A never-ending arms race drives coevolution between pathogens and hosts. In plants, pathogen attacks invoke multiple layers of host immune responses. Many pathogens deliver effector proteins into host cells to suppress host immunity, and many plants have evolved resistance proteins to recognize effectors and trigger robust resistance. Here, we discuss findings on noncoding small RNAs (sRNAs) from plants and pathogens, which regulate host immunity and pathogen virulence. Recent discoveries have unveiled the role of noncoding sRNAs from eukaryotic pathogens and bacteria in pathogenicity in both plant and animal hosts. The discovery of fungal sRNAs that are delivered into host cells to suppress plant immunity added sRNAs to the list of pathogen effectors. Similar to protein effector genes, many of these sRNAs are generated from transposable element (TE) regions, which are likely to contribute to rapidly evolving virulence and host adaptation. We also discuss RNA silencing that occurs between organisms.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agorio A, Vera P. 1.  2007. ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell 19:3778–90 [Google Scholar]
  2. Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP. 2.  et al. 2011. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 7:e1002230 [Google Scholar]
  3. Axtell MJ. 3.  2013. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 64:137–59 [Google Scholar]
  4. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P. 4.  et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–12 [Google Scholar]
  5. Baulcombe D. 5.  2004. RNA silencing in plants. Nature 431:356–63 [Google Scholar]
  6. Baulcombe D. 6.  2013. Plant science. Small RNA: the secret of noble rot. Science 342:45–46 [Google Scholar]
  7. Bobrovskyy M, Vanderpool CK. 7.  2013. Regulation of bacterial metabolism by small RNAs using diverse mechanisms. Annu. Rev. Genet. 47:209–32 [Google Scholar]
  8. Bohnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH. 8.  2004. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16:2499–513 [Google Scholar]
  9. Bos JIB, Armstrong MR, Gilroy EM, Boevink PC, Hein I. 9.  et al. 2010. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc. Natl. Acad. Sci. USA 107:9909–14 [Google Scholar]
  10. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ. 10.  et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–64 [Google Scholar]
  11. Carreras-Villasenor N, Esquivel-Naranjo EU, Villalobos-Escobedo JM, Abreu-Goodger C, Herrera-Estrella A. 11.  2013. The RNAi machinery regulates growth and development in the filamentous fungus Trichoderma atroviride. Mol. Microbiol. 89:96–112 [Google Scholar]
  12. Castel SE, Martienssen RA. 12.  2013. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 14:100–12 [Google Scholar]
  13. Cervantes M, Vila A, Nicolas FE, Moxon S, de Haro JP. 13.  et al. 2013. A single argonaute gene participates in exogenous and endogenous RNAi and controls cellular functions in the basal fungus Mucor circinelloides. PLoS ONE 8:e69283 [Google Scholar]
  14. Chang SS, Zhang Z, Liu Y. 14.  2012. RNA interference pathways in fungi: mechanisms and functions. Annu. Rev. Microbiol. 66:305–23 [Google Scholar]
  15. Chao NX, Wei K, Chen Q, Meng QL, Tang DJ. 15.  et al. 2008. The rsmA-like gene rsmAXcc of Xanthomonas campestris pv. campestris is involved in the control of various cellular processes, including pathogenesis. Mol. Plant-Microbe Interact. 4:411–23 [Google Scholar]
  16. Chao Y, Vogel J. 16.  2010. The role of Hfq in bacterial pathogens. Curr. Opin. Microbiol. 13:24–33 [Google Scholar]
  17. Chicas A, Cogoni C, Macino G. 17.  2004. RNAi-dependent and RNAi-independent mechanisms contribute to the silencing of RIPed sequences in Neurospora crassa. Nucleic Acids Res. 32:4237–43 [Google Scholar]
