1932

Abstract

Predisposition results from abiotic stresses occurring prior to infection that affect susceptibility of plants to disease. The environment is seldom optimal for plant growth, and even mild, episodic stresses can predispose plants to inoculum levels they would otherwise resist. Plant responses that are adaptive in the short term may conflict with those for resisting pathogens. Abiotic and biotic stress responses are coordinated by complex signaling networks involving phytohormones and reactive oxygen species (ROS). Abscisic acid (ABA) is a global regulator in stress response networks and an important phytohormone in plant-microbe interactions with systemic effects on resistance and susceptibility. However, extensive cross talk occurs among all the phytohormones during stress events, and the challenge is discerning those interactions that most influence disease. Identifying convergent points in the stress response circuitry is critically important in terms of understanding the fundamental biology that underscores the disease phenotype as well as translating research to improve stress tolerance and disease management in production systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-081211-172902
2014-08-04
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/phyto/52/1/annurev-phyto-081211-172902.html?itemId=/content/journals/10.1146/annurev-phyto-081211-172902&mimeType=html&fmt=ahah

Literature Cited

  1. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H. 1.  et al. 2006. Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94 [Google Scholar]
  2. Achard P, Renou JP, Berthome R, Harberd NP, Genschik P. 2.  2008. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr. Biol. 18:656–60 [Google Scholar]
  3. Achuo EA, Prinsen E, Hofte M. 3.  2006. Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol. 55:178–86 [Google Scholar]
  4. Adie BAT, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ. 4.  et al. 2007. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–81 [Google Scholar]
  5. Agarwal PK, Agarwal P, Reddy MK, Sopory SK. 5.  2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25:1263–74 [Google Scholar]
  6. Albacete A, Ghanem ME, Martinez-Andujar C, Acosta M, Sanchez-Bravo J. 6.  et al. 2008. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J. Exp. Bot. 59:4119–31 [Google Scholar]
  7. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ. 7.  et al. 2004. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–79 [Google Scholar]
  8. Apel K, Hirt H. 8.  2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373–99 [Google Scholar]
  9. Arenas-Huertero C, Pérez B, Rabanal F, Blanco-Melo D, De la Rosa C. 9.  et al. 2009. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol. Biol. 70:385–401 [Google Scholar]
  10. Asselbergh B, Achuo AE, Hofte M, Van Gijsegem F. 10.  2008. Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Mol. Plant Pathol. 9:11–24 [Google Scholar]
  11. Asselbergh B, Curvers K, Franca SC, Audenaert K, Vuylsteke M. 11.  et al. 2007. Resistance to Botrytis cinerea in sitiens, an abscisic acid–deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 144:1863–77 [Google Scholar]
  12. Asselbergh B, De Vleesschauwer D, Hofte M. 12.  2008. Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol. Plant-Microbe Interact. 21:709–19 [Google Scholar]
  13. Atkinson NJ, Urwin PE. 13.  2012. The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63:3523–43 [Google Scholar]
  14. Axtell MJ. 14.  2013. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 64:137–59 [Google Scholar]
  15. Ayres PG. 15.  1984. The interaction between environmental stress injury and biotic disease physiology. Annu. Rev. Phytopathol. 22:53–75 [Google Scholar]
  16. Bajguz A, Hayat S. 16.  2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47:1–8 [Google Scholar]
  17. Barkosky RR, Einhellig FA. 17.  1993. Effects of salicylic acid on plant water relationships. J. Chem. Ecol. 19:237–47 [Google Scholar]
  18. Belkhadir Y, Jaillais Y, Epple P, Balsemao-Pires E, Dangl JL, Chory J. 18.  2012. Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc. Natl. Acad. Sci. USA 109:297–302 [Google Scholar]
  19. Bender J, Weigel HJ. 19.  2011. Changes in atmospheric chemistry and crop health: a review. Agron. Sustain. Dev. 31:81–89 [Google Scholar]
