1932

Abstract

Various conceptual models to describe the plant immune system have been presented. The most recent paradigm to gain wide acceptance in the field is often referred to as the zigzag model, which reconciles the previously formulated gene-for-gene hypothesis with the recognition of general elicitors in a single model. This review focuses on the limitations of the current paradigm of molecular plant-microbe interactions and how it too narrowly defines the plant immune system. As such, we discuss an alternative view of plant innate immunity as a system that evolves to detect invasion. This view accommodates the range from mutualistic to parasitic symbioses that plants form with diverse organisms, as well as the spectrum of ligands that the plant immune system perceives. Finally, how this view can contribute to the current practice of resistance breeding is discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080614-120114
2015-08-04
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/phyto/53/1/annurev-phyto-080614-120114.html?itemId=/content/journals/10.1146/annurev-phyto-080614-120114&mimeType=html&fmt=ahah

Literature Cited

  1. Alcázar R, von Reth M, Bautor J, Chae E, Weigel D. 1.  et al. 2014. Analysis of a plant complex resistance gene locus underlying immune-related hybrid incompatibility and its occurrence in nature. PLOS Genet. 10:12e1004848 [Google Scholar]
  2. Ashfield T, Keen NT, Buzzell RI, Innes RW. 2.  1995. Soybean resistance genes specific for different Pseudomonas syringae avirulence genes are allelic, or closely linked, at the RPG1 locus. Genetics 141:1597–604 [Google Scholar]
  3. Ashfield T, Ong LE, Nobuta K, Schneider CM, Innes RW. 3.  2004. Convergent evolution of disease resistance gene specificity in two flowering plant families. Plant Cell 16:309–18 [Google Scholar]
  4. Ashfield T, Redditt T, Russell A, Kessens R, Rodibaugh N. 4.  et al. 2014. Evolutionary relationship of disease resistance genes in soybean and Arabidopsis specific for the Pseudomonas syringae effectors AvrB and AvrRpm1. Plant Physiol. 166:235–51 [Google Scholar]
  5. Ausubel FM. 5.  2005. Are innate immune signaling pathways in plants and animals conserved?. Nat. Immunol. 6:973–79 [Google Scholar]
  6. Axtell MJ, Staskawicz BJ. 6.  2003. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112:369–77 [Google Scholar]
  7. Bailey BA. 7.  1995. Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca. Phytopathology 85:1250–55 [Google Scholar]
  8. Bart R, Cohn M, Kassen A, McCallum EJ, Shybut M. 8.  et al. 2012. High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proc. Natl. Acad. Sci. USA 109:E1972–79 [Google Scholar]
  9. Bauer Z, Gómez-Gómez L, Boller T, Felix G. 9.  2001. Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites. J. Biol. Chem. 276:45669–76 [Google Scholar]
  10. Benedetti M, Pontiggia D, Raggi S, Cheng Z, Scaloni F. 10.  et al. 2015. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc. Natl. Acad. Sci. USA 112:5533–38 [Google Scholar]
  11. Bent AF, Mackey D. 11.  2007. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45:399–436 [Google Scholar]
  12. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. 12.  2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–66 [Google Scholar]
  13. Boller T, Felix G. 13.  2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406 [Google Scholar]
  14. Bonfante P, Genre A. 14.  2010. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1:48 [Google Scholar]
  15. Bonman JM, Khush GS, Nelson RJ. 15.  1992. Breeding rice for resistance to pests. Annu. Rev. Phytopathol. 30:507–28 [Google Scholar]
  16. Böhm H, Albert I, Oome S, Raaymakers TM, Van den Ackerveken G, Nürnberger T. 16.  2014. A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. PLOS Pathog. 10:e1004491 [Google Scholar]
  17. Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT. 17.  et al. 2012. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc. Natl. Acad. Sci. USA 109:13859–64 [Google Scholar]
  18. Brun H, Chèvre A-M, Fitt BDL, Powers S, Besnard A-L. 18.  et al. 2010. Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol. 185:285–99 [Google Scholar]
