance in a way similar to the classical gene-for-gene relationship of
disease resistance (55). For example, FLS2, the PRR for flagellin, plays a significant role in non-
host resistance (56, 117), the tomato RK I-3 and RLP I-7 confer resistance to the fungus Fusarium
oxysporum f. sp. lycopersici (24, 63), the tomato RLPs belonging to the Cf family confer complete
resistance to the fungus Cladosporium fulvum (now Passalora fulva) (44, 45, 86, 125, 178, 208),
and introgression of the RK XA21 from the wild rice species Oryza longistaminata into cultivated
rice confers resistance to all races of bacterial blight tested (98, 202, 220). Furthermore, although
most PRRs seem to perceive their ligands directly, examples of indirect recognition also exist. For
example, tomato Cf-2 does not interact directly with the apoplastic elicitor Avr2 from C. fulvum
or with the nematode elicitor Gr-VAP1 (123) but rather senses the inhibition imposed by these
elicitor proteins on the host protease Rcr3 (43, 123, 178).

STRATEGIES FOR IDENTIFICATION OF PAMPs/DAMPs

PAMPs recognized by plants have been identified from all kingdoms of life, but the majority of
currently known PAMPs are from bacteria, fungi, or oomycetes (Table 1). DAMPs from different
plant species have also been characterized (Table 2). The major classes of biomolecules (proteins,
carbohydrates, lipids, and nucleic acids) can all be PAMPs and DAMPs. Although many studies
have relied on fractionation and purification of culture extracts by ion-exchange chromatography
to characterize elicitors (Table 1 and Table 2), the mining of genomic data has recently allowed
the identification of conserved molecular patterns that could be tested as candidate PAMPs (134,
142).

In this review, we have attempted to list all of the elicitors that have been shown to induce
PTI-like responses in plants and thus that may be recognized by PRRs. It is, however, still unclear
whether some of these molecules instead act as toxins. Further, as in the case of Avr2 and Avr9
from C. fulvum, it is also possible that these elicitors are not directly recognized but rather that
their action on host molecules/processes is sensed indirectly.

Functional Characterization of Known Molecules

Educated guesses based on prior knowledge have allowed the identification of many PAMPs active
in plants.

Serendipity. Extracellular adenosine triphosphate (eATP) is one of the earliest DAMPs iden-
tified. While exploring the hypothesis that stomatal movement was energy consuming, Fujino
and colleagues noticed that in the light stomata remained wide open in a medium containing
10-mM eATP, whereas stomata were primarily closed in the controls (58). Such eATP-induced
stomatal opening is today somewhat surprising because exogenous application of DAMPs/PAMPs
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Table 2 Examples of damage-associated molecular patterns (DAMPs) recognized by plants

Elicitor Identificationa Originb Reference

PROTEINS

Systemin Purification Solanum lycopersicum 159

Hydroxyproline-rich glycopeptide
systemins (HypSys)

Purification Nicotiana tabacum 157

Rapid alkalinization factors (RALFs) Purification Arabidopsis thaliana, N. tabacum, S. lycopersicum 158

AtPep1 Purification A. thaliana 77

Subtilase (SubPep) Purification Glycine max 160

ATP synthase (inceptin) Purification Vigna unguiculata, Zea mays 185

GmPep914/GmPep890 Purification G. max 235

PR-1b (CAP-derived peptide 1, CAPE1) Purification A. thaliana, S. lycopersicum 29

PAMP-induced secreted peptides (PIPs) Expression A. thaliana 75

High mobility group box 3 (HMGB3) Homology A. thaliana 30

CARBOHYDRATES

Glucose (monosaccharide) Serendipity N. tabacum 85

D-allose (monosaccharide) Serendipity Oryza sativa 92

D-psicose (monosaccharide) Serendipity O. sativa 93

Sucrose (diholoside) Serendipity A. thaliana, N. tabacum 85, 232

Trehalose (diholoside) Serendipity A. thaliana, Triticum aestivum 171, 184

Galactinol (diholoside) Expression N. tabacum 99

Cellobiose, cellotetraose (β-1,4 glucans) Serendipity Gracilaria conferta 227

Oligoagar (DP>4, β-1,4;α-1,3 glucans) Abundance G. conferta 228

Oligogalacturonides (α-1,4 glucans) Purification A. thaliana, G. max, N. tabacum, Acer
pseudoplatanus, Triticum spp.