  18. Chisholm ST, Coaker G, Day B, Staskawicz BJ. 18.  2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–14 [Google Scholar]
  19. Cogoni C, Macino G. 19.  1997. Isolation of quelling-defective (qde) mutants impaired in post-transcriptional transgene-induced gene silencing in Neurospora crassa. Proc. Natl. Acad. Sci. USA 94:10233–38 [Google Scholar]
  20. Cui Y, Chatterjee A, Liu Y, Dumenyo CK, Chatterjee AK. 20.  1995. Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-L-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp. J. Bacteriol. 177:5108–15 [Google Scholar]
  21. Cuperus JT, Fahlgren N, Carrington JC. 21.  2011. Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–42 [Google Scholar]
  22. Dang Y, Yang Q, Xue Z, Liu Y. 22.  2011. RNA interference in fungi: pathways, functions, and applications. Eukaryot. Cell 10:1148–55 [Google Scholar]
  23. David-Schwartz R, Runo S, Townsley B, Machuka J, Sinha N. 23.  2008. Long-distance transport of mRNA via parenchyma cells and phloem across the host-parasite junction in Cuscuta. New Phytol. 179:1133–41 [Google Scholar]
  24. de Haro JP, Calo S, Cervantes M, Nicolas FE, Torres-Martinez S, Ruiz-Vazquez RM. 24.  2009. A single dicer gene is required for efficient gene silencing associated with two classes of small antisense RNAs in Mucor circinelloides. Eukaryot. Cell 8:1486–97 [Google Scholar]
  25. de Jonge R, Bolton MD, Thomma BPHJ. 25.  2011. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Curr. Opin. Plant Biol. 14:400–6 [Google Scholar]
  26. Ding SW. 26.  2010. RNA-based antiviral immunity. Nat. Rev. Immunol. 10:632–44 [Google Scholar]
  27. Diolez A, Marches F, Fortini D, Brygoo Y. 27.  1995. Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea. Appl. Environ. Microbiol. 61:103–8 [Google Scholar]
  28. Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM. 28.  et al. 2012. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl. Acad. Sci. USA 109:E2183–91 [Google Scholar]
  29. Drinnenberg IA, Fink GR, Bartel DP. 29.  2011. Compatibility with killer explains the rise of RNAi-deficient fungi. Science 333:1592 [Google Scholar]
  30. Dunoyer P. 30.  2011. Small RNA duplexes function as mobile silencing signals between plant cells. Science 328:912–16 [Google Scholar]
  31. Ellendorff U, Fradin EF, de Jonge R, Thomma BP. 31.  2009. RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J. Exp. Bot. 60:591–602 [Google Scholar]
  32. Fabbri M. 32.  2012. TLRs as miRNA receptors. Cancer Res. 72:6333–37 [Google Scholar]
  33. Fahlgren N, Bollmann SR, Kasschau KD, Cuperus JT, Press CM. 33.  et al. 2013. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs. PLoS ONE 8:e77181 [Google Scholar]
  34. Farman ML, Tosa Y, Nitta N, Leong SA. 34.  1996. MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea. Mol. Gen. Genet. 251:665–74 [Google Scholar]
  35. Filiatrault MJ, Stodghill PV, Bronstein PA, Moll S, Lindeberg M. 35.  et al. 2010. Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J. Bacteriol. 192:2359–72 [Google Scholar]
  36. Fudal I, Bohnert HU, Tharreau D, Lebrun MH. 36.  2005. Transposition of MINE, a composite retrotransposon, in the avirulence gene ACE1 of the rice blast fungus Magnaporthe grisea. Fungal Genet. Biol. 42:761–72 [Google Scholar]
  37. Fudal I, Collemare J, Bohnert HU, Melayah D, Lebrun MH. 37.  2007. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. Eukaryot. Cell 6:546–54 [Google Scholar]
  38. Fulci V, Macino G. 38.  2007. Quelling: post-transcriptional gene silencing guided by small RNAs in Neurospora crassa. Curr. Opin. Microbiol. 10:199–203 [Google Scholar]
  39. Ghildiyal M, Xu J, Seitz H, Weng ZP, Zamore PD. 39.  2010. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 16:43–56 [Google Scholar]