  19. Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G. 19.  2010. A domain swap approach reveals a role of the plant wall–associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc. Natl. Acad. Sci. USA 107:9452–57 [Google Scholar]
  20. Cai R, Lewis J, Yan S, Liu H, Clarke CR. 20.  et al. 2011. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLOS Pathog. 7:e1002130 [Google Scholar]
  21. Chae E, Bomblies K, Kim S-T, Karelina D, Zaidem M. 21.  et al. 2014. Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 159:1341–51 [Google Scholar]
  22. Che FS, Nakajima Y, Tanaka N, Iwano M, Yoshida T. 22.  et al. 2000. Flagellin from an incompatible strain of Pseudomonas avenae induces a resistance response in cultured rice cells. J. Biol. Chem. 275:32347–56 [Google Scholar]
  23. Chen NWG, Sévignac M, Thareau V, Magdelenat G, David P. 23.  et al. 2010. Specific resistances against Pseudomonas syringae effectors AvrB and AvrRpm1 have evolved differently in common bean (Phaseolus vulgaris), soybean (Glycine max), and Arabidopsis thaliana. New Phytol. 187:941–56 [Google Scholar]
  24. Chisholm ST, Coaker G, Day B, Staskawicz BJ. 24.  2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–14 [Google Scholar]
  25. Chung E-H, El-Kasmi F, He Y, Loehr A, Dangl JL. 25.  2014. A plant phosphoswitch platform repeatedly targeted by type III effector proteins regulates the output of both tiers of plant immune receptors. Cell Host Microbe 16:484–94 [Google Scholar]
  26. Clarke CR, Chinchilla D, Hind SR, Taguchi F, Miki R. 26.  et al. 2013. Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. New Phytol. 200:847–60 [Google Scholar]
  27. Clatworthy AE, Pierson E, Hung DT. 27.  2007. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 3:541–48 [Google Scholar]
  28. Cook DE, Lee TG, Guo X, Melito S, Wang K. 28.  et al. 2012. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–9 [Google Scholar]
  29. Cuomo CA, Güldener U, Xu J-R, Trail F, Turgeon BG. 29.  et al. 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–2 [Google Scholar]
  30. Dangl JL, Horvath DM, Staskawicz BJ. 30.  2013. Pivoting the plant immune system from dissection to deployment. Science 341:746–51 [Google Scholar]
  31. Darvill AG, Albersheim P. 31.  1984. Phytoalexins and their elicitors: a defense against microbial infection in plants. Annu. Rev. Plant Physiol. 35:243–75 [Google Scholar]
  32. de Jonge R, Bolton MD, Kombrink A, van den Berg GCM, Yadeta KA, Thomma BPHJ. 32.  2013. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res. 23:1271–82 [Google Scholar]
  33. Dénarié J, Debellé F, Promé J-C. 33.  2003. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 65:503–35 [Google Scholar]
  34. De Vos M, Jander G. 34.  2009. Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell Environ. 32:1548–60 [Google Scholar]
  35. Dickman MB, de Figueiredo P. 35.  2013. Death be not proud: cell death control in plant fungal interactions. PLOS Pathog. 9:e1003542 [Google Scholar]
  36. Doyle DF, Braasch DA, Jackson LK, Weiss HE, Boehm MF. 36.  et al. 2001. Engineering orthogonal ligand-receptor pairs from “near drugs.”. J. Am. Chem. Soc. 123:4611367–71 [Google Scholar]
  37. Eggenberger AL, Hajimorad MR, Hill JH. 37.  2008. Gain of virulence on Rsv1-genotype soybean by an avirulent Soybean mosaic virus requires concurrent mutations in both P3 and HC-Pro. Mol. Plant-Microbe Interact. 21:931–36 [Google Scholar]
  38. Fan J, Doerner P. 38.  2012. Genetic and molecular basis of nonhost disease resistance: complex, yes; silver bullet, no. Curr. Opin. Plant Biol. 15:400–6 [Google Scholar]
  39. Faris JD, Zhang Z, Lu H, Lu S, Reddy L. 39.  et al. 2010. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl. Acad. Sci. USA 107:13544–49 [Google Scholar]
  40. Farnham G, Baulcombe DC. 40.  2006. Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato. Proc. Natl. Acad. Sci. USA 103:18828–33 [Google Scholar]
  41. Felix G, Duran JD, Volko S, Boller T. 41.  1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18:265–76 [Google Scholar]
  42. Felix G, Regenass M, Boller T. 42.  1993. Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J. 4:307–16 [Google Scholar]
  43. Flor HH. 43.  1942. Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:653–69 [Google Scholar]