67, 147

Xyloglucan (β-1,4 glucans) Purification Rubus fruticosus 89

Laminarin (β-1,3-1,6 glucans) Serendipity A. thaliana, T. aestivum 136, 161

Lichenan Serendipity N. tabacum, Nicotiana benthamiana, Nicotiana
glutinosa

203

Galactoglucomannan Serendipity Picea abies 201

Carrageenan Homology Tichocarpus crinitus 144

Ulvan (β-1,4 glucans) Purification A. thaliana, Medicago truncatula 82

LIPIDS

HESA (cutin monomer) Abundance Hordeum vulgare, O. sativa 192

NUCLEOTIDES

Extracellular ATP Serendipity A. thaliana, Commelina communis 58, 114

aMethods of identification. Functional characterization: serendipity, abundance, and homology (active in other living organism/kingdom); Biochemistry:
purification from extract; Sequence and genome analysis: genetics, and expression profiling.
bPlants in which they have been discovered to be active. Studies demonstrating an activity in the model plant Arabidopsis thaliana are also indicated.
Abbreviation: DP, degree of polymerization.
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commonly induces stomatal closure, which can restrict pathogen entry into intercellular spaces
(for review, see 135). These original observations were later clarified by demonstrating that the
response to eATP treatment is biphasic, with lower concentrations inducing stomatal opening and
higher concentrations inducing closure (32). Wound-induced cell damage is an obvious source of
eATP, and a PRR for eATP was recently identified in Arabidopsis thaliana (31) (Table 3). The
unsaturated fatty acid diffusible signal factor (DSF) used for quorum sensing in Xanthomonas was
also recently fortuitously identified as a PAMP while Kakkar et al. (90) investigated its role in
Xanthomonas–host plant interactions.

Abundant microbial surface components. Examination of elicitor candidates from within the
most abundant compounds present in plant-pathogen interfaces has led to the identification of
several PAMPs. For example, owing to its abundance in fungal cell walls, chitosan (a deacetylated
derivative of chitin) was assayed, together with other carbohydrates, for the production of defense
responses in pea pods and found to be a PAMP able to elicit the production of phytoalexins and
induce resistance to Fusarium solani f. sp. phaseoli (66). Fungal chitin was also identified as a PAMP
based on its high abundance and localization (161). To better define chitin-eliciting properties,
purified oligomers were tested; heptamers and octamers were found to be the most active in
eliciting gene expression in A. thaliana (242).

Homology with known PAMPs. Assaying compounds that have well-documented activities in
other organisms is also an efficient strategy to identify elicitors that induce defense in plants.
For example, lipopolysaccharides (LPSs) are the major cell surface components of Gram-negative
bacteria and are endotoxins that activate innate immunity in mammals (for review, see 169).
LPSs were also found to induce phytoalexin accumulation in carnation (Dianthus caryophyllus)
(213). Perception of bacterial lipoteichoic acid (LTA) induces innate immunity in human cells
(191), and its potential PAMP activity in plants was also later demonstrated in Arabidopsis (240).
Peptidoglycans (PGNs) from the cell walls of both Gram-positive and Gram-negative bacteria
are polymers, which are cross-linked by short peptides and consist of alternating β(1,4)-linked
N-acetylmuramic acid and N-acetylglucosamine glycan. They are a classical PAMP perceived, for
example, by both Drosophila (49) and plants where they activate PTI (65).

Biochemistry

Biochemical approaches have been the most successful approaches to identify many elicitors per-
ceived by plant PRRs.

Purification from culture extracts. PAMPs and DAMPs have most often been identified using
biochemical purification from culture extracts (Tables 1 and 2), principally using ion exchange
chromatography and high-performance liquid chromatography (HPLC), which allow the physical
separation of a mixture of compounds. These analytical tools are often coupled to mass spectrom-
etry (MS) analyses to provide structural elucidation of organic compounds or the sequencing of
oligonucleotides. Oligogalacturonides (OGs), fragments released from pectin present in plant cell
walls, were among the first DAMPs to be characterized. Initially, they were not purified to ho-
mogeneity and were described as the wound-hormone proteinase inhibitor-inducing factor (PIIF)
(180). Because of the complex structure of pectin, great effort from several groups was needed to
identify the chemical nature of the elicitor. In 1981, analysis revealed that the endogenous elici-
tor is galacturonide rich (67), and after further purification and characterization, Nothnagel and
colleagues reported that plant cell wall–derived OGs indeed elicit phytoalexin production (148).

www.annualreviews.org • Function, Discovery, and Exploitation 265



PY55CH12-Zipfel ARI 25 July 2017 20:7

Table 3 Examples of plant pattern recognition receptors (PRRs) with proposed ligands/agonists, plants in which they have
been discovered, and methods of identification

Familya PRR
Apoplastic

ligand/agonist Origin Identification Reference

Receptor kinases

LRR XII XA21b RaxX Oryza longistaminata Forward genetics 202

LRR XII FLS2 Flagellin (flg22
epitope)