  40. Giraud T, Fortini D, Levis C, Leroux P, Brygoo Y. 40.  1997. RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Mol. Biol. Evol. 14:1177–85 [Google Scholar]
  41. Gonzalez M, Li F. 41.  2012. DNA replication, RNAi and epigenetic inheritance. Epigenetics 7:14–19 [Google Scholar]
  42. Guo L, Lu ZH. 42.  2010. The fate of miRNA* strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule?. PLoS ONE 5:e11387 [Google Scholar]
  43. Guo N, Ye WW, Wu XL, Shen DY, Wang YC. 43.  et al. 2011. Microarray profiling reveals microRNAs involving soybean resistance to Phytophthora sojae. Genome 54:954–58 [Google Scholar]
  44. Gupta OP, Permar V, Koundal V, Singh UD, Praveen S. 44.  2012. MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection. Mol. Biol. Rep. 39:817–24 [Google Scholar]
  45. Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE. 45.  et al. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–98 [Google Scholar]
  46. Hammond TM, Spollen WG, Decker LM, Blake SM, Springer GK, Shiu PK. 46.  2013. Identification of small RNAs associated with meiotic silencing by unpaired DNA. Genetics 194:279–84 [Google Scholar]
  47. Heroven AK, Bohme K, Dersch P. 47.  2012. The Csr/Rsm system of Yersinia and related pathogens: a post-transcriptional strategy for managing virulence. RNA Biol. 9:379–91 [Google Scholar]
  48. Hinas A, Wright AJ, Hunter CP. 48.  2012. SID-5 is an endosome-associated protein required for efficient systemic RNAi in C. elegans. Curr. Biol. 22:1938–43 [Google Scholar]
  49. Horvath P, Barrangou R. 49.  2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–70 [Google Scholar]
  50. Jiang RP, Tang DJ, Chen XL, He YQ, Feng JX. 50.  et al. 2010. Identification of four novel small non-coding RNAs from Xanthomonas campestris pathovar campestris. BMC Genomics 11:316 [Google Scholar]
  51. Jin H. 51.  2008. Endogenous small RNAs and antibacterial immunity in plants. FEBS Lett. 582:2679–84 [Google Scholar]
  52. Jin HL, Zhu JK. 52.  2010. How many ways are there to generate small RNAs?. Mol. Cell 38:775–77 [Google Scholar]
  53. Jones JD, Dangl JL. 53.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  54. Jose AM, Kim YA, Leal-Ekman S, Hunter CP. 54.  2012. Conserved tyrosine kinase promotes the import of silencing RNA into Caenorhabditis elegans cells. Proc. Natl. Acad. Sci. USA 109:14520–25 [Google Scholar]
  55. Judelson HS. 55.  2012. Dynamics and innovations within oomycete genomes: insights into biology, pathology, and evolution. Eukaryot. Cell 11:1304–12 [Google Scholar]
  56. Judelson HS, Ah-Fong AM, Aux G, Avrova AO, Bruce C. 56.  et al. 2008. Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol. Plant-Microbe Interact. 21:433–47 [Google Scholar]
  57. Kadotani N, Nakayashiki H, Tosa Y, Mayama S. 57.  2004. One of the two Dicer-like proteins in the filamentous fungi Magnaporthe oryzae genome is responsible for hairpin RNA-triggered RNA silencing and related small interfering RNA accumulation. J. Biol. Chem. 279:44467–74 [Google Scholar]
  58. Kang K, Zhong J, Jiang L, Liu G, Gou CY. 58.  et al. 2013. Identification of microRNA-like RNAs in the filamentous fungus Trichoderma reesei by Solexa sequencing. PLoS ONE 8:e76288 [Google Scholar]
  59. Kasuga T, Kozanitas M, Bui M, Huberli D, Rizzo DM, Garbelotto M. 59.  2012. Phenotypic diversification is associated with host-induced transposon derepression in the sudden oak death pathogen Phytophthora ramorum. PLoS ONE 7:e34728 [Google Scholar]
  60. Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H. 60.  2007. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev. 21:3123–34 [Google Scholar]
  61. Katiyar-Agarwal S, Jin H. 61.  2010. Role of small RNAs in host-microbe interactions. Annu. Rev. Phytopathol. 48:225–46 [Google Scholar]
