1932

Abstract

Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants’ ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-121423-042014
2024-09-09
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/phyto/62/1/annurev-phyto-121423-042014.html?itemId=/content/journals/10.1146/annurev-phyto-121423-042014&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aerts N, Pereira Mendes M, Van Wees SCM. 2021.. Multiple levels of crosstalk in hormone networks regulating plant defense. . Plant J. 105::489504
    [Crossref] [Google Scholar]
  2. 2.
    Alaux PL, Naveau F, Declerck S, Cranenbrouck S. 2020.. Common mycorrhizal network induced JA/ET genes expression in healthy potato plants connected to potato plants infected by Phytophthora infestans. . Front. Plant Sci. 11::602
    [Crossref] [Google Scholar]
  3. 3.
    Alaux PL, Zhang Y, Gilbert L, Johnson D. 2021.. Can common mycorrhizal fungal networks be managed to enhance ecosystem functionality?. Plants People Planet 3::43344
    [Crossref] [Google Scholar]
  4. 4.
    Aparicio Chacón MV, Van Dingenen J, Goormachtig S. 2023.. Characterization of arbuscular mycorrhizal effector proteins. . Int. J. Mol. Sci. 24:(11):9125
    [Crossref] [Google Scholar]
  5. 5.
    Babikova Z, Gilbert L, Bruce T, Dewhirst SY, Pickett JA, Johnson D. 2014.. Arbuscular mycorrhizal fungi and aphids interact by changing host plant quality and volatile emission. . Funct. Ecol. 28::37585
    [Crossref] [Google Scholar]
  6. 6.
    Babikova Z, Gilbert L, Bruce TJ, Birkett M, Caulfield JC, et al. 2013.. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. . Ecol. Lett. 16:(7):83543 6. This study shows that common mycorrhizal mycelial formed by AM fungi can determine the outcome of multitrophic interactions by communicating information on herbivore attacks between plants.
    [Crossref] [Google Scholar]
  7. 7.
    Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, et al. 2018.. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. . Front. Plant Sci. 9::1473
    [Crossref] [Google Scholar]
  8. 8.
    Barker DG, Chabaud M, Russo G, Genre A. 2017.. Nuclear Ca2+ signalling in arbuscular mycorrhizal and actinorhizal endosymbioses: on the trail of novel underground signals. . New Phytol. 214::53338
    [Crossref] [Google Scholar]
  9. 9.
    Belmondo S, Calcagno C, Genre A, Puppo A, Pauly N, Lanfranco L. 2016.. The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization. . Planta 243:(1):25162
    [Crossref] [Google Scholar]
  10. 10.
    Berdeni D, Cotton TEA, Daniell TJ, Bidartondo MI, Cameron DD, Evans KL. 2018.. The effects of arbuscular mycorrhizal fungal colonisation on nutrient status, growth, productivity, and canker resistance of apple (Malus pumila). . Front. Microbiol. 9::1461
    [Crossref] [Google Scholar]
  11. 11.
    Betz R, Heidt S, Figueira-Galán D, Langner T, Requena N. 2023.. Alternative splicing regulation in plants by effectors of symbiotic arbuscular mycorrhizal fungi. . bioRxiv 558436. https://doi.org/10.1101/2023.09.20.558436
  12. 12.
    Binci F, Offer E, Crosino A, Sciascia I, Kleine-Vehn J, et al. 2023.. Spatially and temporally distinct Ca2+ changes in Lotus japonicus roots orient fungal-triggered signalling pathways towards symbiosis or immunity. . J. Exp. Bot. 15::erad360
    [Google Scholar]
  13. 13.
    Blilou I, Ocampo JA, García-Garrido JM. 2000.. Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. . J. Exp. Bot. 51::196977
    [Crossref] [Google Scholar]
  14. 14.
    Bona E, Scarafoni A, Marsano F, Boatti L, Copetta A, et al. 2016.. Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study. . Sci. Rep. 6::26439
    [Crossref] [Google Scholar]
  15. 15.
    Bonfante P, Venice F, Lanfranco L. 2019.. The mycobiota: fungi take their place between plants and bacteria. . Curr. Opin. Microbiol. 49::1825
    [Crossref] [Google Scholar]
  16. 16.
    Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, et al. 2017.. Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. . PNAS 114:(38):E811827
    [Crossref] [Google Scholar]
  17. 17.
    Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A. 2021.. Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles. . Plant Physiol. 186::83652
    [Crossref] [Google Scholar]
  18. 18.
    Brundrett MC, Tedersoo L. 2018.. Evolutionary history of mycorrhizal symbioses and global host plant diversity. . New Phytol. 220:(4):110815
    [Crossref] [Google Scholar]
  19. 19.
    Calcagno C, Novero M, Genre A, Bonfante P, Lanfranco L. 2012.. The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatula roots. . Mycorrhiza 22::25969
    [Crossref] [Google Scholar]
  20. 20.
    Cameron DD, Neal AL, van Wees SCM, Ton J. 2013.. Mycorrhiza-induced resistance: more than the sum of its parts?. Trends Plant Sci. 18:(10):53945
    [Crossref] [Google Scholar]
  21. 21.
    Campo S, Martín-Cardoso H, Olivé M, Pla E, Catala-Forner M, et al. 2020.. Effect of root colonization by arbuscular mycorrhizal fungi on growth, productivity and blast resistance in rice. . Rice 13:(1):42
    [Crossref] [Google Scholar]
  22. 22.
    Campos-Soriano L, García-Martínez J, Segundo BS. 2012.. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. . Mol. Plant Pathol. 13::57992
    [Crossref] [Google Scholar]
  23. 23.
    Chen X, Wang DD, Fang X, Chen XY, Mao YB. 2019.. Plant specialized metabolism regulated by jasmonate signaling. . Plant Cell Physiol. 60:(12):263847
    [Crossref] [Google Scholar]
  24. 24.
    Chialva M, Lanfranco L, Bonfante P. 2022.. The plant microbiota: composition, functions, and engineering. . Curr. Opin. Biotechnol. 73::13542
    [Crossref] [Google Scholar]
  25. 25.
    Chialva M, Patono DL, de Souza LP, Novero M, Vercellino S, et al. 2023.. The mycorrhizal root-shoot axis elicits Coffea arabica growth under low phosphate conditions. . New Phytol. 239:(1):27185
    [Crossref] [Google Scholar]
  26. 26.