Arabidopsis thaliana,
Nicotiana benthamiana,
Oryza sativa, Solanum
lycopersicum, Vitis
vinifera

Forward genetics 62, 69, 174, 207,
210

LRR XII FLS3 Flagellin (flgII-28
epitope)

Solanum pimpinellifolium Forward genetics 73

LRR XII EFR EF-Tu (elf18
epitope)

A. thaliana Reverse genetics 250

LRR XII XPS1 Xanthine/uracil
permease (xup25
epitope)

A. thaliana Reverse genetics 142

LRR XII CORE csp22 S. lycopersicum Forward genetics 222

LRR XI PEPR1 Pep1-6 A. thaliana, S.
lycopersicum, Zea mays

Biochemical
properties

122, 236, 227

LRR XI PEPR2 Pep1-2 A. thaliana Reverse genetics 236

LRR XI RLK7 PIP1 A. thaliana Reverse genetics 76

WAK WAK1 Oligogalacturonides A. thaliana Biochemical
properties

103

WAK Snn1/TaWAK SnTox1 Triticum aestivum Forward genetics 197

LysM AtCERK1 Chitin A. thaliana Reverse genetics 141

LysM AtLYK5 Chitin A. thaliana Reverse genetics 21

LysM EPR3 Extracellular
polysaccharides

Lotus japonicus Forward genetics 9

L-LEC LecRK-I.9/
DORN1

eATP A. thaliana Forward genetics 31

G-Lec SD1-29/LOREb Lipopolysaccharides A. thaliana Forward genetics 170

G-Lec I-3b Avr3/Six1 Solanum pennellii Forward genetics 24

Receptor-like proteins

LRR Cf-2b Rcr3 protease
(guarded to detect
Avr2 and Gr-VAP1)

Solanum pimpinellifolium Forward genetics 45, 178

LRR Cf-4b Avr4 Solanum hirsutum Forward genetics 208

LRR Hcr9-4Eb Avr4E S. hirsutum Forward genetics 208, 229

LRR Cf-5b Avr5 S. lycopersicum var.
cerasiforme

Forward genetics 44

LRR Cf-9b HABS (guarded to
detect Avr9)

S. pimpinellifolium Forward genetics 86, 125

LRR Ve1b Ave1 S. lycopersicum Forward genetics 96

LRR LeEix2 EIX S. pennellii Forward genetics 177

(Continued )
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Table 3 (Continued )

Familya PRR
Apoplastic

ligand/agonist Origin Identification Reference

Receptor-like proteins

LRR LepR3/RLM2b AvrLm1 and
AvrLm2

Brassica napus Forward genetics 109, 110

LRR RLP1/ReMAX eMaxc A. thaliana Forward genetics 84

LRR RLP23 nlp20 A. thaliana Reverse genetics 2

LRR RLP30b SCFE1c A. thaliana Forward genetics 245

LRR RLP42/RBPG1 EndoPG A. thaliana Forward genetics 244

LRR RLP85/ELRb Elicitins Solanum microdontum Forward genetics 48

LRR CSPR csp22 N. benthamiana Biochemical
properties

182

LRR CuRe1b Cuscuta factorc S. lycopersicum Forward genetics 71

LRR Ib Avr1/Six4 S. pimpinellifolium Forward genetics 23

LysM OsCEBiP Chitin O. sativa Biochemical
properties

91

LysM OsLYP4 and
OsLYP6

Peptidoglycans/chitin O. sativa Biochemical
properties

118

LysM AtLYM2 Chitin A. thaliana Biochemical
properties

51, 164

LysM AtLYM1b and
AtLYM3b

Peptidoglycans A. thaliana Biochemical
properties

230

aAccording to Reference 200.
bLigand binding not yet demonstrated.
cNot purified to homogeneity.

Bacterial flagellin is one of the best-studied PAMPs and is widely used to study PTI. Flagellin
was initially identified as a PAMP after purification by anion exchange chromatography from
liquid culture extracts and by N-terminal protein sequencing (53). To identify lipidic PAMPs,
other analytical tools have been employed, such as infrared (IR) spectroscopy to identify fungal
ergosterol from C. fulvum extracts (64) and 1H nuclear magnetic resonance (NMR) spectroscopy
and fast atom bombardment (FAB)-MS analysis to identify cerebroside from Magnaporthe oryzae
(102). In recent years, MS has become the favored analytical tool for identifying the composition
of unknown organic biomolecules. This technique has revealed the nature of recently identified
PAMPs, such as the glycolipidic ascarosides from the nematode Meloidogyne sp. (131), the protein
PeBL1 from the bacterium Brevibacillus laterosporus (221), and the glycoside hydrolase (XEG1)
from Phytophthora sojae (129).