  44. Flor HH. 44.  1955. Host-parasite interaction in flax rust: its genetics and other implications. Phytopathology 45:680–85 [Google Scholar]
  45. Flor HH. 45.  1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275–96 [Google Scholar]
  46. Friesen TL, Faris JD, Solomon PS, Oliver RP. 46.  2008. Host-specific toxins: effectors of necrotrophic pathogenicity. Cell. Microbiol. 10:1421–28 [Google Scholar]
  47. Friesen TL, Meinhardt SW, Faris JD. 47.  2007. The Stagonospora nodorum–wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J. 51:681–92 [Google Scholar]
  48. Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H. 48.  et al. 2006. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 38:953–56 [Google Scholar]
  49. Frías M, Brito N, González M, González C. 49.  2014. The phytotoxic activity of the cerato-platanin BcSpl1 resides in a two-peptide motif on the protein surface. Mol. Plant Pathol. 15:342–51 [Google Scholar]
  50. Frías M, González C, Brito N. 50.  2011. BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host. New Phytol. 192:483–95 [Google Scholar]
  51. Furukawa T, Inagaki H, Takai R, Hirai H, Che F-S. 51.  2014. Two distinct EF-Tu epitopes induce immune responses in rice and Arabidopsis. Mol. Plant-Microbe Interact. 27:113–24 [Google Scholar]
  52. Gabriel DW, Rolfe BG. 52.  1990. Working models of specific recognition in plant-microbe interactions. Annu. Rev. Phytopathol. 28:364–91 [Google Scholar]
  53. Gijzen M, Nürnberger T. 53.  2006. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67:1800–7 [Google Scholar]
  54. Gill US, Lee S, Mysore KS. 54.  2015. Host versus nonhost resistance: distinct wars with similar arsenals. Phytopathology 105580–87 [Google Scholar]
  55. Goverse A, Smant G. 55.  2014. The activation and suppression of plant innate immunity by parasitic nematodes. Annu. Rev. Phytopathol. 52:243–65 [Google Scholar]
  56. Gómez-Gómez L, Boller T. 56.  2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5:1003–11 [Google Scholar]
  57. Güimil S, Chang H-S, Zhu T, Sesma A, Osbourn A. 57.  et al. 2005. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc. Natl. Acad. Sci. USA 102:8066–70 [Google Scholar]
  58. Harris CJ, Slootweg EJ, Goverse A, Baulcombe DC. 58.  2013. Stepwise artificial evolution of a plant disease resistance gene. Proc. Natl. Acad. Sci. USA 110:21189–94 [Google Scholar]
  59. Heath MC. 59.  1981. A generalized concept of host-parasite specificity. Phytopathology 71:1121–23 [Google Scholar]
  60. Hirai H, Takai R, Iwano M, Nakai M, Kondo M. 60.  et al. 2011. Glycosylation regulates specific induction of rice immune responses by Acidovorax avenae flagellin. J. Biol. Chem. 286:25519–30 [Google Scholar]
  61. Hogenhout SA, Bos JI. 61.  2011. Effector proteins that modulate plant–insect interactions. Curr. Opin. Plant Biol. 14:422–28 [Google Scholar]
  62. Howe GA, Jander G. 62.  2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66 [Google Scholar]
  63. Hua J. 63.  2013. Modulation of plant immunity by light, circadian rhythm, and temperature. Curr. Opin. Plant Biol. 16:406–13 [Google Scholar]
  64. Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E. 64.  et al. 2011. Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol. 156:726–40 [Google Scholar]
  65. Janeway CA Jr. 65.  1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54:1–13 [Google Scholar]
  66. Jaouannet M, Rodriguez PA, Thorpe P, Lenoir CJG, MacLeod R. 66.  et al. 2014. Plant immunity in plant-aphid interactions. Front. Plant Sci. 5:663 [Google Scholar]
  67. Jehle AK, Lipschis M, Albert M, Fallahzadeh-Mamaghani V, Fürst U. 67.  et al. 2013. The receptor-like protein ReMAX of Arabidopsis detects the microbe-associated molecular pattern eMax from Xanthomonas. Plant Cell 25:2330–40 [Google Scholar]
  68. Johnson R. 68.  1984. A critical analysis of durable resistance. Annu. Rev. Phytopathol. 22:309–30 [Google Scholar]
  69. Jones JDG, Dangl JL. 69.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  70. Kamoun S. 70.  2007. Groovy times: filamentous pathogen effectors revealed. Curr. Opin. Plant Biol. 10:358–65 [Google Scholar]
  71. Kasschau KD, Carrington JC. 71.  1998. A counterdefensive strategy of plant viruses. Cell 95:461–70 [Google Scholar]