    Choi J, Lee T, Cho J, Servante EK, Pucker B, et al. 2020.. The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. . Nat. Commun. 11:(1):2114
    [Crossref] [Google Scholar]
  27. 27.
    Choi J, Summers W, Paszkowski U. 2018.. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. . Annu. Rev. Phytopathol. 56::13560
    [Crossref] [Google Scholar]
  28. 28.
    Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR. 2015.. Priming for enhanced defense. . Annu. Rev. Phytopathol. 53::97119
    [Crossref] [Google Scholar]
  29. 29.
    Cord-Landwehr S, Melcher RLJ, Kolkenbrock S, Moerschbacher BM. 2016.. A chitin deacetylase from the endophytic fungus Pestalotiopsis sp. efficiently inactivates the elicitor activity of chitin oligomers in rice cells. . Sci. Rep. 6::38018
    [Crossref] [Google Scholar]
  30. 30.
    Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V. 1998.. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. . Mol. Plant-Microbe Interact. 11:(10):101728
    [Crossref] [Google Scholar]
  31. 31.
    Das D, Paries M, Hobecker K, Gigl M, Dawid C, et al. 2022.. PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis. . Nat. Commun. 13:(1):477
    [Crossref] [Google Scholar]
  32. 32.
    De Kesel J, Conrath U, Flors V, Luna E, Mageroy MH, et al. 2021.. The induced resistance lexicon: do's and don'ts. . Trends Plant Sci. 26:(7):68591
    [Crossref] [Google Scholar]
  33. 33.
    Deja-Sikora E, Werner K, Hrynkiewicz K. 2023.. AMF species do matter: Rhizophagus irregularis and Funneliformis mosseae affect healthy and PVY-infected Solanum tuberosum L. in a different way. . Front. Microbiol. 14::1127278
    [Crossref] [Google Scholar]
  34. 34.
    Dejana L, Ramírez-Serrano B, Rivero J, Gamir J, López-Ráez JA, Pozo MJ. 2022.. Phosphorus availability drives mycorrhiza induced resistance in tomato. . Front. Plant Sci. 13::1060926
    [Crossref] [Google Scholar]
  35. 35.
    Dicke M, Baldwin IT. 2010.. The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help. .” Trends Plant Sci. 15::16775
    [Crossref] [Google Scholar]
  36. 36.
    Dudareva N, Klempien A, Muhlemann JK, Kaplan I. 2013.. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. . New Phytol. 198::1632
    [Crossref] [Google Scholar]
  37. 37.
    Eck JL, Kytöviita MM, Laine AL. 2022.. Arbuscular mycorrhizal fungi influence host infection during epidemics in a wild plant pathosystem. . New Phytol. 236:(5):192235 37. This study examines the impact of arbuscular mycorrhizal fungi (AMF) on infection by a plant pathogen under natural epidemics and across different host populations and genotypes. The results show that AMF introduce both benefits and risks to host plants and shift patterns of infection in host populations.
    [Crossref] [Google Scholar]
  38. 38.
    Eichmann R, Richards L, Schäfer P. 2021.. Hormones as go-betweens in plant microbiome assembly. . Plant J. 105:(2):51841
    [Crossref] [Google Scholar]
  39. 39.
    Espinosa F, Garrido I, Ortega A, Casimiro I, Alvarez-Tinaut MC. 2014.. Redox activities and ROS, NO and phenylpropanoids production by axenically cultured intact olive seedling roots after interaction with a mycorrhizal or a pathogenic fungus. . PLOS ONE 9::e100132
    [Crossref] [Google Scholar]
  40. 40.
    Ezawa T, Silvestri A, Maruyama H, Tawaraya K, Suzuki M, et al. 2023.. Structurally distinct mitoviruses: Are they an ancestral lineage of the Mitoviridae exclusive to arbuscular mycorrhizal fungi (Glomeromycotina)?. mBio 14:(4):e0024023
    [Crossref] [Google Scholar]
  41. 41.
    Fernández I, Merlos M, López-Ráez JA, Martínez-Medina A, Ferrol N, et al. 2014.. Defense related phytohormones regulation in arbuscular mycorrhizal symbioses depends on the partner genotypes. . J. Chem. Ecol. 40:(7):791803
    [Crossref] [Google Scholar]
  42. 42.
    Fernandez-Aparicio M, Garcia Garrido JM, Ocampo JA, Rubiales D. 2010.. Colonisation of field pea roots by arbuscular mycorrhizal fungi reduces Orobanche and Phelipanche species seed germination. . Weed Res. 50:(3):26268
    [Crossref] [Google Scholar]
  43. 43.
    Fiorilli V, Catoni M, Francia D, Cardinale F, Lanfranco L. 2011.. The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by Botrytis cinerea. . J. Plant Pathol. 93::23742
    [Google Scholar]
  44. 44.
    Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, et al. 2009.. Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. . New Phytol. 184::97587
    [Crossref] [Google Scholar]
  45. 45.
    Fiorilli V, Vannini C, Ortolani F, Garcia-Seco D, Chiapello M, et al. 2018.. Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. . Sci. Rep. 8:(1):9625 45. The transcriptomic and proteomic profile associated with mineral and amino acid content provides information on the mechanisms exerted by AM symbiosis to confer increased productivity and resistance to a bacterial pathogen in wheat.
    [Crossref] [Google Scholar]
  46. 46.
    Formenti L, Rasmann S. 2019.. Mycorrhizal fungi enhance resistance to herbivores in tomato plants with reduced jasmonic acid production. . Agronomy 9::131
    [Crossref] [Google Scholar]
  47. 47.
    Frew A, Antunes PM, Cameron DD, Hartley SE, Johnson SN, et al. 2022.. Plant herbivore protection by arbuscular mycorrhizas: a role for fungal diversity?. New Phytol. 233::102231
    [Crossref] [Google Scholar]
  48. 48.
    Fujita M, Kusajima M, Fukagawa M, Okumura Y, Nakajima M, et al. 2022.. Response of tomatoes primed by mycorrhizal colonization to virulent and avirulent bacterial pathogens. . Sci. Rep. 12::4686
    [Crossref] [Google Scholar]
  49. 49.