Despite the increasing sensitivity of the available analytical tools, several recent studies have
highlighted the fact that PAMP identification remains challenging. For example, separations on
cation-exchange chromatography columns and biochemical assays have only enabled the par-
tial characterization of the Sclerotinia sclerotiorum fungal elicitor that is recognized by Arabidopsis
RLP30 (245); attempts to purify this PAMP to homogeneity have so far been unsuccessful, and
its exact nature remains elusive. Enigmatic MAMP of Xanthomonas (eMAX) is, as indicated by
its name, another PAMP that also remains to be identified and is recognized by ReMAX/RLP1
(84).
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Ligand-fishing using pattern recognition receptors as molecular bait. Affinity chromatog-
raphy may prove to be a promising tool for identifying PAMPs that interact directly with PRR
ectodomains. Although this approach has not yet been used for receptor-based PAMP capture,
Shinohara & Matsubayashi (198) successfully immobilized the ectodomain of a plant LRR-RK on
microbeads and visualized the interactions with its ligand, the phytosulfokine peptide, and were
able to retrieve it from complex natural extracts. The main challenges to using affinity purifica-
tion for direct capture of unknown PAMPs reside in potentially weak ligand-receptor affinity, in
difficulty in ectodomain purification and immobilization, and in the vast diversity of chemistries,
structures, and functions of the ligands that could be encountered.

Sequence and Genome Analysis

Advances in comparative genomics have recently enabled the identification of novel microbial
PAMPs.

Genetics. Although forward genetics is a proven and powerful approach for identifying new
PRRs, its potential is rather limited in the discovery of PAMPs. Indeed, genetic mapping requires
strains harboring genetic variations in PAMP-encoding genes that result in differential eliciting
activity. However, as several PAMPs may be required for important biological functions, mutants
with a loss or modification of these PAMPs would likely be unfit in natural environments. Forward-
genetic approaches can, however, be considered under laboratory conditions that are conducive
to the growth of such mutants.

An example of such a mutant approach is the identification of siderophores as PAMPs through
the use of a siderophore-deficient strain of the bacterium Pseudomonas fluorescens. This mutant
is associated with a partial loss of induction of resistance against Tobacco necrotic virus (TNV) in
tobacco (133), and Leeman and colleagues later demonstrated that a purified siderophore could
indeed induce resistance against F. oxysporum f. sp. raphani in radish (113). The identification of
the bacterial PAMP RaxX was also found in such a mutant screen; genetic analysis of X. oryzae
pv. oryzae (Xoo) revealed that the operon raxSTAB is required for XA21-induced immunity (37),
and the bacterial type I–secreted sulfated protein RaxX was identified as the inducer of XA21-
mediated immunity in rice (166). The AvrStb6 gene encodes a secreted protein from Zymoseptoria
tritici, which was also identified by genetic mapping (247). Comparative population genomics,
in combination with expression profiling, was also used to identify the apoplastic elicitor Ave1
secreted by the fungus Verticillium dahliae (40), whereas comparative transcriptome sequencing
has been used to identify the fungal protein Avr5 produced by Cladosporium fulvum (138).

Sequence homology. The analyses of gene orthology and variations in primary sequences of
proteinaceous PAMPs have led to the identification of variants of bacterial flagellin (53), fungal
cerato-platanin (156), and oomycete elicitin (41). The necrosis- and ethylene-inducing protein 1
(Nep1)-like (NLP) family of PAMPs is potentially the largest example of such families of PAMPs
determined by homology, as these proteins are found in bacteria, fungi, and oomycetes (2, 11,
152). The 24-kDa Nep1 protein was originally discovered in the fungus F. oxysporum (6), but
NLPs were later identified by homology in the oomycetes Pythium aphanidermatum (215) and
P. sojae (168) as well as in the bacteria Bacillus halodurans and Streptomyces coelicolor (168). NLPs
carry a conserved pattern of 24 amino acids (nlp24), which is sufficient to trigger plant immune
responses (2, 11, 152).
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Functional screening of cDNA libraries. To identify proteins that can produce disease symp-
toms or activate plant defense responses in the apoplast, Luderer and colleagues have used a
complete cDNA collection and a functional assay to identify Avr2 as the C. fulvum elicitor re-
sponsible for Cf-2-mediated HR (126). Recently, in silico analyses have been largely adopted to
identify features of apoplastic elicitors (e.g., transcription pattern, presence of a signal peptide,
and absence of transmembrane domains as well as other features of an apoplastic compound);
hence, the number of cDNA candidates to evaluate for elicitor capacity has been reduced. With
this approach, Qutob and colleagues focused their functional analysis on a collection of only 16
P. sojae cDNA (168), from which they identified the NLP PsojNIP as an active elicitor. Analyzing
gene transcription profiles also led to the identification of the protein Gr-VAP1 from nematodes
(123) as well as several fungal proteins able to induce a cell-death response (26, 50).