  62. Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr. 62.  et al. 2006. A pathogen-inducible endogenous siRNA in plant immunity. Proc. Natl. Acad. Sci. USA 103:18002–7 [Google Scholar]
  63. Lau SK, Chow WN, Wong AY, Yeung JM, Bao J. 63.  et al. 2013. Identification of microRNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. PLoS Negl. Trop. Dis. 7e2398
  64. Laurie JD, Ali S, Linning R, Mannhaupt G, Wong P. 64.  et al. 2012. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Plant Cell 24:1733–45 [Google Scholar]
  65. Law JA, Jacobsen SE. 65.  2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11:204–20 [Google Scholar]
  66. Lee HC, Chang SS, Choudhary S, Aalto AP, Maiti M. 66.  et al. 2009. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature 459:274–77 [Google Scholar]
  67. Lee HC, Li L, Gu W, Xue Z, Crosthwaite SK. 67.  et al. 2010. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol. Cell 38:803–14 [Google Scholar]
  68. Levis C, Fortini D, Brygoo Y. 68.  1997. Flipper, a mobile Fot1-like transposable element in Botrytis cinerea. Mol. Gen. Genet. 254:674–80 [Google Scholar]
  69. Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM. 69.  et al. 2012. MicroRNA regulation of plant innate immune receptors. Proc. Natl. Acad. Sci. USA 109:1790–95 [Google Scholar]
  70. Li JF, Norville JE, Aach J, McCormack M, Zhang D. 70.  et al. 2013. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31:688–91 [Google Scholar]
  71. Li L, Chang SS, Liu Y. 71.  2010. RNA interference pathways in filamentous fungi. Cell. Mol. Life Sci. 67:3849–63 [Google Scholar]
  72. Li L, Liu Y. 72.  2011. Diverse small non-coding RNAs in RNA interference pathways. Methods Mol. Biol. 764:169–82 [Google Scholar]
  73. Li Y, Lu YG, Shi Y, Wu L, Xu YJ. 73.  et al. 2013. Multiple rice miRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol. 164:1077–92 [Google Scholar]
  74. Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM. 74.  2010. Identification of microRNAs involved in pathogen-associated molecular pattern–triggered plant innate immunity. Plant Physiol. 152:2222–31 [Google Scholar]
  75. Liang H, Zhao YT, Zhang JQ, Wang XJ, Fang RX, Jia YT. 75.  2011. Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae. BMC Genomics 12:87 [Google Scholar]
  76. Llorente F, Muskett P, Sanchez-Vallet A, Lopez G, Ramos B. 76.  et al. 2008. Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Mol. Plant 1:496–509 [Google Scholar]
  77. Lopez A, Ramirez V, Garcia-Andrade J, Flors V, Vera P. 77.  2011. The RNA silencing enzyme RNA polymerase V is required for plant immunity. PLoS Genet. 7:e1002434 [Google Scholar]
  78. Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ. 78.  et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–73 [Google Scholar]
  79. Mali P, Esvelt KM, Church GM. 79.  2013. Cas9 as a versatile tool for engineering biology. Nat. Methods 10:957–63 [Google Scholar]
  80. Martinez F, Dubos B, Fermaud M. 80.  2005. The role of saprotrophy and virulence in the population dynamics of Botrytis cinerea in vineyards. Phytopathology 95:692–700 [Google Scholar]
  81. McEwan DL, Weisman AS, Hunter CP. 81.  2012. Uptake of extracellular double-stranded RNA by SID-2. Mol. Cell 47:746–54 [Google Scholar]
  82. Mi S, Cai T, Hu Y, Chen Y, Hodges E. 82.  et al. 2008. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–27 [Google Scholar]
  83. Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC. 83.  2010. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–75 [Google Scholar]
  84. Murata T, Kadotani N, Yamaguchi M, Tosa Y, Mayama S, Nakayashiki H. 84.  2007. siRNA-dependent and -independent post-transcriptional cosuppression of the LTR-retrotransposon MAGGY in the phytopathogenic fungus Magnaporthe oryzae. Nucleic Acids Res. 35:5987–94 [Google Scholar]