    García-Garrido JM, Ocampo JA. 2002.. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. . J. Exp. Bot. 53::137786
    [Crossref] [Google Scholar]
  50. 50.
    Genre A, Lanfranco L, Perotto S, Bonfante P. 2020.. Unique and common traits in mycorrhizal symbioses. . Nat. Rev. Microbiol. 18:(11):64960
    [Crossref] [Google Scholar]
  51. 51.
    Giovannetti M, Mari A, Novero M, Bonfante P. 2015.. Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates. . Front. Plant Sci. 6::480
    [Crossref] [Google Scholar]
  52. 52.
    Goddard ML, Belval L, Martin IR, Roth L, Laloue H, et al. 2021.. Arbuscular mycorrhizal symbiosis triggers major changes in primary metabolism together with modification of defense responses and signaling in both roots and leaves of Vitis vinifera. . Front. Plant Sci. 12::721614
    [Crossref] [Google Scholar]
  53. 53.
    Gruden K, Lidoy J, Petek M, Podpečan V, Flors V, et al. 2020.. Ménage à trois: unraveling the mechanisms regulating plant-microbe-arthropod interactions. . Trends Plant Sci. 25:(12):121526 53. A synthetic review about mechanisms underlying plant–microbe–arthropod three-way interactions. It reveals phytohormone modules as major regulatory hubs of the three-way interactions, with jasmonate signaling playing a key role.
    [Crossref] [Google Scholar]
  54. 54.
    Guigard L, Jobert L, Busset N, Moulin L, Czernic P. 2023.. Symbiotic compatibility between rice cultivars and arbuscular mycorrhizal fungi genotypes affects rice growth and mycorrhiza-induced resistance. . Front. Plant Sci. 14::1278990
    [Crossref] [Google Scholar]
  55. 55.
    Gutjahr C, Gobbato E, Choi J, Riemann M, Johnston MG, et al. 2015.. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. . Science 350:(6267):152124
    [Crossref] [Google Scholar]
  56. 56.
    Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P. 2017.. Interplay between innate immunity and the plant microbiota. . Annu. Rev. Phytopathol. 55::56589
    [Crossref] [Google Scholar]
  57. 57.
    Harbort CJ, Hashimoto M, Inoue H, Niu Y, Guan R, et al. 2020.. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. . Cell Host Microbe 28:(6):82537
    [Crossref] [Google Scholar]
  58. 58.
    Harris CJ, Amtmann A, Ton J. 2023.. Epigenetic processes in plant stress priming: open questions and new approaches. . Curr. Opin. Plant Biol. 75::102432
    [Crossref] [Google Scholar]
  59. 59.
    Hartman K, Schmid MW, Bodenhausen N, Bender SF, Valzano-Held AY, et al. 2023.. A symbiotic footprint in the plant root microbiome. . Environ. Microbiome 18::65
    [Crossref] [Google Scholar]
  60. 60.
    He J, Zhang C, Dai H, Liu H, Zhang X, et al. 2019.. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. . Mol. Plant 12:(12):156176
    [Crossref] [Google Scholar]
  61. 61.
    Ho-Plágaro T, García-Garrido JM. 2022.. Molecular regulation of arbuscular mycorrhizal symbiosis. . Int. J. Mol. Sci. 23:(11):5960
    [Crossref] [Google Scholar]
  62. 62.
    Ikeda Y, Shimura H, Kitahara R, Masuta C, Ezawa T. 2012.. A novel virus-like double-stranded RNA in an obligate biotroph arbuscular mycorrhizal fungus: a hidden player in mycorrhizal symbiosis. . Mol. Plant-Microbe Interact. 25:(7):100512
    [Crossref] [Google Scholar]
  63. 63.
    Jiang D, Tan M, Wu S, Zheng L, Wang Q, et al. 2021.. Defense responses of arbuscular mycorrhizal fungus-colonized poplar seedlings against gypsy moth larvae: a multiomics study. . Hortic. Res. 8:(1):245
    [Crossref] [Google Scholar]
  64. 64.
    Jiang Y, Wang W, Xie Q, Liu N, Liu L, et al. 2017.. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. . Science 356:(6343):117275
    [Crossref] [Google Scholar]
  65. 65.
    Johnson D, Gilbert L. 2015.. Interplant signalling through hyphal networks. . New Phytol. 205:(4):144853
    [Crossref] [Google Scholar]
  66. 66.
    Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ. 2012.. Mycorrhiza-induced resistance and priming of plant defenses. . J Chem. Ecol. 38:(6):65164
    [Crossref] [Google Scholar]
  67. 67.
    Kamel L, Tang N, Malbreil M, San Clemente H, Le Marquer M, et al. 2017.. The comparison of expressed candidate secreted proteins from two arbuscular mycorrhizal fungi unravels common and specific molecular tools to invade different host plants. . Front. Plant Sci. 8::124
    [Crossref] [Google Scholar]
  68. 68.
    Karst J, Jones MD, Hoeksema JD. 2023.. Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests. . Nat. Ecol. Evol. 7:(4):50111
    [Crossref] [Google Scholar]
  69. 69.
    Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, et al. 2017.. Lipid transfer from plants to arbuscular mycorrhiza fungi. . eLife 6::e29107
    [Crossref] [Google Scholar]
  70. 70.
    Khan GA, Vogiatzaki E, Glauser G, Poirier Y. 2016.. Phosphate deficiency induces the jasmonate pathway and enhances resistance to insect herbivory. . Plant Physiol. 171::63244
    [Crossref] [Google Scholar]
  71. 71.
    Kloppholz S, Kuhn H, Requena N. 2011.. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. . Curr. Biol. 21:(14):12049 71. First characterization of an AM fungal effector, SP7, delivered to the nucleus of root plant cells, that contributes to the promotion of symbiotic biotrophy of AM fungi by counteracting the plant immune program.
    [Crossref] [Google Scholar]
  72. 72.
    Koricheva J, Gange AC, Jones T. 2009.. Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. . Ecology 90:(8):208897
    [Crossref] [Google Scholar]
  73. 73.
    Laird RA, Addicott JF. 2007.. Arbuscular mycorrhizal fungi reduce the construction of extrafloral nectaries in Vicia faba. . Oecologia 152:(3):54151
    [Crossref] [Google Scholar]
  74. 74.