  20. Benjamins R, Scheres B. 20.  2008. Auxin: the looping star in plant development. Annu. Rev. Plant Biol. 59:443–65 [Google Scholar]
  21. Bettucci L, Alonso R, Tiscornia S. 21.  1999. Endophytic mycobiota of healthy twigs and the assemblage of species associated with twig lesions of Eucalyptus globulus and E. grandis in Uruguay. Mycol. Res. 103:468–72 [Google Scholar]
  22. Birkenbihl RP, Diezel C, Somssich IE. 22.  2012. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol. 159:266–85 [Google Scholar]
  23. Blaker NS, Macdonald JD. 23.  1986. The role of salinity in the development of Phytophthora root rot of citrus. Phytopathology 76:970–75 [Google Scholar]
  24. Bostock RM. 24.  2005. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43:545–80 [Google Scholar]
  25. Bostock RM, Quatrano RS. 25.  1992. Regulation of Em gene expression in rice: interaction between osmotic stress and abscisic acid. Plant Physiol. 98:1356–63 [Google Scholar]
  26. Boter M, Ruiz-Rivero O, Abdeen A, Prat S. 26.  2004. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev. 18:1577–91 [Google Scholar]
  27. Boyer JS. 27.  1995. Biochemical and biophysical aspects of water deficits and the predisposition to disease. Annu. Rev. Phytopathol. 33:251–74 [Google Scholar]
  28. Brossa R, Lopez-Carbonell M, Jubany-Mari T, Alegre L. 28.  2011. Interplay between abscisic acid and jasmonic acid and its role in water-oxidative stress in wild-type, ABA-deficient, JA-deficient, and ascorbate-deficient Arabidopsis plants. J. Plant Growth Regul. 30:322–33 [Google Scholar]
  29. Bultreys A, Kaluzna M. 29.  2010. Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the pathovars syringae and morsprunorum race 1 and race 2. J. Plant Pathol. 92:S21–33 [Google Scholar]
  30. Burgess T, McComb JA, Colquhoun I, Hardy GES. 30.  1999. Increased susceptibility of Eucalyptus marginata to stem infection by Phytophthora cinnamomi resulting from root hypoxia. Plant Pathol. 48:797–806 [Google Scholar]
  31. Cahill DM, Ward EWB. 31.  1989. Rapid localized changes in abscisic acid concentrations in soybean in interactions with Phytophthora megasperma f. sp. glycinea or after treatment with elicitors. Physiol. Mol. Plant Pathol. 35:483–94 [Google Scholar]
  32. Cao FY, Yoshioka K, Desveaux D. 32.  2011. The roles of ABA in plant-pathogen interactions. J. Plant Res. 124:489–99 [Google Scholar]
  33. Chakraborty S. 33.  2011. Climate change and plant diseases. Plant Pathol. 60:2–14 [Google Scholar]
  34. Chan ZL. 34.  2012. Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics 100:110–15 [Google Scholar]
  35. Chapin FS. 35.  1991. Integrated responses of plants to stress. Bioscience 41:29–36 [Google Scholar]
  36. Cho D, Shin DJ, Jeon BW, Kwak JM. 36.  2009. ROS-mediated ABA signaling. J. Plant Biol. 52:102–13 [Google Scholar]
  37. Choi J, Choi D, Lee S, Ryu CM, Hwang I. 37.  2011. Cytokinins and plant immunity: old foes or new friends?. Trends Plant Sci. 16:388–94 [Google Scholar]
  38. Christmann A, Grill E, Huang J. 38.  2013. Hydraulic signals in long-distance signaling. Curr. Opin. Plant Biol. 16:293–300 [Google Scholar]
  39. Cook RJ, Papendick RI. 39.  1972. Influence of water potential of soils and plants on root disease. Annu. Rev. Phytopathol. 10:349–74 [Google Scholar]
  40. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. 40.  2011. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 11:163 [Google Scholar]
  41. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. 41.  2010. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61:651–79 [Google Scholar]
  42. Davison EM, Tay FCS. 42.  1987. The effect of waterlogging on infection of Eucalyptus marginata seedlings by Phytophthora cinnamomi. New Phytol. 105:585–94 [Google Scholar]
  43. Denance N, Sanchez-Vallet A, Goffner D, Molina A. 43.  2013. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front. Plant Sci. 4:155 [Google Scholar]
  44. de Ollas C, Hernando B, Arbona V, Gomez-Cadenas A. 44.  2013. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol. Plant 147:296–306 [Google Scholar]
  45. Desprez-Loustau ML, Marcais B, Nageleisen LM, Piou D, Vannini A. 45.  2006. Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. 63:597–612 [Google Scholar]
  46. de Torres Zabala M, Bennett MH, Truman WH, Grant MR. 46.  2009. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. Plant J. 59:375–86 [Google Scholar]