Evolutionary signatures. Because apoplastic elicitors betray the pathogen presence and induce
plant defenses, they are under strong selective pressure to evolve and evade recognition by PRRs
(17, 34). However, most PAMPs support crucial biological functions, thus constraining frequent
mutations. However, within functional domains under strong negative selection, amino acids with
relaxed selective pressure show strong positive selection to evade PRR recognition. During study
of the evolution of the plant pathogen Pseudomonas syringae pv. tomato, this reasoning led to the
identification of possible parallel evolution events in the flagellin-encoding gene fliC (20). Inter-
estingly, these non-synonymous mutations, which are driven by a strong pressure to evade tomato
immune response, are found in an epitope distinct from the well-described flg22. FlgII-28, a 28–
amino acid peptide corresponding to the ancestral allele of this new epitope, is able to effectively
induce PTI in tomato (20), and its corresponding PRR, FLS3, was recently identified (73). Other
in-depth studies have also analyzed the selection pressure on otherwise highly conserved bacterial
proteins to identify new potential PAMPs (134, 142). After comparing the genome of six phy-
topathogenic bacteria (three pathovars from P. syringae and three from Xanthomonas campestris),
McCann and colleagues identified orthologs for 1,322 functionally constrained core genes and
56 candidate proteins with positively selected residues enriched within domains under strong
negative selection (134). The well-characterized bacterial PAMP EF-Tu (107) was identified as
one of the proteins showing positively selected sites. Although the elf18 immunogenic epitope
exhibits this molecular signature of natural selection, a second cluster revealed multiple positively
selected sites that overlap with the Acidovorax avenae EFa50 domain. This latter domain was iden-
tified by purification from crude extracts as a second active epitope of EF-Tu that was perceived
by rice and verified by deletion analysis (59). Using a similar comparative genomic analysis of
54 P. syringae isolates, Mott and colleagues also successfully identified six new proteinaceous elic-
itors, including the xanthine/uracil permease and its epitope, xup25 (142). This bioinformatics-
based methodology thus presents great potential for the identification of novel PAMPs.

METHODS TO IDENTIFY PATTERN RECOGNITION RECEPTORS

Several strategies to identify plant PRRs have been employed, the most fruitful being forward
or reverse genetics (Table 3). Biochemical methods using ligand-based affinity also led to the
identification of several PRRs, such as the rice OsCEBiP (91) and the Arabidopsis PEPR1 (237).

Genetics

Forward-genetic approaches using mutagenized populations or natural variation have successfully
led to the identification of several plant PRRs. The recent gain of knowledge in PRR-encoding
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genes is also allowing the wider use of reverse-genetic strategies to identify PRRs from collections
of mutated candidate genes.

Forward-genetic approaches. Forward genetics is one of the most efficient approaches for
identifying PRRs. This strategy requires the identification of two parents with different phenotypic
traits, namely individuals with and without responsiveness to a given PAMP. After generating
mapping populations, the genetic loci that influence these traits is determined by genetic mapping
using map-based cloning or next-generation sequencing. Parents with differential phenotypes can
be identified from plant breeding programs, mutagenized populations, or collections of natural
ecotypes.

Using natural variations. Natural variation is a great source of potential phenotype diversity
regarding PAMP perception and responsiveness. Using forward-genetic approaches, many studies
have identified RKs as being involved in crop resistance to various pathogens. However, in the
absence of functional characterization with regard to PAMP or crude extract responsiveness, many
of these proteins can be considered only as candidate PRRs. Using map-based cloning, XA21 from
O. longistaminata was identified as an LRR-RK conferring resistance to Xoo (98, 202). The RaxX
protein was recently proposed to be the XA21 ligand, although no direct interaction with XA21
has yet been shown (166).

The rice B-lectin RK Pi-d2 (28), the LRR-RK OsBRR1 (163), and the WAK-RK OsWAK1
(115) confer resistance to the fungal rice blast M. oryzae, whereas the rice OsLecRK1, OsLecRK2,
and OsLecRK3 confer strong resistance to the brown planthopper (121). The wheat LRK10L-
RKs TaRLK-R1, 2, and 3 contribute to HR against the stripe rust fungus (248). The tomato
LysM-RKs Bti9 and SILyk13 contribute to immunity against P. syringae pv. tomato (241), and
the tomato G-type lectin I-3 confers resistance to Fusarium wilt disease (24). The corn WAK-
RK ZmWAK confers quantitative resistance to head smut (251), and ZmWAK-RLK1 confers
resistance to northern corn leaf blight (78). In Arabidopsis, the RKs RFO1 and RFO3 are required
for resistance to the wilt pathogen F. oxysporum f. sp. matthioli (33, 42). Finally, the Nicotiana
benthamiana LRR-RKs NbIRK, required for resistance to Tobacco mosaic virus (TMV) (22), and
Nicotiana attenuata LecRK1 are required for resistance against the herbivore Manduca sexta (61)
and should also be evaluated for their potential PRR function.