  72. Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ. 72.  et al. 2003. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell 4:205–17 [Google Scholar]
  73. Katsuragi Y, Takai R, Furukawa T, Hirai H, Morimoto T. 73.  et al. 2015. CD2-1, the C-terminal region of flagellin, modulates the induction of immune responses in rice. Mol. Plant-Microbe Interact. In press. doi: 10.1094/MPMI-11-14-0372-R [Google Scholar]
  74. Kearney B, Staskawicz BJ. 74.  1990. Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature 346:385–86 [Google Scholar]
  75. Kessens R, Ashfield T, Kim SH, Innes RW. 75.  2014. Determining the GmRIN4 requirements of the soybean disease resistance proteins Rpg1b and Rpg1r using a Nicotiana glutinosa–based agroinfiltration system. PLOS ONE 9:e108159 [Google Scholar]
  76. Khush GS. 76.  2001. Green revolution: the way forward. Nat. Rev. Genet. 2:815–22 [Google Scholar]
  77. Kim H-J, Lee H-R, Jo K-R, Mortazavian SMM, Huigen DJ. 77.  et al. 2012. Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theor. Appl. Genet. 124:923–35 [Google Scholar]
  78. Kim H-S, Thammarat P, Lommel SA, Hogan CS, Charkowski AO. 78.  2011. Pectobacterium carotovorum elicits plant cell death with DspE/F but the P. carotovorum DspE does not suppress callose or induce expression of plant genes early in plant-microbe interactions. Mol. Plant-Microbe Interact. 24:773–86 [Google Scholar]
  79. Kim MG, da Cunha L, McFall AJ, Belkhadir Y, DebRoy S. 79.  et al. 2005. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121:749–59 [Google Scholar]
  80. Kloppholz S, Kuhn H, Requena N. 80.  2011. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr. Biol. 21:1204–9 [Google Scholar]
  81. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. 81.  2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–507 [Google Scholar]
  82. Lai Z, Mengiste T. 82.  2013. Genetic and cellular mechanisms regulating plant responses to necrotrophic pathogens. Curr. Opin. Plant Biol. 16:505–12 [Google Scholar]
  83. Leach JE, Vera Cruz CM, Bai J, Leung H. 83.  2001. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu. Rev. Phytopathol. 39:187–224 [Google Scholar]
  84. Lee H-A, Kim S-Y, Oh S-K, Yeom S-I, Kim S-B. 84.  et al. 2014. Multiple recognition of RXLR effectors is associated with nonhost resistance of pepper against Phytophthora infestans. New Phytol. 203:926–38 [Google Scholar]
  85. Limpens E, van Zeijl A, Geurts R. 85.  2015. Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses. Annu. Rev. Phytopathol. 53311–34 [Google Scholar]
  86. Litzenberger SC. 86.  1949. Nature of susceptibility to Helminthosporium victoriae and resistance to Puccinia coronata in Victoria oats. Phytopathology 39:300–18 [Google Scholar]
  87. Lorang J, Kidarsa T, Bradford CS, Gilbert B, Curtis M. 87.  et al. 2012. Tricking the guard: exploiting plant defense for disease susceptibility. Science 338:659–62 [Google Scholar]
  88. Lorang JM, Sweat TA, Wolpert TJ. 88.  2007. Plant disease susceptibility conferred by a “resistance” gene. Proc. Natl. Acad. Sci USA 104:14861–66 [Google Scholar]
  89. Lozano-Torres JL, Wilbers RHP, Gawronski P, Boshoven JC, Finkers-Tomczak A. 89.  et al. 2012. Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proc. Natl. Acad. Sci. USA 109:10119–24 [Google Scholar]
  90. Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J. 90.  et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–73 [Google Scholar]
  91. Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL. 91.  2003. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112:379–89 [Google Scholar]
  92. Mackey D, Holt BF III, Wiig A, Dangl JL. 92.  2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–54 [Google Scholar]
  93. Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A. 93.  et al. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63 [Google Scholar]
  94. Malthus TR. 94.  1807. An Essay on the Principle of Population London: J. Johnson [Google Scholar]
  95. Mayama S, Bordin APA, Morikawa T, Tanpo H, Kato H. 95.  1995. Association of avenalumin accumulation with co-segregation of victorin sensitivity and crown rust resistance in oat lines carrying the Pc-2 gene. Physiol. Mol. Plant Pathol. 46:263–74 [Google Scholar]