  47. de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW. 47.  et al. 2007. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J. 26:1434–43 [Google Scholar]
  48. Dhindsa RS, Cleland RE. 48.  1975. Water stress and protein synthesis. 1. Differential inhibition of protein synthesis. Plant Physiol. 55:778–81 [Google Scholar]
  49. Dickman MB, Fluhr R. 49.  2013. Centrality of host cell death in plant-microbe interactions. Annu. Rev. Phytopathol. 51:543–70 [Google Scholar]
  50. DiLeo MV, Pye MF, Roubtsova TV, Duniway JM, MacDonald JD. 50.  et al. 2010. Abscisic acid in salt stress predisposition to Phytophthora root and crown rot in tomato and Chrysanthemum. Phytopathology 100:871–79 [Google Scholar]
  51. Dinneny JR, Long TA, Wang JY, Jung JW, Mace D. 51.  et al. 2008. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–45 [Google Scholar]
  52. Divi UK, Rahman T, Krishna P. 52.  2010. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol. 10:151 [Google Scholar]
  53. Dordas C. 53.  2008. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 28:33–46 [Google Scholar]
  54. Dreher K, Callis J. 54.  2007. Ubiquitin, hormones and biotic stress in plants. Ann. Bot. 99:787–822 [Google Scholar]
  55. Duke SO, Wedge DE, Cerdeira AL, Matallo MB. 55.  2007. Interaction of synthetic herbicides with plant disease and microbial herbicides. Novel Biotechnologies for Biocontrol Agent Enhancement and Management M Vurro, J Gressel 277–96 Dordrecht, Neth.: Springer [Google Scholar]
  56. Duniway JM. 56.  1977. Predisposing effect of water stress on severity of Phytophthora root rot in safflower. Phytopathology 67:884–89 [Google Scholar]
  57. Duniway JM. 57.  1979. Water relations of water molds. Annu. Rev. Phytopathol. 17:431–60 [Google Scholar]
  58. Erbaugh DK, Windham MT, Stodola AJW, Auge RM. 58.  1995. Light intensity and drought stress as predisposition factors for dogwood anthracnose. J. Environ. Hortic. 13:186–89 [Google Scholar]
  59. Eyles A, Bonello P, Ganley R, Mohammed C. 59.  2010. Induced resistance to pests and pathogens in trees. New Phytol. 185:893–908 [Google Scholar]
  60. Fan J, Hill L, Crooks C, Doerner P, Lamb C. 60.  2009. Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol. 150:1750–61 [Google Scholar]
  61. Finkelstein R. 61.  2013. Abscisic acid synthesis and response. Arabidopsis. Book 11:e0166 [Google Scholar]
  62. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y. 62.  et al. 2006. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9:436–42 [Google Scholar]
  63. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. 63.  2011. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 124:509–25 [Google Scholar]
  64. Galvan-Ampudia CS, Testerink C. 64.  2011. Salt stress signals shape the plant root. Curr. Opin. Plant Biol. 14:296–302 [Google Scholar]
  65. Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE. 65.  2006. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44:489–509 [Google Scholar]
  66. Glazebrook J. 66.  2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205–27 [Google Scholar]
  67. Grant MR, Jones JDG. 67.  2009. Hormone (dis)harmony moulds plant health and disease. Science 324:750–52 [Google Scholar]
  68. Guo N, Ye W-W, Wu X-L, Shen D-Y, Wang Y-C. 68.  et al. 2011. Microarray profiling reveals microRNAs involving soybean resistance to Phytophthora sojae. Genome 54:954–58 [Google Scholar]
  69. Guo W-L, Chen R-G, Gong Z-H, Yin Y-X, Li D-W. 69.  2013. Suppression subtractive hybridization analysis of genes regulated by application of exogenous abscisic acid in pepper plant (Capsicum annuum L.) leaves under chilling stress. PLoS ONE 8:e66667 [Google Scholar]
  70. Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. 70.  2012. Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 17:172–79 [Google Scholar]
  71. Hahlbrock K, Chappell J, Jahnen W, Walter M. 71.  1985. Early defense reactions of plants to pathogens. Molecular Form and Function of the Plant Genome L van Vloten-Doting, GSP Groot, TC Hall 129–40 New York: Plenum Publ. Corp. [Google Scholar]
  72. Hann DR, Dominguez-Ferreras A, Motyka V, Dobrev PI, Schornack S. 72.  et al. 2014. The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytol. 201:585–98 [Google Scholar]