  85. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N. 85.  et al. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–39 [Google Scholar]
  86. Navarro L, Jay F, Nomura K, He SY, Voinnet O. 86.  2008. Suppression of the microRNA pathway by bacterial effector proteins. Science 321:964–67 [Google Scholar]
  87. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S. 87.  2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31:691–93 [Google Scholar]
  88. Nicolas FE, de Haro JP, Torres-Martinez S, Ruiz-Vazquez RM. 88.  2007. Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet. Biol. 44:504–16 [Google Scholar]
  89. Nicolas FE, Ruiz-Vazquez RM. 89.  2013. Functional diversity of RNAi-associated sRNAs in fungi. Int. J. Mol. Sci. 14:15348–60 [Google Scholar]
  90. Nowara D, Gay A, Lacomme C, Shaw J, Ridout C. 90.  et al. 2010. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–41 [Google Scholar]
  91. Nunes CC, Dean RA. 91.  2012. Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Mol. Plant Pathol. 13:519–29 [Google Scholar]
  92. Nunes CC, Gowda M, Sailsbery J, Xue M, Chen F. 92.  et al. 2011. Diverse and tissue-enriched small RNAs in the plant pathogenic fungus, Magnaporthe oryzae. BMC Genomics 12:288 [Google Scholar]
  93. Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC. 93.  2008. The regulatory activity of microRNA star species has substantial influence on microRNA and 3′ UTR evolution. Nat. Struct. Mol. Biol. 15:354–63 [Google Scholar]
  94. Oldenburg M, Kruger A, Ferstl R, Kaufmann A, Nees G. 94.  et al. 2012. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337:1111–15 [Google Scholar]
  95. Padmanabhan C, Zhang X, Jin H. 95.  2009. Host small RNAs are big contributors to plant innate immunity. Curr. Opin. Plant Biol. 12:465–72 [Google Scholar]
  96. Pavet V, Quintero C, Cecchini NM, Rosa AL, Alvarez ME. 96.  2006. Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Mol. Plant-Microbe Interact. 19:577–87 [Google Scholar]
  97. Price DR, Gatehouse JA. 97.  2008. RNAi-mediated crop protection against insects. Trends Biotechnol. 26:393–400 [Google Scholar]
  98. Qutob D, Chapman BP, Gijzen M. 98.  2013. Transgenerational gene silencing causes gain of virulence in a plant pathogen. Nat. Commun. 4:1349 [Google Scholar]
  99. Raffaele S, Kamoun S. 99.  2012. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat. Rev. Microbiol. 10:417–30 [Google Scholar]
  100. Raman V, Simon SA, Romag A, Demirci F, Mathioni SM. 100.  et al. 2013. Physiological stressors and invasive plant infections alter the small RNA transcriptome of the rice blast fungus, Magnaporthe oryzae. BMC Genomics 14:326 [Google Scholar]
  101. Rep M, Kistler HC. 101.  2010. The genomic organization of plant pathogenicity in Fusarium species. Curr. Opin. Plant Biol. 13:420–26 [Google Scholar]
  102. Rezzonico F, Smits TH, Duffy B. 102.  2011. Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora. Appl. Environ. Microbiol. 77:3819–29 [Google Scholar]
  103. Romano N, Macino G. 103.  1992. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6:3343–53 [Google Scholar]
  104. Roney JK, Khatibi PA, Westwood JH. 104.  2007. Cross-species translocation of mRNA from host plants into the parasitic plant dodder. Plant Physiol. 143:1037–43 [Google Scholar]
  105. Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP. 105.  et al. 2011. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat. Commun. 2:202 [Google Scholar]
  106. Ruiz-Ferrer V, Voinnet O. 106.  2009. Roles of plant small RNAs in biotic stress responses. Annu. Rev. Plant Biol. 60:485–510 [Google Scholar]
  107. Sacristan S, Vigouroux M, Pedersen C, Skamnioti P, Thordal-Christensen H. 107.  et al. 2009. Coevolution between a family of parasite virulence effectors and a class of LINE-1 retrotransposons. PLoS ONE 4:e7463 [Google Scholar]