    Lanfranco L, Bonfante P. 2023.. Lessons from arbuscular mycorrhizal fungal genomes. . Curr. Opin. Microbiol. 75::102357
    [Crossref] [Google Scholar]
  75. 75.
    Ledford WC, Silvestri A, Fiorilli V, Roth R, Rubio-Somoza I, Lanfranco L. 2024.. A journey into the world of small RNAs in the arbuscular mycorrhizal symbiosis. . New Phytol. 242:(4):153444
    [Crossref] [Google Scholar]
  76. 76.
    Lee Díaz AS, Macheda D, Saha H, Ploll U, Orine D, Biere A. 2021.. Tackling the context-dependency of microbial-induced resistance. . Agronomy 11::1293
    [Crossref] [Google Scholar]
  77. 77.
    Leimu R, Koricheva J. 2006.. A meta-analysis of tradeoffs between plant tolerance and resistance to herbivores: combining the evidence from ecological and agricultural studies. . Oikos 112::19
    [Crossref] [Google Scholar]
  78. 78.
    Leitner M, Kaiser R, Hause B, Boland W, Mithöfer A. 2010.. Does mycorrhization influence herbivore-induced volatile emission in Medicago truncatula?. Mycorrhiza 20::89101
    [Crossref] [Google Scholar]
  79. 79.
    Lendzemo VW, Kuyper TW, Matusova R, Bouwmeester HJ, Van Ast A. 2007.. Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. . Plant Signal. Behav. 2:(1):5862
    [Crossref] [Google Scholar]
  80. 80.
    Liao D, Wang S, Cui M, Liu J, Chen A, Xu G. 2018.. Phytohormones regulate the development of arbuscular mycorrhizal symbiosis. . Int. J. Mol. Sci. 19:(10):3146
    [Crossref] [Google Scholar]
  81. 81.
    Lidoy J, Rivero J, Ramšak Z, Petek M, Križnik M, . 2024.. Ethylene signaling is essential for mycorrhiza-induced resistance against chewing herbivores in tomato. . bioRxiv 598897. https://doi.org/10.1101/2024.06.13.598897
    [Google Scholar]
  82. 82.
    Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, et al. 2007.. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. . Plant J. 50::52944 82. First paper showing that AM symbiosis triggers local and systemic changes in gene expression, including the induction of a functional defense response that mirrors increased resistance to a foliar bacterial pathogen.
    [Crossref] [Google Scholar]
  83. 83.
    Lo Presti L, Lanver D, Schweizer G, Tanaka S, et al. 2015.. Fungal effectors and plant susceptibility. . Annu. Rev. Plant Biol. 66::51345
    [Crossref] [Google Scholar]
  84. 84.
    López-Ráez JA, Charnikhova T, Fernández I, Bouwmeester H, Pozo MJ. 2011.. Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. . J. Plant Physiol. 168:(3):29497
    [Crossref] [Google Scholar]
  85. 85.
    López-Ráez JA, Verhage A, Fernández I, García JM, Azcón-Aguilar C, et al. 2010.. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. . J. Exp. Bot. 61:(10):2589601
    [Crossref] [Google Scholar]
  86. 86.
    Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, et al. 2017.. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. . Science 356:(6343):117578
    [Crossref] [Google Scholar]
  87. 87.
    Lutz S, Bodenhausen N, Hess J, Valzano-Held A, Waelchli J, et al. 2023.. Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. . Nat. Microbiol. 8::227789
    [Crossref] [Google Scholar]
  88. 88.
    Machado RAR, Ferrieri AP, Robert CAM, Glauser G, Kallenbach M, et al. 2013.. Leaf-herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling. . New Phytol. 200::123446
    [Crossref] [Google Scholar]
  89. 89.
    Maffei G, Miozzi L, Fiorilli V, Novero M, Lanfranco L, Accotto GP. 2014.. The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). . Mycorrhiza 24::17986
    [Crossref] [Google Scholar]
  90. 90.
    Malik RJ, Ali JG, Bever JD. 2018.. Mycorrhizal composition influences plant anatomical defense and impacts herbivore growth and survival in a life-stage dependent manner. . Pedobiologia 66::2935
    [Crossref] [Google Scholar]
  91. 91.
    Manck-Götzenberger J, Requena N. 2016.. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. . Front. Plant Sci. 7::487
    [Crossref] [Google Scholar]
  92. 92.
    Manresa-Grao M, Pastor-Fernández J, Sanchez-Bel P, Jaques JA, Pastor V, Flors V. 2022.. Mycorrhizal symbiosis triggers local resistance in citrus plants against spider mites. . Front. Plant Sci. 13::867778
    [Crossref] [Google Scholar]
  93. 93.
    Marquez N, Giachero ML, Gallou A, Debat HJ, Cranenbrouck S, et al. 2018.. Transcriptional changes in mycorrhizal and nonmycorrhizal soybean plants upon infection with the fungal pathogen Macrophomina phaseolina. . Mol. Plant-Microbe Interact. 31::84255
    [Crossref] [Google Scholar]
  94. 94.
    Marro N, Grilli G, Soteras F, Caccia M, Longo S, et al. 2022.. The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis . New Phytol. 235:(1):32032 94. A global meta-analysis of studies testing the benefits of individual AMF species and main taxonomic groups on plant growth and nutrition and the plant's ability to face biotic and abiotic stresses.
    [Crossref] [Google Scholar]
  95. 95.
    Martín-Rodríguez JA, Huertas R, Ho-Plágaro T, Ocampo JA, Turečková V, et al. 2016.. Gibberellin-abscisic acid balances during arbuscular mycorrhiza formation in tomato. . Front. Plant Sci. 7::1273
    [Crossref] [Google Scholar]
  96. 96.
    Martínez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CMJ, et al. 2016.. Recognizing plant defense priming. . Trends Plant Sci. 21::81822
    [Crossref] [Google Scholar]
  97. 97.
    Martínez-Medina A, Pescador L, Fernández I, Rodríguez-Serrano M, García JM, et al. 2019.. Nitric oxide and phytoglobin PHYTOGB1 are regulatory elements in the Solanum lycopersicum-Rhizophagus irregularis mycorrhizal symbiosis. . New Phytol. 223:(3):156074
    [Crossref] [Google Scholar]
  98. 98.