Natural variation has also been exploited to identify several RLPs as likely PRRs for fungal
apoplastic elicitors. Tomato Cf-4 (208) is the candidate PRR for Avr4 (88), tomato Ve1 (96) is the
candidate PRR for Ave1 (40), and Brassica napus LepR3/RLM2 (109, 110) is the candidate PRR
for Leptosphaeria maculans AvrLm1 and AvrLm2. In addition, the rice RLP Xa21D confers partial
resistance to Xoo (219). The pepper mannose-binding lectin CaMBL1 contributes to resistance
against the bacterial pathogen X. campestris pv. vesicatoria (79). Vfa2/HcrVf2 and Vfa1/HcrVf1
from apple have also been shown to confer resistance to the fungal pathogen Venturia inaequalis
(8, 130).

Variations in PAMP responsiveness have also been investigated in large collections of A. thaliana
natural accessions. Coupled with other important genetic resources in this species, these collections
are enabling the rapid identification of candidate PRRs by forward genetics. For example, Jehle
and colleagues screened 61 ecotypes and identified the accession Shakhdara (Sha) as being unique
in its lack of recognition of eMax (83). The use of well-characterized recombinant-inbred lines
derived from Sha and eMax-responsive Landsberg erecta (La-er) allowed the rapid identification
of AtRLP1/ReMAX as a potential PRR for eMax. In a comparable approach, 70 A. thaliana
accessions were screened to identify AtRLP30 as the RLP required for sensitivity to the elicitor
present in the SCFE1 extract from Sclerotinia sclerotiorum (245). Finally, 47 A. thaliana accessions
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were tested for responsiveness to fungal polygalacturonase, leading to the identification of the
RLP AtRLP42/RBPG1 (244).

For most of these examples, the absence of detailed information on ligand identity prevents
firm conclusions about the true receptor function of these RLPs from being drawn, some of which
might alternatively have a regulatory function. Forward-genetic strategies using natural variations
have, however, led to the identification of certain RLPs as bona fide PRRs, such as the Arabidopsis
RLP42/RBPG1 for which ligand binding could be demonstrated (244).

Using mutagenized populations. The LRR-RK FLS2, the PRR for the epitope flg22 derived from
bacterial flagellin, was identified using an ethyl methanesulfonate (EMS)-mutagenized population
of the A. thaliana ecotype La-er (62). Screening for loss of elicitor-induced calcium burst in an
EMS-mutagenized population of A. thaliana expressing the calcium reporter aequorin recently
enabled the identification of LecRK-I.9/DORN1 as the eATP PRR (31) and SD1–29/LORE
required for perception of bacterial LPSs (170). The exopolysaccharide receptor EPR3 was also
recently identified using an EMS-mutagenized population of Lotus japonicus (95).

Reverse-genetic approaches. Collections of A. thaliana T-DNA insertion mutants have been
assembled for systematic functional analysis of RKs and RLPs, with a special emphasis on those
whose expression is induced upon PAMP/DAMP treatment and/or infection. These collections
include, for example, mutants for 22 out of 28 flg22-induced LRR-RKs (250), all 57 genes encoding
LRR-RLPs (218), all 47 genes encoding RKs missing the conserved arginine (R) and aspartate
(D) in the subdomain VIb of their kinases (non-RD) (39), 169 out of 216 LRR-RKs (142), 41 out
of the 45-L-type lectin RKs (LecRKs) (223), and 41 out the 44 genes encoding cysteine-rich RKs
(CRKs) (14). From the collection of 22 flg22-induced LRR-RKs, Zipfel and colleagues identified
EFR, the Brassicaceae-specific PRR for bacterial EF-Tu, and its epitope elf18 (250). Recently,
AtRLP23, the PRR for Nep1-like protein (NLP), was also identified from a collection of T-DNA
insertion mutants in 44 genes encoding LRR-RLPs (2), and the screening of 169 of 216 LRR-RK
mutants led to the identification of XPS1 as the PRR for bacterial xup25 (142).