  73. Hartig R. 73.  1894. Text-Book of the Diseases of Trees London: MacMillan and Co.
  74. Hauser F, Waadtl R, Schroeder JI. 74.  2011. Evolution of abscisic acid synthesis and signaling mechanisms. Curr. Biol. 21:R346–55 [Google Scholar]
  75. Henfling J, Bostock R, Kuć J. 75.  1980. Effect of abscisic acid on rishitin and lubimin accumulation and resistance to Phytophthora infestans and Cladosporium cucumerinum in potato tuber tissue slices. Phytopathology 70:1074–78 [Google Scholar]
  76. Heritage AD, Harrigan EKS. 76.  1984. Environmental factors influencing safflower screening for resistance to Phytophthora cryptogea. Plant Dis. 68:767–69 [Google Scholar]
  77. Himmelbach A, Yang Y, Grill E. 77.  2003. Relay and control of abscisic acid signaling. Curr. Opin. Plant Biol. 6:470–79 [Google Scholar]
  78. Horvath E, Szalai G, Janda T. 78.  2007. Induction of abiotic stress tolerance by salicylic acid signaling. J. Plant Growth Regul. 26:290–300 [Google Scholar]
  79. Huang X, Li J, Bao F, Zhang X, Yang S. 79.  2010. A gain-of-function mutation in the Arabidopsis disease resistance gene RPP4 confers sensitivity to low temperature. Plant Physiol. 154:796–809 [Google Scholar]
  80. Huber DM, Graham RD. 80.  1999. The role of nutrition in crop resistance and tolerance to disease. Mineral Nutrition of Crops: Fundamental Mechanisms and Implications Z Rengel 205–26 New York: Food Prod. Press [Google Scholar]
  81. Jackson MB. 81.  2002. Long-distance signalling from roots to shoots assessed: the flooding story. J. Exp. Bot. 53:175–81 [Google Scholar]
  82. Jaillais Y, Chory J. 82.  2010. Unraveling the paradoxes of plant hormone signaling integration. Nat. Struct. Mol. Biol. 17:642–45 [Google Scholar]
  83. Jakab G, Ton J, Flors V, Zimmerli L, Metraux JP, Mauch-Mani B. 83.  2005. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol. 139:267–74 [Google Scholar]
  84. Jensen MK, Lindemose S, de Masi F, Reimer JJ, Nielsen M. 84.  et al. 2013. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio 3:321–27 [Google Scholar]
  85. Jiang YQ, Deyholos MK. 85.  2006. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol. 6:25 [Google Scholar]
  86. Joshi-Saha A, Valon C, Leung J. 86.  2011. A brand new START: abscisic acid perception and transduction in the guard cell. Sci. Signal. 4:201re4 [Google Scholar]
  87. Kabbage M, Li W, Chen SR, Dickman MB. 87.  2010. The E3 ubiquitin ligase activity of an insect anti-apoptotic gene (SfIAP) is required for plant stress tolerance. Physiol. Mol. Plant Pathol. 74:351–62 [Google Scholar]
  88. Kazan K, Manners JM. 88.  2012. JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci. 17:22–31 [Google Scholar]
  89. Kazan K, Manners JM. 89.  2013. MYC2: the master in action. Mol. Plant 6:686–703 [Google Scholar]
  90. Keim R, Webster RK. 90.  1974. Nitrogen fertilization and severity of stem rot of rice. Phytopathology 64:178–83 [Google Scholar]
  91. Khraiwesh B, Zhu J-K, Zhu J. 91.  2012. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim. Biophys. Acta 1819:137–48 [Google Scholar]
  92. Kilian J, Peschke F, Berendzen KW, Harter K, Wanke D. 92.  2012. Prerequisites, performance and profits of transcriptional profiling the abiotic stress response. Biochim. Biophys. Acta 1819:166–75 [Google Scholar]
  93. Kim Y, Park S, Gilmour SJ, Thomashow MF. 93.  2013. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J. 75:364–76 [Google Scholar]
  94. Koga H, Dohi K, Mori M. 94.  2004. Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol. Mol. Plant Pathol. 65:3–9 [Google Scholar]
  95. Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP. 95.  2013. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep. 32:945–57 [Google Scholar]
  96. Kozlowski TT, Pallardy SG. 96.  2002. Acclimation and adaptive responses of woody plants to environmental stresses. Bot. Rev. 68:270–334 [Google Scholar]
  97. Krasensky J, Jonak C. 97.  2012. Drought, salt, and temperature stress–induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63:1593–608 [Google Scholar]
  98. Kriesel K. 98.  1997. Effect of growth regulators on the susceptibility of pine seedlings to Cylindrocarpon destructans (Zins.) Scholt. and on the pathogenicity of this fungus to these seedlings: Part II. Abscisic acid (ABA). Acta Univ. Nicolai Copernici Biol. 52:45–50 [Google Scholar]
  99. Kuan TL, Erwin DC. 99.  1980. Predisposition effect of water saturation of soil on Phytophthora root rot of alfalfa. Phytopathology 70:981–86 [Google Scholar]
  100. Kumar M, Busch W, Birke H, Kemmerling B, Nuernberger T, Schoeffl F. 100.  2009. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol. Plant 2:152–65 [Google Scholar]
  101. Kuwabara C, Imai R. 101.  2009. Molecular basis of disease resistance acquired through cold acclimation in overwintering plants. J. Plant Biol. 52:19–26 [Google Scholar]