  96. McCann HC, Nahal H, Thakur S, Guttman DS. 96.  2012. Identification of innate immunity elicitors using molecular signatures of natural selection. Proc. Natl. Acad. Sci. USA 109:4215–20 [Google Scholar]
  97. McDonald B. 97.  2010. How can we achieve durable disease resistance in agricultural ecosystems?. New Phytol. 185:13–5 [Google Scholar]
  98. McDonald BA, Linde C. 98.  2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40:1349–79 [Google Scholar]
  99. McIntosh RA, Brown GN. 99.  1997. Anticipatory breeding for resistance to rust diseases in wheat. Annu. Rev. Phytopathol. 35:311–26 [Google Scholar]
  100. Medzhitov R, Janeway CA. 100.  1997. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–98 [Google Scholar]
  101. Michelmore RW, Christopoulou M, Caldwell KS. 101.  2013. Impacts of resistance gene genetics, function, and evolution on a durable future. Annu. Rev. Phytopathol. 51:291–319 [Google Scholar]
  102. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K. 102.  et al. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 104:19613–18 [Google Scholar]
  103. Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K. 103.  et al. 2014. Bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol. 55:1864–72 [Google Scholar]
  104. Moxon ER, Rainey PB, Nowak MA, Lenski RE. 104.  1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4:24–33 [Google Scholar]
  105. Mukhtar MS, Carvunis A-R, Dreze M, Epple P, Steinbrenner J. 105.  et al. 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601 [Google Scholar]
  106. Nakahara KS, Masuta C. 106.  2014. Interaction between viral RNA silencing suppressors and host factors in plant immunity. Curr. Opin. Plant Biol. 20:88–95 [Google Scholar]
  107. Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T. 107.  et al. 2009. RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J. 60:218–26 [Google Scholar]
  108. Niks RE, Marcel TC. 108.  2009. Nonhost and basal resistance: how to explain specificity?. New Phytol. 182:817–28 [Google Scholar]
  109. Nothnagel EA, McNeil M, Albersheim P, Dell A. 109.  1983. Host-pathogen interactions: XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiol. 71:916–26 [Google Scholar]
  110. Nürnberger T, Brunner F. 110.  2002. Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr. Opin. Plant Biol. 5:318–24 [Google Scholar]
  111. Nürnberger T, Brunner F, Kemmerling B, Piater L. 111.  2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198:249–66 [Google Scholar]
  112. Ochman H, Lawrence JG, Groisman EA. 112.  2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304 [Google Scholar]
  113. Oldroyd GED. 113.  2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11:252–63 [Google Scholar]
  114. Oome S, Raaymakers TM, Cabral A, Samwel S, Böhm H. 114.  et al. 2014. Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc. Natl. Acad. Sci. USA 111:16955–60 [Google Scholar]
  115. Ottmann C, Luberacki B, Küfner I, Koch W, Brunner F. 115.  et al. 2009. A common toxin fold mediates microbial attack and plant defense. Proc. Natl. Acad. Sci. USA 106:10359–64 [Google Scholar]
  116. Pedersen WL, Leath S. 116.  1988. Pyramiding major genes for resistance to maintain residual effects. Annu. Rev. Phytopathol. 26:369–78 [Google Scholar]
  117. Pfund C, Tans-Kersten J, Dunning FM, Alonso JM, Ecker JR. 117.  et al. 2004. Flagellin is not a major defense elicitor in Ralstonia solanacearum cells or extracts applied to Arabidopsis thaliana. Mol. Plant-Microbe Interact. 17:696–706 [Google Scholar]
  118. Pink DAC. 118.  2002. Strategies using genes for non-durable disease resistance. Euphytica 124:227–36 [Google Scholar]
  119. Plett JM, Daguerre Y, Wittulsky S, Vayssières A, Deveau A. 119.  et al. 2014. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc. Natl. Acad. Sci. USA 111:8299–304 [Google Scholar]
  120. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ. 120.  2009. Shades of gray: the world of quantitative disease resistance. Trends Plant Sci. 14:21–29 [Google Scholar]
  121. Pritchard L, Birch. 121.  2014. The zigzag model of plant-microbe interactions: Is it time to move on?. Mol. Plant Pathol. 15:865–70 [Google Scholar]