  108. Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS. 108.  2013. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497:254–57 [Google Scholar]
  109. Schmidtke C, Abendroth U, Brock J, Serrania J, Becker A, Bonas U. 109.  2013. Small RNA sX13: a multifaceted regulator of virulence in the plant pathogen Xanthomonas. PLoS Pathog. 9:e1003626 [Google Scholar]
  110. Schmidtke C, Findeiss S, Sharma CM, Kuhfuss J, Hoffmann S. 110.  et al. 2012. Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions. Nucleic Acids Res. 40:2020–31 [Google Scholar]
  111. Seo JK, Wu J, Lii Y, Li Y, Jin H. 111.  2013. Contribution of small RNA pathway components in plant immunity. Mol. Plant-Microbe Interact. 26:617–25 [Google Scholar]
  112. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA. 112.  et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87 [Google Scholar]
  113. Shariat N, Dudley EG. 113.  2013. CRISPRs: molecular signatures used for pathogen subtyping. Appl. Environ. Microbiol. 80:430–39 [Google Scholar]
  114. Shiu PK, Metzenberg RL. 114.  2002. Meiotic silencing by unpaired DNA: properties, regulation and suppression. Genetics 161:1483–95 [Google Scholar]
  115. Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC. 115.  2012. A microRNA superfamily regulates nucleotide binding site–leucine-rich repeats and other mRNAs. Plant Cell 24:859–74 [Google Scholar]
  116. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM. 116.  et al. 2010. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–46 [Google Scholar]
  117. Stower H. 117.  2013. Small RNAs: RNAs attack!. Nat. Rev. Genet. 14:748–49 [Google Scholar]
  118. Timmermans J, Van Melderen L. 118.  2010. Post-transcriptional global regulation by CsrA in bacteria. Cell. Mol. Life Sci. 67:2897–908 [Google Scholar]
  119. Tsuchiya T, Eulgem T. 119.  2013. An alternative polyadenylation mechanism coopted to the Arabidopsis RPP7 gene through intronic retrotransposon domestication. Proc. Natl. Acad. Sci. USA 110:E3535–43 [Google Scholar]
  120. van der Does HC, Rep M. 120.  2007. Virulence genes and the evolution of host specificity in plant-pathogenic fungi. Mol. Plant-Microbe Interact. 20:1175–82 [Google Scholar]
  121. van Kan JA. 121.  2006. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci. 11:247–53 [Google Scholar]
  122. Vetukuri RR, Asman AK, Tellgren-Roth C, Jahan SN, Reimegard J. 122.  et al. 2012. Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete Phytophthora infestans. PLoS ONE 7:e51399 [Google Scholar]
  123. Vetukuri RR, Avrova AO, Grenville-Briggs LJ, Van West P, Soderbom F. 123.  et al. 2011. Evidence for involvement of Dicer-like, Argonaute and histone deacetylase proteins in gene silencing in Phytophthora infestans. Mol. Plant Pathol. 12:772–85 [Google Scholar]
  124. Vetukuri RR, Tian Z, Avrova AO, Savenkov EI, Dixelius C, Whisson SC. 124.  2011. Silencing of the PiAvr3a effector-encoding gene from Phytophthora infestans by transcriptional fusion to a short interspersed element. Fungal Biol. 115:1225–33 [Google Scholar]
  125. Vogel J, Luisi BF. 125.  2011. Hfq and its constellation of RNA. Nat. Rev. Microbiol. 9:578–89 [Google Scholar]
  126. Wang T, Wei JJ, Sabatini DM, Lander ES. 126.  2014. Genetic screens in human cells using the CRISPR/Cas9 system. Science 343:80–84 [Google Scholar]
  127. Wang X, Hsueh YP, Li W, Floyd A, Skalsky R, Heitman J. 127.  2010. Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi. Genes Dev. 24:2566–82 [Google Scholar]
  128. Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z. 128.  et al. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–23 [Google Scholar]
  129. Whangbo JS, Hunter CP. 129.  2008. Environmental RNA interference. Trends Genet. 24:297–305 [Google Scholar]