  102. Leon-Reyes A, Du YJ, Koornneef A, Proietti S, Korbes AP. 102.  et al. 2010. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Mol. Plant-Microbe Interact. 23:187–97 [Google Scholar]
  103. Leon-Reyes A, Spoel SH, De Lange ES, Abe H, Kobayashi M. 103.  et al. 2009. Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol. 149:1797–809 [Google Scholar]
  104. Leshem YY, Kuiper PJ, Erdei L, Lurie S, Perl-Treves R. 104.  1998. Do Selye's mammalian “GAS” concept and “co-stress” response exist in plants?. Ann. N.Y. Acad. Sci. 851:199–208 [Google Scholar]
  105. Li BH, Li Q, Xiong LM, Kronzucker HJ, Kramer U, Shi WM. 105.  2012. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress. Plant Physiol. 160:2040–51 [Google Scholar]
  106. Li J, Brader G, Kariola T, Palva ET. 106.  2006. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J. 46:477–91 [Google Scholar]
  107. Li W, Kabbage M, Dickman MB. 107.  2010. Transgenic expression of an insect inhibitor of apoptosis gene, SfIAP, confers abiotic and biotic stress tolerance and delays tomato fruit ripening. Physiol. Mol. Plant Pathol. 74:363–75 [Google Scholar]
  108. Llorente F, Muskett P, Sanchez-Vallet A, Lopez G, Ramos B. 108.  et al. 2008. Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Mol. Plant 1:496–509 [Google Scholar]
  109. Lopez-Zamora I, Bliss C, Jokela EJ, Comerford NB, Grunwald S. 109.  et al. 2007. Spatial relationships between nitrogen status and pitch canker disease in slash pine planted adjacent to a poultry operation. Environ. Pollut. 147:101–11 [Google Scholar]
  110. Lu C, Fedoroff N. 110.  2000. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–65 [Google Scholar]
  111. Lyzenga WJ, Stone SL. 111.  2012. Abiotic stress tolerance mediated by protein ubiquitination. J. Exp. Bot. 63:599–616 [Google Scholar]
  112. Ma QH. 112.  2008. Genetic engineering of cytokinins and their application to agriculture. Crit. Rev. Biotechnol. 28:213–32 [Google Scholar]
  113. Ma SS, Bohnert HJ. 113.  2007. Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol. 8:R49 [Google Scholar]
  114. Ma SS, Gong QQ, Bohnert HJ. 114.  2006. Dissecting salt stress pathways. J. Exp. Bot. 57:1097–107 [Google Scholar]
  115. MacDonald JD. 115.  1982. Effect of salinity stress on the development of Phytophthora root rot of chrysanthemum Chrysanthemum morifolium cultivar Paragon. Phytopathology 72:214–19 [Google Scholar]
  116. MacDonald JD. 116.  1984. Salinity effects on the susceptibility of chrysanthemum roots to Phytophthora cryptogea. Phytopathology 74:621–24 [Google Scholar]
  117. MacDonald JD. 117.  1991. Heat stress enhances Phytophthora root rot severity in container-grown chrysanthemums. J. Am. Soc. Hortic. Sci. 116:36–41 [Google Scholar]
  118. Marek SM, Yaghmour M, Bostock RM. 118.  2013. Fusarium spp., Cylindrocarpon spp., and predisposing environmental stress in the etiology of a canker disease of cold-stored fruit and nut tree seedlings in California. Plant Dis. 97:259–70 [Google Scholar]
  119. Mauch-Mani B, Mauch F. 119.  2005. The role of abscisic acid in plant-pathogen interactions. Curr. Opin. Plant Biol. 8:409–14 [Google Scholar]
  120. McDonald KL, Cahill DM. 120.  1999. Influence of abscisic acid and the abscisic acid biosynthesis inhibitor, norflurazon, on interactions between Phytophthora sojae and soybean (Glycine max). Eur. J. Plant Pathol. 105:651–58 [Google Scholar]
  121. Melotto M, Underwood W, He SY. 121.  2008. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46:101–22 [Google Scholar]
  122. Meng XZ, Xu J, He YX, Yang KY, Mordorski B. 122.  et al. 2013. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25:1126–42 [Google Scholar]
  123. Michniewicz M, Czerwinska E, Rozej B. 123.  1990. Interaction of abscisic acid and ethylene in relation to disease development in wheat seedlings infected by Fusarium culmorum (W.G.Sm.) Sacc. Acta Physiol. Plant. 12:41–48 [Google Scholar]
  124. Mittler R. 124.  2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11:15–19 [Google Scholar]
  125. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 125.  2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490–98 [Google Scholar]
  126. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB. 126.  et al. 2011. ROS signaling: the new wave?. Trends Plant Sci. 16:300–9 [Google Scholar]
  127. Mohr PG, Cahill DM. 127.  2001. Relative roles of glyceollin, lignin and the hypersensitive response and the influence of ABA in compatible and incompatible interactions of soybeans with Phytophthora sojae. Physiol. Mol. Plant Pathol. 58:31–41 [Google Scholar]
  128. Mohr PG, Cahill DM. 128.  2003. Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct. Plant Biol. 30:461–69 [Google Scholar]