    Martínez-Medina A, Roldán A, Albacete A, Pascual JA. 2011.. The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. . Phytochemistry 72::22329
    [Crossref] [Google Scholar]
  99. 99.
    Martínez-Medina A, Roldán A, Pascual JA. 2011.. Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: growth response and Fusarium wilt biocontrol. . Appl. Soil Ecol. 47::98105
    [Crossref] [Google Scholar]
  100. 100.
    Martínez-Medina A, Van Wees SCM, Pieterse CMJ. 2017.. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. . Plant Cell Environ. 40:(11):2691705
    [Crossref] [Google Scholar]
  101. 101.
    Mauch-Mani B, Baccelli I, Luna E, Flors V. 2017.. Defense priming: an adaptive part of induced resistance. . Annu. Rev. Plant Biol. 68::485512
    [Crossref] [Google Scholar]
  102. 102.
    Meier AR, Hunter MD. 2019.. Mycorrhizae alter constitutive and herbivore-induced volatile emissions by milkweeds. . J. Chem. Ecol. 45::61025
    [Crossref] [Google Scholar]
  103. 103.
    Mendoza-Soto AB, Rodríguez-Corral AZ, Bojórquez-López A, Cervantes-Rojo M, Castro-Martínez C, Lopez-Meyer M. 2022.. Arbuscular mycorrhizal symbiosis leads to differential regulation of genes and miRNAs associated with the cell wall in tomato leaves. . Biology 11::854
    [Crossref] [Google Scholar]
  104. 104.
    Minchev Z, Kostenko O, Soler R, Pozo MJ. 2021.. Microbial consortia for effective biocontrol of root and foliar diseases in tomato. . Front. Plant Sci. 12::756368
    [Crossref] [Google Scholar]
  105. 105.
    Miozzi L, Catoni M, Fiorilli V, Mullineaux PM, Accotto GP, Lanfranco L. 2011.. Arbuscular mycorrhizal symbiosis limits foliar transcriptional responses to viral infection and favors long-term virus accumulation. . Mol. Plant-Microbe Interact. 24:(12):156272
    [Crossref] [Google Scholar]
  106. 106.
    Miozzi L, Vaira AM, Brilli F, Casarin V, Berti M, et al. 2020.. Arbuscular mycorrhizal symbiosis primes tolerance to cucumber mosaic virus in tomato. . Viruses 12:(6):675
    [Crossref] [Google Scholar]
  107. 107.
    Miozzi L, Vaira AM, Catoni M, Fiorilli V, Accotto GP, Lanfranco L. 2019.. Arbuscular mycorrhizal symbiosis: plant friend or foe in the fight against viruses?. Front. Microbiol. 10::1238
    [Crossref] [Google Scholar]
  108. 108.
    Monson RK, Trowbridge AM, Lindroth RL, Lerdau MT. 2022.. Coordinated resource allocation to plant growth-defense tradeoffs. . New Phytol. 233:(3):105166
    [Crossref] [Google Scholar]
  109. 109.
    Mora-Romero GA, Cervantes-Gámez RG, Galindo-Flores H, González-Ortíz MA, Félix-Gastélum R, et al. 2015.. Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible. . Symbiosis 66::5564
    [Crossref] [Google Scholar]
  110. 110.
    Mora-Romero GA, Gonzalez-Ortiz MA, Quiroz-Figueroa F, Calderon-Vazquez CL, Medina-Godoy S, et al. 2014.. PvLOX2 silencing in common bean roots impairs arbuscular mycorrhiza-induced resistance without affecting symbiosis establishment. . Funct. Plant Biol. 42:(1):1830 110. By performing a functional analysis, this study demonstrated the role of Phaseolus vulgaris L. lipoxygenase PvLOX2 in MIR against Sclerotinia sclerotiorum.
    [Crossref] [Google Scholar]
  111. 111.
    Müller LM, Flokova K, Schnabel E, Sun X, Fei Z, et al. 2019.. A CLE–SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. . Nat. Plants 5::93339 111. This study shows that CLE peptides are involved in the autoregulation of mycorrhization by reducing strigolactones.
    [Crossref] [Google Scholar]
  112. 112.
    Núñez-Farfán J, Fornoni J, Valverde PL. 2007.. The evolution of resistance and tolerance to herbivores. . Annu. Rev. Ecol. Evol. Syst. 38::54166
    [Crossref] [Google Scholar]
  113. 113.
    Oldroyd GE. 2013.. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. . Nat. Rev. Microbiol. 11::25263
    [Crossref] [Google Scholar]
  114. 114.
    Orine D, Defossez E, Vergara F, Uthe H, van Dam NM, Rasmann S. 2022.. Arbuscular mycorrhizal fungi prevent the negative effect of drought and modulate the growth-defence trade-off in tomato plants. . J. Sustain. Agric. Environ. 1::17790 114. This study shows that AMF influences growth–defense trade-offs of tomato plants and highlights the influence of abiotic factors and fungal identity on MIR to herbivory.
    [Crossref] [Google Scholar]
  115. 115.
    Pagán I, García-Arenal F. 2020.. Tolerance of plants to pathogens: a unifying view. . Annu. Rev. Phytopathol. 58::7796
    [Crossref] [Google Scholar]
  116. 116.
    Papantoniou D, Chang D, Martínez-Medina A, van Dam NM, Weinhold A. 2022.. Root symbionts alter herbivore-induced indirect defenses of tomato plants by enhancing predator attraction. . Front. Physiol. 13::1003746
    [Crossref] [Google Scholar]
  117. 117.
    Pérez-de-Luque A, Tille S, Johnson I, Pascual-Pardo D, Ton J, Cameron DD. 2017.. The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. . Sci. Rep. 7::16409
    [Crossref] [Google Scholar]
  118. 118.
    Pescador L, Fernandez I, Pozo MJ, Romero-Puertas MC, Pieterse CMJ, Martínez-Medina A. 2022.. Nitric oxide signalling in roots is required for MYB72-dependent systemic resistance induced by Trichoderma volatile compounds in Arabidopsis. . J. Exp. Bot. 73:(2):58495
    [Crossref] [Google Scholar]
  119. 119.
    Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA. 2014.. Induced systemic resistance by beneficial microbes. . Annu. Rev. Phytopathol. 52::34775
    [Crossref] [Google Scholar]
  120. 120.