As LysM domains are able to bind chitin-related oligosaccharides (91), T-DNA mutants for
genes encoding LysM-containing RKs and RLPs have been evaluated for their ability to respond
to chitin and PGN. In this way, Arabidopsis AtCERK1 (141), AtLYK5 (21), and AtLYM2 (51) have
been found to be required for chitin perception, and AtLYM1 and AtLYM3 have been found to
be required for PGN sensing (230). RNAi silencing of the rice genes OsLYP4 and OsLYP6 also
demonstrated the involvement of these RLPs in chitin and PGN perception (118).

For a reverse-genetic approach, the expression of dominant negative forms of RKs could
constitute another powerful strategy to assess their function as potential PRRs. The ectodomain
of FLS2 induces the formation of inactive signaling complexes, thus creating a dominant-negative
effect (204). Similarly, chimeras could be used to confirm the function of a given RK in PAMP
perception, as was done to confirm that the Arabidopsis RK WAK1 mediates oligogalacturonides
(OGs) perception (18).

Biochemistry

The PRR biochemical properties have also allowed the identification of several plant PRRs, al-
though this approach is still technically challenging and thus in its infancy when compared to
genetic approaches.
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Ligand affinity. PRRs and ligands interact with high specificity and affinity, allowing the iden-
tification of PRRs using labeled or immobilized elicitors. Labeling ligands with the iodine-125
radioisotope is a useful strategy to detect binding to their corresponding PRRs. After selective
photo–cross-linking of the labeled ligands to the receptors, PRRs can be separated by analyt-
ical sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and identified by
mass spectroscopy or Edman sequencing. Using this approach, the photo-affinity labeling of an
oomycete β-glucan resulted in the identification of the high-affinity binding protein GEBP from
soybean (140). GEBP is, however, secreted into the apoplast and has glucan hydrolase enzymatic
activity. Thus, the observed interaction may better represent an enzyme-substrate complex than a
receptor-ligand interaction (54). Photo-affinity radiolabeling of chitin also led to the partial char-
acterization of a rice binding protein (81), which was later identified as the chitin PRR OsCEBiP
(91). By direct radiolabeling of the Arabidopsis peptide AtPep1, Yamaguchi and colleagues could
also successfully isolate the corresponding PEPR1 receptor (237).

Insoluble or immobilized ligands can be used for affinity purification of PRRs. As discussed for
the affinity purification of elicitors, this strategy is, however, possibly limited by the constraints
imposed on the ligand-receptor molecular interactions and by difficulties in ligand immobilization.
By immobilizing N-acetylchitooctaose on affinity matrixes, Kaku and colleagues were, however,
successful in specifically eluting and identifying OsCEBiP, the rice PRR for chitin (91). Chitin
could also be covalently attached to biotin to be recovered using a streptavidin column, which
led again to the recovery of OsCEBiP after elution (199). Alternatively, chitin can be attached to
magnetic beads, which can be recovered by magnetic isolation, which led to the identification of
LYM2 from Arabidopsis cell extracts (164). Although AtCERK1 was identified by reverse genetics
(141), its ability to bind insoluble colloidal chitin or chitin beads allowed the recovery of this
PRR in pellets after centrifugation (80). Using biotinylated flg22, Shinya and colleagues reported
that detection and identification of PRRs are, however, sometimes limited by their low natural
abundance in plant cell extracts (199).

Combining photo-affinity labeling of a ligand and a heterologous expression library of
Arabidopsis RK/RLP ectodomains could constitute a powerful strategy to identify PRRs. This
gain-of-function approach was successfully employed to identify the receptor of a plant peptide
secreted during nitrogen starvation (205) but has not yet been used for PRR discovery.

Co-receptors as molecular bait. In Arabidopsis, BAK1 and related SERK proteins are LRR re-
ceptors involved in several immune receptor complexes and function as co-receptors that form sta-
ble complexes with PRRs in a ligand-specific manner (127). They can thus be used as molecular bait
to identify unknown PRRs after elicitor treatment. Schulze and colleagues have demonstrated that,
in wild-type Arabidopsis, FLS2 can be identified after flg22 treatment and immunoprecipitation of
BAK1 (190). The same strategy coupled to mass-spectrometry analysis of co-immunoprecipitated
proteins has been used to identify NbCSPR, a N. benthamiana LRR-RLP required for responsive-
ness to the epitope csp22 derived from bacterial cold shock protein (182). Recently, the tomato
LRR-RK CORE was identified by natural variation as also being required for csp22 perception,
and direct binding of csp22 to CORE could be demonstrated (222).

TRANSFER AND ENGINEERING OF PATTERN RECOGNITION
RECEPTORS TO IMPROVE CROP DISEASE RESISTANCE

Annually, ten to twenty percent of crop production worldwide is lost due to plant diseases, thus
affecting food security (150). In addition to traditional chemical control strategies, genetic methods
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are needed to improve crop disease resistance, including the use of PRRs that would provide broad-
spectrum disease resistance (38).