  129. Mohr PG, Cahill DM. 129.  2007. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct. Integr. Genomics 7:181–91 [Google Scholar]
  130. Montillet J-L, Leonhardt N, Mondy S, Tranchimand S, Rumeau D. 130.  et al. 2013. An abscisic acid–independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol. 11:e1001513 [Google Scholar]
  131. Moore GA. 131.  1987. The variation of bark-wood bond strength with moisture content of Pinus radiata and three eucalypt species during storage. Aust. For. Res. 17:73–78 [Google Scholar]
  132. Moore T, Martineau B, Bostock RM, Lincoln JE, Gilchrist DG. 132.  1999. Molecular and genetic characterization of ethylene involvement in mycotoxin-induced plant cell death. Physiol. Mol. Plant Pathol. 54:73–85 [Google Scholar]
  133. Munns R. 133.  2005. Genes and salt tolerance: bringing them together. New Phytol. 167:645–63 [Google Scholar]
  134. Munns R, Tester M. 134.  2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59:651–81 [Google Scholar]
  135. Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S. 135.  et al. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33:887–98 [Google Scholar]
  136. Nambara E, Marion-Poll A. 136.  2005. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56:165–85 [Google Scholar]
  137. Navarro L, Bari R, Achard P, Lison P, Nemri A. 137.  et al. 2008. DELLAs control plant immune responses by modulating the balance and salicylic acid signaling. Curr. Biol. 18:650–55 [Google Scholar]
  138. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N. 138.  et al. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–39 [Google Scholar]
  139. Nguyen VT, Vuong TD, VanToai T, Lee JD, Wu X. 139.  et al. 2012. Mapping of quantitative trait loci associated with resistance to Phytophthora sojae and flooding tolerance in soybean. Crop Sci. 52:2481–93 [Google Scholar]
  140. Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M. 140.  et al. 2011. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–83 [Google Scholar]
  141. Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K. 141.  et al. 2013. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25:609–24 [Google Scholar]
  142. Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. 142.  2013. Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J. Exp. Bot. 64:445–58 [Google Scholar]
  143. Pareek A, Sopory SK, Bohnert HJ, Govindjee X. 143.  2010. Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation Dordrecht, Neth.: Springer
  144. Park JE, Park JY, Kim YS, Staswick PE, Jeon J. 144.  et al. 2007. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J. Biol. Chem. 282:10036–46 [Google Scholar]
  145. Park JM, Park C-J, Lee S-B, Ham B-K, Shin R, Paek K-H. 145.  2001. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–46 [Google Scholar]
  146. Peleg Z, Blumwald E. 146.  2011. Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol. 14:290–95 [Google Scholar]
  147. Phillips JR, Dalmay T, Bartels D. 147.  2007. The role of small RNAs in abiotic stress. FEBS Lett. 581:3592–97 [Google Scholar]
  148. Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. 148.  2012. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28:489–521 [Google Scholar]
  149. Potters G, Pasternak TP, Guisez Y, Jansen MAK. 149.  2009. Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ. 32:158–69 [Google Scholar]
  150. Prasch CM, Sonnewald U. 150.  2013. Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol. 162:1849–66 [Google Scholar]
  151. Pumplin N, Voinnet O. 151.  2013. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat. Rev. Microbiol. 11:745–60 [Google Scholar]
  152. Pye MF, Hakuno F, MacDonald JD, Bostock RM. 152.  2013. Induced resistance in tomato by SAR activators during predisposing salinity stress. Front. Plant Sci. 4:116 [Google Scholar]
  153. Ren B, Liang Y, Deng Y, Chen Q, Zhang J. 153.  et al. 2009. Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Res. 19:1178–90 [Google Scholar]
  154. Reyes JL, Chua N-H. 154.  2007. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J. 49:592–606 [Google Scholar]
  155. Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R. 155.  et al. 2007. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. USA 104:19631–36 [Google Scholar]
  156. Roatti B, Perazzolli M, Gessler C, Pertot I. 156.  2013. Abiotic stresses affect Trichoderma harzianum T39-induced resistance to downy mildew in grapevine. Phytopathology 103:1227–34 [Google Scholar]
  157. Robert-Seilaniantz A, Grant M, Jones JDG. 157.  2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49:317–43 [Google Scholar]
  158. Rock CD, Sakata Y, Quatrano RS. 158.  2010. Stress signaling I: the role of abscisic acid (ABA). See Ref. 143 33–73.