    Pieterse CMJ, Berendsen RL, de Jonge R, Stringlis IA, Van Dijken AJH, et al. 2021.. Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. . Plant Soil 461::24563
    [Crossref] [Google Scholar]
  121. 121.
    Pineda A, Dicke M, Pieterse CMJ, Pozo MJ. 2013.. Beneficial microbes in a changing environment: Are they always helping plants to deal with insects?. Funct. Ecol. 27:(3):57486
    [Crossref] [Google Scholar]
  122. 122.
    Pok B, Ngou M, Ding P, Jones JDG. 2022.. Thirty years of resistance: zig-zag through the plant immune system. . Plant Cell 34:(5):144778
    [Crossref] [Google Scholar]
  123. 123.
    Pozo MJ, Azcón-Aguilar C. 2007.. Unraveling mycorrhiza-induced resistance. . Curr. Opin. Plant Biol. 10:(4):39398
    [Crossref] [Google Scholar]
  124. 124.
    Pozo MJ, López-Ráez JA, Azcón-Aguilar C, García-Garrido JM. 2015.. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. . New Phytol. 205::143136
    [Crossref] [Google Scholar]
  125. 125.
    Pozo MJ, Zabalgogeazcoa I, Vazquez de Aldana BR, Martinez-Medina A. 2021.. Untapping the potential of plant mycobiomes for applications in agriculture. . Curr. Opin. Plant Biol. 60::102034
    [Crossref] [Google Scholar]
  126. 126.
    Pozo de la Hoz J, Rivero J, Azcón-Aguilar C, Urrestarazu M, Pozo MJ. 2021.. Mycorrhiza-induced resistance against foliar pathogens is uncoupled of nutritional effects under different light intensities. . J. Fungi 7:(6):402
    [Crossref] [Google Scholar]
  127. 127.
    Qin M, Miranda JP, Tang Y, Wei W, Liu Y, Feng H. 2021.. Pathogenic microbes increase plant dependence on arbuscular mycorrhizal fungi: a meta-analysis. . Front. Plant Sci. 12::707118
    [Crossref] [Google Scholar]
  128. 128.
    Qu L, Wang M, Biere A. 2021.. Interactive effects of mycorrhizae, soil phosphorus, and light on growth and induction and priming of defense in Plantago lanceolata. . Front. Plant Sci. 12::647372
    [Crossref] [Google Scholar]
  129. 129.
    Ramírez-Serrano B, Querejeta M, Minchev Z, Gamir J, Perdereau E, et al. 2022.. Mycorrhizal benefits on plant growth and protection against Spodoptera exigua depend on N availability. . J. Plant Interact. 17::94055
    [Crossref] [Google Scholar]
  130. 130.
    Rasmann S, Bennett A, Biere A, Karley A, Guerrieri E. 2017.. Root symbionts: powerful drivers of plant above- and belowground indirect defenses. . Insect Sci. 24:(6):94760
    [Crossref] [Google Scholar]
  131. 131.
    Real-Santillán RO, Del-Val E, Cruz-Ortega R, Contreras-Cornejo , González-Esquivel CE, Larsen J. 2019.. Increased maize growth and P uptake promoted by arbuscular mycorrhizal fungi coincide with higher foliar herbivory and larval biomass of the fall armyworm Spodoptera frugiperda. . Mycorrhiza 29::61522
    [Crossref] [Google Scholar]
  132. 132.
    Rivero J, Álvarez D, Flors V, Azcón-Aguilar C, Pozo MJ. 2018.. Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. . New Phytol. 220::132236
    [Crossref] [Google Scholar]
  133. 133.
    Rivero J, Gamir J, Aroca R, Pozo MJ, Flors V. 2015.. Metabolic transition in mycorrhizal tomato roots. . Front. Microbiol. 6::598
    [Crossref] [Google Scholar]
  134. 134.
    Rivero J, Lidoy J, Llopis-Giménez Á, Herrero S, Flors V, Pozo MJ. 2021.. Mycorrhizal symbiosis primes the accumulation of antiherbivore compounds and enhances herbivore mortality in tomato. . J. Exp. Bot. 72:(13):503850 134. This study demonstrated that MIR to herbivory in tomato is associated with a primed accumulation of diverse defensive compounds. Functional analysis of some of these compounds revealed their negative effects on larval survival.
    [Crossref] [Google Scholar]
  135. 135.
    Salmeron-Santiago IA, Martínez-Trujillo M, Valdez-Alarcón JJ, Pedraza-Santos ME, Santoyo G, et al. 2021.. An updated review on the modulation of carbon partitioning and allocation in arbuscular mycorrhizal plants. . Microorganisms 10:(1):75
    [Crossref] [Google Scholar]
  136. 136.
    Salvioli A, Ghignone S, Novero M, Navazio L, Venice F, et al. 2016.. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. . ISME J. 10:(1):13044
    [Crossref] [Google Scholar]
  137. 137.
    Sanchez-Bel P, Troncho P, Gamir J, Pozo MJ, Camañes G, et al. 2016.. The nitrogen availability interferes with mycorrhiza-induced resistance against Botrytis cinerea in tomato. . Front. Microbiol. 7::1598
    [Crossref] [Google Scholar]
  138. 138.
    Sánchez-Vallet A, Mesters JR, Thomma BP. 2015.. The battle for chitin recognition in plant-microbe interactions. . FEMS Microbiol. Rev. 39::17183
    [Crossref] [Google Scholar]
  139. 139.
    Sanmartín N, Pastor V, Pastor-Fernández J, Flors V, Pozo MJ, Sánchez-Bel P. 2020.. Role and mechanisms of callose priming in mycorrhiza-induced resistance. . J. Exp. Bot. 71::276981 139. This study shows that MIR to B. cinerea is related to priming of callose deposition. By using a pharmacological approach, the authors demonstrated the key role of this defense response in the MIR phenotype. The study further suggests the relevance of sugar mobilization and vesicular trafficking in the priming of callose deposition during MIR.
    [Crossref] [Google Scholar]
  140. 140.
    Sanmartín N, Sánchez-Bel P, Pastor V, Pastor-Fernández J, Mateu D, et al. 2020.. Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection. . Plant Sci. 298::110595
    [Crossref] [Google Scholar]
  141. 141.