  122. Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D. 122.  et al. 2010. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330:1540–43 [Google Scholar]
  123. Robatzek S, Bittel P, Chinchilla D, Köchner P, Felix G. 123.  et al. 2007. Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol. Biol. 64:539–47 [Google Scholar]
  124. Rooney HCE, Van't Klooster JW, van der Hoorn RAL, Joosten MHAJ, Jones JDG, de Wit PJGM. 124.  2005. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308:1783–86 [Google Scholar]
  125. Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM. 125.  1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad. Sci. USA 95:9750–54 [Google Scholar]
  126. Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP. 126.  et al. 2011. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat. Commun. 2:202 [Google Scholar]
  127. Rovenich H, Boshoven JC, Thomma BP. 127.  2014. Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Curr. Opin. Plant Biol. 20:96–103 [Google Scholar]
  128. Sanchez-Vallet A, Mesters JR, Thomma BPHJ. 128.  2014. The battle for chitin recognition in plant-microbe interactions. FEMS Microbiol. Rev. 39:171–83 [Google Scholar]
  129. Sansregret R, Dufour V, Langlois M, Daayf F, Dunoyer P. 129.  et al. 2013. Extreme resistance as a host counter-counter defense against viral suppression of RNA silencing. PLOS Pathog. 9:e1003435 [Google Scholar]
  130. Schulze-Lefert P, Panstruga R. 130.  2011. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 16:117–25 [Google Scholar]
  131. Selote D, Kachroo A. 131.  2010. RPG1-B-derived resistance to AvrB-expressing Pseudomonas syringae requires RIN4-like proteins in soybean. Plant Physiol. 153:1199–211 [Google Scholar]
  132. Senthil-Kumar M, Mysore KS. 132.  2013. Nonhost resistance against bacterial pathogens: retrospectives and prospects. Annu. Rev. Phytopathol. 51:407–27 [Google Scholar]
  133. Song J, Win J, Tian M, Schornack S, Kaschani F. 133.  et al. 2009. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc. Natl. Acad. Sci. USA 106:1654–59 [Google Scholar]
  134. Stirnweis D, Milani SD, Brunner S, Herren G, Buchmann G. 134.  et al. 2014. Suppression among alleles encoding nucleotide binding–leucine rich repeat resistance proteins interferes with resistance in F1 hybrid and allele pyramided wheat plants. Plant J. 79:893–903 [Google Scholar]
  135. Sun W, Dunning FM, Pfund C, Weingarten R, Bent AF. 135.  2006. Within-species flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2-dependent defenses. Plant Cell 18:764–79 [Google Scholar]
  136. Swords KM, Dahlbeck D, Kearney B, Roy M, Staskawicz BJ. 136.  1996. Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2. J. Bacteriol. 178:4661–69 [Google Scholar]
  137. Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J. 137.  et al. 2008. Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–56 [Google Scholar]
  138. Taguchi F, Takeuchi K, Katoh E, Murata K, Suzuki T. 138.  et al. 2006. Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci. Cell. Microbiol. 8:923–38 [Google Scholar]
  139. Thomma BPHJ, Nürnberger T, Joosten MHAJ. 139.  2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15 [Google Scholar]
  140. Tilman D, Balzer C, Hill J, Befort BL. 140.  2011. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 108:20260–64 [Google Scholar]
  141. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A. 141.  et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl. Acad. Sci. USA 110:20117–22 [Google Scholar]
  142. Trdá L, Fernandez O, Boutrot F, Héloir M-C, Kelloniemi J. 142.  et al. 2014. The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytol. 201:1371–84 [Google Scholar]
  143. Van Der Biezen EA, Jones JDG. 143.  1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23:454–56 [Google Scholar]
  144. van Kan JAL. 144.  2006. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci. 11:247–53 [Google Scholar]
  145. van Schie CCN, Takken FLW. 145.  2014. Susceptibility genes 101: how to be a good host. Annu. Rev. Phytopathol. 52:551–81 [Google Scholar]
  146. Vera Cruz CM, Bai J, Ona I, Leung H, Nelson RJ. 146.  et al. 2000. Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proc. Natl. Acad. Sci. USA 97:13500–5 [Google Scholar]