  159. Roubtsova TV, Bostock RM. 159.  2009. Episodic abiotic stress as a potential contributing factor to onset and severity of disease caused by Phytophthora ramorum in Rhododendron and Viburnum. Plant Dis. 93:912–18 [Google Scholar]
  160. Sagi M, Fluhr R. 160.  2006. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141:336–40 [Google Scholar]
  161. Sanchez DH, Pieckenstain FL, Szymanski J, Erban A, Bromke M. 161.  et al. 2011. Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PLoS ONE 6:e17094 [Google Scholar]
  162. Sandermann H. 162.  1996. Ozone and plant health. Annu. Rev. Phytopathol. 34:347–66 [Google Scholar]
  163. Savchenko T, Kolla V, Wang C-Q, Nasafi Z, Hicks D. 163.  et al. 2014. Functional convergence of oxylipin and ABA pathways controls stomatal closure in response to drought. Plant Physiol. 164:1151–60 [Google Scholar]
  164. Schenke D, Bottcher C, Scheel D. 164.  2011. Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production. Plant Cell Environ. 34:1849–64 [Google Scholar]
  165. Schoeneweiss DF. 165.  1975. Predisposition, stress, and plant disease. Annu. Rev. Phytopathol. 13:193–211 [Google Scholar]
  166. Schoeneweiss DF. 166.  1978. Water stress as a predisposing factor in plant disease. Water Deficits and Plant Growth TT Kozlowski 61–99 New York: Academic [Google Scholar]
  167. Schoeneweiss DF. 167.  1981. The role of environmental stress in diseases of woody plants. Plant Dis. 65:308–14 [Google Scholar]
  168. Shaw RE, Meyer WS, McNeill A, Tyerman SD. 168.  2013. Waterlogging in Australian agricultural landscapes: a review of plant responses and crop models. Crop Pasture Sci. 64:549–62 [Google Scholar]
  169. Shivaprasad PV, Chen H-M, Patel K, Bond DM, Santos BACM, Baulcombe DC. 169.  2012. A microRNA superfamily regulates nucleotide binding site–leucine-rich repeats and other mRNAs. Plant Cell 24:859–74 [Google Scholar]
  170. Shkolnik-Inbar D, Bar-Zvi D. 170.  2010. ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22:3560–73 [Google Scholar]
  171. Snoeijers SS, Perez-Garcia A, Joosten M, De Wit P. 171.  2000. The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. Eur. J. Plant Pathol. 106:493–506 [Google Scholar]
  172. Sorauer P, Lindau G, Reh L. 172.  1922. Manual of Plant Diseases Wilkes-Barre, PA: Record Press
  173. Staswick PE, Tiryaki I, Rowe ML. 173.  2002. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–15 [Google Scholar]
  174. Stermer BA, Hammerschmidt R. 174.  1987. Association of heat-shock induced resistance to disease with increased accumulation of insoluble extensin and ethylene synthesis. Physiol. Mol. Plant Pathol. 31:453–61 [Google Scholar]
  175. Stevens J, Senaratna T, Sivasithamparam K. 175.  2006. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul. 49:77–83 [Google Scholar]
  176. Stratmann J. 176.  2003. Ultraviolet-B radiation co-opts defense signaling pathways. Trends Plant Sci. 8:526–33 [Google Scholar]
  177. Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT. 177.  et al. 2011. Climate change and forest diseases. Plant Pathol. 60:133–49 [Google Scholar]
  178. Sun Y, Li L, Macho AP, Han Z, Hu Z. 178.  et al. 2013. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342:624–28 [Google Scholar]
  179. Sunkar R, Chinnusamy V, Zhu J, Zhu J-K. 179.  2007. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 12:301–9 [Google Scholar]
  180. Suntio T, Mäkinen K. 180.  2012. Abiotic stress responses promote Potato virus A infection in Nicotiana benthamiana. Mol. Plant Pathol. 13:775–84 [Google Scholar]