Intraspecies Pattern Recognition Receptor Transfer

By including PRR-triggered resistance in integrated pest management strategies, breeding pro-
grams can benefit from a layer of basal immunity. Given that PRR-encoding genes are expanding
in plant genomes with time (200), plant cell surfaces typically harbor multiple PRRs, thus multiply-
ing the number of potential ligands that can be perceived and therefore increasing the likelihood of
microbe detection. As discussed in the Forward-Genetic Approaches section above, conventional
breeding programs have already widely deployed RKs and RPLs for durable and broad-spectrum
disease resistance in crops (8, 24, 28, 78, 96, 121, 130, 202, 208, 251), demonstrating the impor-
tance of increasing elicitor recognition for the management of many economically important crop
diseases.

Interspecies Pattern Recognition Receptor Transfer

Recently, transgenic approaches have revealed that interspecies transfer of PRRs can be used to
confer responsiveness to previously unrecognized elicitors. For example, the transfer of A. thaliana
EFR increases resistance to Ralstonia solanacearum in tomato (108), Xoo and Acidovorax avenae
subsp. avenae in rice (124, 193), and P. syringae pv. oryzae in wheat (187). Similarly, expression of
the O. longistaminata XA21 in sweet orange (137), tomato (1), and banana (211) enhances resistance
to Xanthomonas citri, R. solanacearum, and X. campestris pv. musacearum, respectively. Interspecies
transfer of Solanum microdontum LRR-RLP ELR in Solanum tuberosum confers broad-spectrum
recognition of elicitins and enhanced resistance to Phytophthora infestans (48). The transfer of
Arabidopsis RLP23 to potato is another example of PRR deployment that has conferred increased
disease resistance, in this case to the oomycete P. infestans and to the fungus S. sclerotiorum (2).
Canker lesions caused by X. citri can also be decreased by expressing N. benthamiana FLS2 in
orange (70). Interestingly, expression of the Arabidopsis eATP PRR DORN1/LecRK-I.9 in potato
enhanced resistance to the hemibiotroph P. infestans but not to the necrotroph Botrytis cinerea
(15), reflecting that PTI efficiency may sometimes depend on pathogen lifestyles as well as their
virulence.

Engineering Pattern Recognition Receptors

Different domains of plant RKs can be uncoupled, with ectodomains retaining their specific ligand
recognition and intracellular domains retaining their original signaling output ability. For example,
a chimera between BRI1 and WAK2 revealed that perception of the brassinosteroid hormone by
the BRI1 ectodomain could induce the maintenance of cellular osmotic status controlled by the
WAK2 kinase domain (104). Modular assemblies between FLS2, EFR, and WAK1 (18), FLS2,
EFR, and BAK1 (3), and EFR and XA21 (74) have since demonstrated that PRRs can be successfully
engineered to increase the magnitude of the defense response that they trigger or to widen their
recognition spectrum. These studies also revealed that chimeric PRRs must retain their original
intracellular transmembrane domains to be functional. For interspecies transfer of RLPs, Jehle
and colleagues have used ReMAX and EiX2 to demonstrate that swapping the transmembrane
regions between two RLPs can also improve their PRR functions (83).

Systematic analyses in different plant species have demonstrated that FLS2 orthologs have
variable affinities and perception mechanisms for the same flg22 ligand (143, 216). Thus, although
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a PRR can be engineered to function with an improved kinase, the ectodomain itself can be
optimized to improve or expand the ligand specificity of the chimeric PRR.

Ultimately, PRRs can also be engineered to induce a stronger output (101). As rice XA21 (202)
and tomato Pi-d2 (28) induce HR-like responses, their intracellular domains have been used to
create chimeric PRRs with the rice OsCEPiP ectodomain (100, 105). The corresponding chimeras
increased cell death upon chitin treatment as well as resistance to the fungal pathogen M. oryzae.

To summarize, PTI is an efficient layer of immunity that can be exploited to confer durable
resistance in plant. As PRRs are able to perceive a great range of microbial elicitors, the discovery
and engineering of new PRRs will enable new breeding strategies to exploit the wide diversity of
elicitor perception to enhance crop disease resistance.

SUMMARY POINTS

1. Plants use RKs and RLPs as PRRs to sense apoplastic elicitors (PAMPs or DAMPs).

2. PAMPs and DAMPs have been identified by functional characterization of known
molecules, by biochemistry, and by sequence and genome analyses.

3. PRRs have principally been identified using genetic and biochemical approaches.

4. PRRs can be deployed in different plant species to increase their immunity against adapted
pathogens.

5. PRRs can be engineered to improve ligand recognition and intracellular immune outputs.
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