    Savchenko TV, Rolletschek H, Dehesh K. 2019.. Jasmonates-mediated rewiring of central metabolism regulates adaptive responses. . Plant Cell Physiol. 60::261320
    [Crossref] [Google Scholar]
  142. 142.
    Schausberger P, Peneder S, Jürschik S, Hoffmann D. 2012.. Mycorrhiza changes plant volatiles to attract spider mite enemies. . Funct. Ecol. 26::44149
    [Crossref] [Google Scholar]
  143. 143.
    Schoenherr AP, Rizzo E, Jackson N, Manosalva P, Gomez SK. 2019.. Mycorrhiza-induced resistance in potato involves priming of defense responses against cabbage looper (Noctuidae: Lepidoptera). . Environ. Entomol. 48:(2):37081
    [Crossref] [Google Scholar]
  144. 144.
    Schouteden N, De Waele D, Panis B, Vos CM. 2015.. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. . Front. Microbiol. 6::1280
    [Crossref] [Google Scholar]
  145. 145.
    Segarra G, Van der Ent S, Trillas I, Pieterse CMJ. 2009.. MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. . Plant Biol. 11::9096
    [Crossref] [Google Scholar]
  146. 146.
    Shi J, Wang X, Wang E. 2023.. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. . Annu. Rev. Plant Biol. 74::569607
    [Crossref] [Google Scholar]
  147. 147.
    Shi J, Zhao B, Zheng S, Zhang X, Wang X, et al. 2021.. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. . Cell 184:(22):552740.e18
    [Crossref] [Google Scholar]
  148. 148.
    Siciliano V, Genre A, Balestrini R, Cappellazzo G, deWit PJGM, Bonfante P. 2007.. Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. . Plant Physiol. 144::145566
    [Crossref] [Google Scholar]
  149. 149.
    Song Y, Chen D, Lu K, Sun Z, Zeng R. 2015.. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. . Front. Plant Sci. 6::786
    [Google Scholar]
  150. 150.
    Song Y, Wang M, Zeng R, Groten K, Baldwin IT. 2019.. Priming and filtering of antiherbivore defences among Nicotiana attenuata plants connected by mycorrhizal networks. . Plant Cell Environ. 42:(11):294561
    [Crossref] [Google Scholar]
  151. 151.
    Song YY, Simard SW, Carroll A, Mohn WW, Zeng RS. 2015.. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. . Sci. Rep. 5::8495
    [Crossref] [Google Scholar]
  152. 152.
    Song YY, Ye M, Li C, He X, Zhu-Salzman K, et al. 2014.. Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. . Sci. Rep. 4::3915
    [Crossref] [Google Scholar]
  153. 153.
    Song YY, Ye M, Li CY, Wang RL, Wei XC, et al. 2013.. Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. . J. Chem. Ecol. 39::103644
    [Crossref] [Google Scholar]
  154. 154.
    Song YY, Zeng RS, Xu JF, Li J, Shen X, Yihdego WG. 2010.. Interplant communication of tomato plants through underground common mycorrhizal networks. . PLOS ONE 5:(10):e13324
    [Crossref] [Google Scholar]
  155. 155.
    Stolyarchuk IM, Shevchenko TP, Polischuk VP, Kripka AV. 2009.. Virus infection course in different plant species under influence of arbuscular mycorrhiza. . Microbiol. Biotechnol. 6::7075
    [Google Scholar]
  156. 156.
    Strullu-Derrien C, Selosse MA, Kenrick P, Martin FM. 2018.. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. . New Phytol. 220:(4):101230
    [Crossref] [Google Scholar]
  157. 157.
    Tao L, Ahmad A, de Roode JC, Hunter MD. 2016.. Arbuscular mycorrhizal fungi affect plant tolerance and chemical defences to herbivory through different mechanisms. . J. Ecol. 104::56171
    [Crossref] [Google Scholar]
  158. 158.
    Thiem D, Szmidt-Jaworska A, Baum C, Muders K, Niedojadło K, Hrynkiewicz K. 2014.. Interactive physiological response of potato (Solanum tuberosum L.) plants to fungal colonization and Potato virus Y (PVY) infection. . Acta Mycol. 49::291303
    [Crossref] [Google Scholar]
  159. 159.
    Tian L, Zou YN, Wu QS, Kuca K. 2021.. Mycorrhiza-induced plant defence responses in trifoliate orange infected by Phytophthora parasitica. . Acta Physiol. Plant 43::45
    [Crossref] [Google Scholar]
  160. 160.
    Ton J, Flors V, Mauch-Mani B. 2009.. The multifaceted role of ABA in disease resistance. . Trends Plant Sci. 14:(6):31017
    [Crossref] [Google Scholar]
  161. 161.
    Turina M, Ghignone S, Astolfi N, Silvestri A, Bonfante P, Lanfranco L. 2018.. The virome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals the first report of DNA fragments corresponding to replicating non-retroviral RNA viruses in fungi. . Environ. Microbiol. 20:(6):201225
    [Crossref] [Google Scholar]
  162. 162.
    Vahabi K, Reichelt M, Scholz SS, Furch AC, Matsuo M, et al. 2018.. Alternaria brassicae induces systemic jasmonate responses in Arabidopsis which travel to neighboring plants via a Piriformospora indica hyphal network and activate abscisic acid responses. . Front. Plant Sci. 9::626
    [Crossref] [Google Scholar]
  163. 163.
    Van der Ent S, Van Hulten M, Pozo MJ, Czechowski T, Udvardi MK, et al. 2009.. Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: differences and similarities in regulation. . New Phytol. 183:(2):41931
    [Crossref] [Google Scholar]
  164. 164.
    Van der Ent S, Verhagen BW, Van Doorn R, Bakker D, Verlaan MG, et al. 2008.. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. . Plant Physiol. 146:(3):1293304
    [Crossref] [Google Scholar]
  165. 165.
    van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. 2015.. Mycorrhizal ecology and evolution: the past, the present, and the future. . New Phytol. 205:(4):140623
    [Crossref] [Google Scholar]
  166. 166.
    Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. 2015.. The importance of the microbiome of the plant holobiont. . New Phytol. 206::1196206
    [Crossref] [Google Scholar]
  167. 167.
    Varga S, Soulsbury CD. 2017.. Paternal arbuscular mycorrhizal fungal status affects DNA methylation in seeds. . Biol. Lett. 13:(9):20170407
    [Crossref] [Google Scholar]
  168. 168.