  181. Taiz L, Zeiger E. 181.  2006. Plant Physiology Sunderland, MA: Sinauer Assoc.
  182. Teige M, Scheikl E, Eulgem T, Doczi F, Ichimura K. 182.  et al. 2004. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol. Cell 15:141–52 [Google Scholar]
  183. Thaler JS, Bostock RM. 183.  2004. Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85:48–58 [Google Scholar]
  184. Theocharis A, Clement C, Barka EA. 184.  2012. Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–105 [Google Scholar]
  185. Ton J, Flors V, Mauch-Mani B. 185.  2009. The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14:310–17 [Google Scholar]
  186. Truman WM, Bennett MH, Turnbull CGN, Grant MR. 186.  2010. Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds. Plant Physiol. 152:1562–73 [Google Scholar]
  187. Tsutsui T, Kato W, Asada Y, Sako K, Sato T. 187.  et al. 2009. DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. J. Plant Res. 122:633–43 [Google Scholar]
  188. Umezawa T, Hirayama T, Kuromori T, Shinozaki K. 188.  2011. The regulatory networks of plant responses to abscisic acid. Plant Responses to Drought and Salinity Stress: Developments in a Post-Genomic Era I Turkan 201–48 New York: Acad. Press [Google Scholar]
  189. Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu JH, Zhu JK. 189.  2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45:523–39 [Google Scholar]
  190. Vicente MRS, Plasencia J. 190.  2011. Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot. 62:3321–38 [Google Scholar]
  191. Vlot AC, Dempsey DMA, Klessig DF. 191.  2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177–206 [Google Scholar]
  192. Walters DR, McRoberts N. 192.  2006. Plants and biotrophs: a pivotal role for cytokinins?. Trends Plant Sci. 11:581–86 [Google Scholar]
  193. Walters DR, Ratsep J, Havis ND. 193.  2013. Controlling crop diseases using induced resistance: challenges for the future. J. Exp. Bot. 64:1263–80 [Google Scholar]
  194. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong XN. 194.  2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Biol. 17:1784–90 [Google Scholar]
  195. Wang M, Zheng QS, Shen QR, Guo SW. 195.  2013. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 14:7370–90 [Google Scholar]
  196. Wang Z-Y. 196.  2012. Brassinosteroids modulate plant immunity at multiple levels. Proc. Natl. Acad. Sci. USA 109:7–8 [Google Scholar]
  197. Wasternack C, Hause B. 197.  2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111:1021–58 [Google Scholar]
  198. Weyman PD, Pan ZQ, Feng Q, Gilchrist DG, Bostock RM. 198.  2006. A circadian rhythm-regulated tomato gene is induced by arachidonic acid and Phythophthora infestans infection. Plant Physiol. 140:235–48 [Google Scholar]
  199. Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ. 199.  2012. Plant hormone interactions: innovative targets for crop breeding and management. J. Exp. Bot. 63:3499–509 [Google Scholar]
  200. Xing Y, Jia W, Zhang J. 200.  2008. AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J. 54:440–51 [Google Scholar]
  201. Xu J, Audenaert K, Hofte M, De Vleesschauwer D. 201.  2013. Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv oryzae by suppressing salicylic acid–mediated defenses. PLoS ONE 8:e67413 [Google Scholar]
  202. Xue-Xuan X, Hong-Bo S, Yuan-Yuan M, Gang X, Jun-Na S. 202.  et al. 2010. Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Crit. Rev. Biotechnol. 30:222–30 [Google Scholar]
  203. Yamaguchi-Shinozaki K, Shinozaki K. 203.  2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57:781–803 [Google Scholar]
  204. Yang D-L, Yao J, Mei C-S, Tong X-H, Zeng L-J. 204.  et al. 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. USA 109:E1192–200 [Google Scholar]
  205. Yarwood CE. 205.  1959. . Predisposition. Plant Pathology JG Horsfall, AE Dimond 521–62 New York: Acad. Press [Google Scholar]
  206. Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T. 206.  et al. 2008. Antagonistic interaction between systemic acquired resistance and the abscisic acid–mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–92 [Google Scholar]
  207. Yesbergenova Z, Yang G, Oron E, Soffer D, Fluhr R, Sagi M. 207.  2005. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J. 42:862–76 [Google Scholar]
  208. Yoshioka K, Shinozaki K. 208.  2009. Signal Crosstalk in Plant Stress Responses Ames, IA: Wiley-Blackwell
  209. Zhang S, Cai Z, Wang X. 209.  2009. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl. Acad. Sci. USA 106:4543–48 [Google Scholar]
  210. Zhao JQ, Li S, Jiang TF, Liu Z, Zhang WW. 210.  et al. 2012. Chilling stress: the key predisposing factor for causing Alternaria alternata infection and leading to cotton (Gossypium hirsutum L.) leaf senescence. PLoS ONE 7:e36126 [Google Scholar]
  211. Zhu Q-H, Fan L, Liu Y, Xu H, Llewellyn D, Wilson I. 211.  2013. miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PLoS ONE 8:e84390 [Google Scholar]
  212. Zhu Y, Qian W, Hua J. 212.  2010. Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog. 6:e1000844 [Google Scholar]
/content/journals/10.1146/annurev-phyto-081211-172902
Loading
/content/journals/10.1146/annurev-phyto-081211-172902
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error