  130. Wheeler BS. 130.  2013. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response. Chromosome Res. 21:587–600 [Google Scholar]
  131. Whisson S, Vetukuri R, Avrova A, Dixelius C. 131.  2012. Can silencing of transposons contribute to variation in effector gene expression in Phytophthora infestans?. Mob. Genet. Elem. 2:110–14 [Google Scholar]
  132. White SA, Allshire RC. 132.  2008. RNAi-mediated chromatin silencing in fission yeast. Curr. Top. Microbiol. Immunol. 320:157–83 [Google Scholar]
  133. Wiedenheft B, Sternberg SH, Doudna JA. 133.  2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–38 [Google Scholar]
  134. Wilms I, Moller P, Stock AM, Gurski R, Lai EM, Narberhaus F. 134.  2012. Hfq influences multiple transport systems and virulence in the plant pathogen Agrobacterium tumefaciens. J. Bacteriol. 194:5209–17 [Google Scholar]
  135. Wilms I, Overloper A, Nowrousian M, Sharma CM, Narberhaus F. 135.  2012. Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens. RNA Biol. 9:446–57 [Google Scholar]
  136. Winston WM, Molodowitch C, Hunter CP. 136.  2002. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295:2456–59 [Google Scholar]
  137. Xin M, Wang Y, Yao Y, Xie C, Peng H. 137.  et al. 2010. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol. 10:123 [Google Scholar]
  138. Yang L, Jue D, Li W, Zhang R, Chen M, Yang Q. 138.  2013. Identification of miRNA from eggplant (Solanum melongena L.) by small RNA deep sequencing and their response to Verticillium dahliae infection. PLoS ONE 8:e72840 [Google Scholar]
  139. Yi H, Richards EJ. 139.  2007. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 19:2929–39 [Google Scholar]
  140. Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H. 140.  et al. 2009. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573–91 [Google Scholar]
  141. Yu A, Lepere G, Jay F, Wang J, Bapaume L. 141.  et al. 2013. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc. Natl. Acad. Sci. USA 110:2389–94 [Google Scholar]
  142. Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD. 142.  et al. 2011. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 25:2540–53 [Google Scholar]
  143. Zhang L, Hou D, Chen X, Li D, Zhu L. 143.  et al. 2012. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 22:107–26 [Google Scholar]
  144. Zhang W, Gao S, Zhou X, Chellappan P, Chen Z. 144.  et al. 2011. Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol. Biol. 75:93–105 [Google Scholar]
  145. Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S. 145.  et al. 2011. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a golgi-localized SNARE gene, MEMB12. Mol. Cell 42:356–66 [Google Scholar]
  146. Zhang Z, Chang SS, Zhang Z, Xue Z, Zhang H. 146.  et al. 2013. Homologous recombination as a mechanism to recognize repetitive DNA sequences in an RNAi pathway. Genes Dev. 27:145–50 [Google Scholar]
  147. Zhao H, Sun R, Albrecht U, Padmanabhan C, Wang A. 147.  et al. 2013. Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for citrus Huanglongbing disease. Mol. Plant 6:301–10 [Google Scholar]
  148. Zhao M, Zhou JY, Li ZD, Song WW, Gong T, Tan H. 148.  2011. Boty-like retrotransposons in the filamentous fungus Botrytis cinerea contain the additional antisense gene brtn. Virology 417:248–52 [Google Scholar]
  149. Zhou J, Fu Y, Xie J, Li B, Jiang D. 149.  et al. 2012. Identification of microRNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-throughput sequencing. Mol. Genet. Genomics 287:275–82 [Google Scholar]
  150. Zhou Q, Wang Z, Zhang J, Meng H, Huang B. 150.  2012. Genome-wide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biol. 116:1156–62 [Google Scholar]
  151. Zhu QF, Fan L, Liu Y, Llewellyn D, Wilson I. 151.  2013. miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PLoS ONE 8:e84390 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error