  147. Vetter MM, Kronholm I, He F, Häweker H, Reymond M. 147.  et al. 2012. Flagellin perception varies quantitatively in Arabidopsis thaliana and its relatives. Mol. Biol. Evol. 29:1655–67 [Google Scholar]
  148. Vinatzer BA, Monteil CL, Clarke CR. 148.  2014. Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. Annu. Rev. Phytopathol. 52:19–43 [Google Scholar]
  149. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. 149.  1997. Human domination of Earth's ecosystems. Science 277:494–99 [Google Scholar]
  150. Vleeshouwers VGAA, Oliver RP. 150.  2014. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol. Plant-Microbe Interact. 27:196–206 [Google Scholar]
  151. Voinnet O, Pinto YM, Baulcombe DC. 151.  1999. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. USA 96:14147–52 [Google Scholar]
  152. Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L. 152.  et al. 1998. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat. Biotechnol. 16:1365–69 [Google Scholar]
  153. Walker SA, Viprey V, Downie JA. 153.  2000. Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by nod factors and chitin oligomers. Proc. Natl. Acad. Sci. USA 97:13413–18 [Google Scholar]
  154. Wan J, Zhang XC, Neece D, Ramonell KM, Clough S. 154.  et al. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–81 [Google Scholar]
  155. Wang W, Xie Z-P, Staehelin C. 155.  2014. Functional analysis of chimeric lysin motif domain receptors mediating Nod factor–induced defense signaling in Arabidopsis thaliana and chitin-induced nodulation signaling in Lotus japonicus. Plant J. 78:56–69 [Google Scholar]
  156. Weßling R, Epple P, Altmann S, He Y, Yang L. 156.  et al. 2014. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16:364–75 [Google Scholar]
  157. Will T, Tjallingii WF, Thönnessen A, van Bel AJE. 157.  2007. Molecular sabotage of plant defense by aphid saliva. Proc. Natl. Acad. Sci. USA 104:10536–41 [Google Scholar]
  158. Wolpert TJ, Dunkle LD, Ciuffetti LM. 158.  2003. Host-selective toxins and avirulence determinants: What's in a name?. Annu. Rev. Phytopathol 40:251–85 [Google Scholar]
  159. Wolpert TJ, Macko V, Acklin W, Jaun B, Seibl J. 159.  et al. 1985. Structure of victorin C, the major host-selective toxin from Cochliobolus victoriae. Experientia 41:1524–29 [Google Scholar]
  160. Wroblewski T, Caldwell KS, Piskurewicz U, Cavanaugh KA, Xu H. 160.  et al. 2009. Comparative large-scale analysis of interactions between several crop species and the effector repertoires from multiple pathovars of Pseudomonas and Ralstonia. Plant Physiol. 150:1733–49 [Google Scholar]
  161. Zhang L, Kars I, Essenstam B, Liebrand TWH, Wagemakers L. 161.  et al. 2014. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol. 164:352–64 [Google Scholar]
  162. Zhang W, Fraiture M, Kolb D, Löffelhardt B, Desaki Y. 162.  et al. 2013. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25:4227–41 [Google Scholar]
  163. Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S. 163.  2005. A maize resistance gene functions against bacterial streak disease in rice. Proc. Natl. Acad. Sci. USA 102:15383–88 [Google Scholar]
  164. Zhao BY, Ardales E, Brasset E, Claflin LE, Leach JE, Hulbert SH. 164.  2004. The Rxo1/Rba1 locus of maize controls resistance reactions to pathogenic and non-host bacteria. Theor. Appl. Genet. 109:71–79 [Google Scholar]
  165. Zhao C, Escalante LN, Chen H, Benatti TR, Qu J. 165.  et al. 2015. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr. Biol. 25:1–8 [Google Scholar]
  166. Zhu Y, Chen H, Fan J, Wang Y, Li Y. 166.  et al. 2000. Genetic diversity and disease control in rice. Nature 406:718–22 [Google Scholar]
  167. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG. 167.  et al. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–60 [Google Scholar]
  168. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG. 168.  et al. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–67 [Google Scholar]
  169. Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S. 169.  et al. 2011. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLOS Pathog. 7:e1002290 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080614-120114
Loading
/content/journals/10.1146/annurev-phyto-080614-120114
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error