    Varga S, Soulsbury CD. 2019.. Arbuscular mycorrhizal fungi change host plant DNA methylation systemically. . Plant Biol. 21:(2):27883
    [Crossref] [Google Scholar]
  169. 169.
    Venice F, Chialva M, Domingo G, Novero M, Carpentieri A, et al. 2021.. Symbiotic responses of Lotus japonicus to two isogenic lines of a mycorrhizal fungus differing in the presence/absence of an endobacterium. . Plant J. 108:(6):154764
    [Crossref] [Google Scholar]
  170. 170.
    Volpe V, Chialva M, Mazzarella T, Crosino A, Capitanio S, et al. 2023.. Long-lasting impact of chitooligosaccharide application on strigolactone biosynthesis and fungal accommodation promotes arbuscular mycorrhiza in Medicago truncatula. . New Phytol. 237:(6):231631
    [Crossref] [Google Scholar]
  171. 171.
    Volpe V, Chitarra W, Cascone P, Volpe MG, Bartolini P, et al. 2018.. The association with two different arbuscular mycorrhizal fungi differently affects water stress tolerance in tomato. . Front. Plant Sci. 9::1480
    [Crossref] [Google Scholar]
  172. 172.
    Wang F, Zhang L, Zhou J, Rengel Z, George TS, Feng G. 2022.. Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: processes and ecological functions. . Plant Soil 481::122
    [Crossref] [Google Scholar]
  173. 173.
    Wang H, Hao Z, Zhang X, Xie W, Chen B. 2022.. Arbuscular mycorrhizal fungi induced plant resistance against fusarium wilt in jasmonate biosynthesis defective mutant and wild type of tomato. . J. Fungi 8:(5):422
    [Crossref] [Google Scholar]
  174. 174.
    Wang M, Tang W, Xiang L, Chen X, Shen X, et al. 2022.. Involvement of MdWRKY40 in the defense of mycorrhizal apple against Fusarium solani. . BMC Plant Biol. 22:(1):385
    [Crossref] [Google Scholar]
  175. 175.
    Wang P, Jiang H, Boeren S, Dings H, Kulikova O, et al. 2021.. A nuclear-targeted effector of Rhizophagus irregularis interferes with histone 2B mono-ubiquitination to promote arbuscular mycorrhization. . New Phytol. 230:(3):114255 175. This work demonstrates that an AM fungal effector acts through an epigenetic mechanism to suppress plant defense-related gene expression.
    [Crossref] [Google Scholar]
  176. 176.
    Whiteside MD, Garcia MO, Treseder KK. 2012.. Amino acid uptake in arbuscular mycorrhizal plants. . PLOS ONE 7::e47643
    [Crossref] [Google Scholar]
  177. 177.
    Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE. 2019.. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. . New Phytol. 223:(3):112742
    [Crossref] [Google Scholar]
  178. 178.
    Yang H, Dai Y, Wang X, Zhang Q, Zhu L, Bian X. 2014.. Meta-analysis of interactions between arbuscular mycorrhizal fungi and biotic stressors of plants. . Sci. World J. 2014::746506
    [Google Scholar]
  179. 179.
    Yang S, Tang F, Zhu H. 2014.. Alternative splicing in plant immunity. . Int. J. Mol. Sci. 15:(6):1042445
    [Crossref] [Google Scholar]
  180. 180.
    Yildirir G, Sperschneider J, Malar M, Chen ECH, Iwasaki W, et al. 2022.. Long reads and Hi-C sequencing illuminate the two-compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. . New Phytol. 233::1097107
    [Crossref] [Google Scholar]
  181. 181.
    Yu H, Bai F, Ji C, Fan Z, Luo J, et al. 2023.. Plant lysin motif extracellular proteins are required for arbuscular mycorrhizal symbiosis. . PNAS 120::e2301884120 181. This paper shows that LysM extracellular proteins of plant origin facilitate AM symbiosis establishment, possibly by binding chito-oligosaccharides.
    [Crossref] [Google Scholar]
  182. 182.
    Yu K, Pieterse CMJ, Bakker PAHM, Berendsen RL. 2019.. Beneficial microbes going underground of root immunity. . Plant Cell Environ. 42::286070
    [Crossref] [Google Scholar]
  183. 183.
    Zeng M, Hause B, van Dam NM, Uthe H, Hoffmann P, et al. 2022.. The mycorrhizal symbiosis alters the plant defence strategy in a model legume plant. . Plant Cell Environ. 45::341228 183. This study demonstrates that AM symbiosis affects the defense pattern of Medicago by altering resistance and tolerance to herbivory simultaneously. The study further proposes that the mycorrhizal Pi-uptake pathway is involved in the AM-triggered modulation of the plant defense strategy.
    [Crossref] [Google Scholar]
  184. 184.
    Zeng T, Holmer R, Hontelez J, Te Lintel-Hekkert B, Marufu L, et al. 2018.. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. . Plant J. 94:(3):41125
    [Crossref] [Google Scholar]
  185. 185.
    Zeng T, Rodriguez-Moreno L, Mansurkhodzaev A, Wang P, van den Berg W, et al. 2020.. A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis. . New Phytol. 225::44860 185. This work reveals a key role for an AM fungal LysM effector in the subversion of chitin-triggered immunity in symbiosis.
    [Crossref] [Google Scholar]
  186. 186.
    Zhang C, He J, Dai H, Wang G, Zhang X, et al. 2021.. Discriminating symbiosis and immunity signals by receptor competition in rice. . PNAS 118:(16):e2023738118 186. This study shows that the CO4 (chitotetraose) symbiotic receptor OsMYR1 initiates symbiotic signaling and represses rice immunity by preventing the formation of the immunity complex OsCERK1-OsCEBiP.
    [Crossref] [Google Scholar]
  187. 187.
    Zhang Q, Wang S, Xie Q, Xia Y, Lu L, et al. et al. 2023.. Control of arbuscule development by a transcriptional negative feedback loop in Medicago. . Nat. Commun. 14::5743
    [Crossref] [Google Scholar]
  188. 188.
    Zhang RQ, Zhu HH, Zhao HQ, Yao Q. 2013.. Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. . J. Plant Physiol. 170::7479
    [Crossref] [Google Scholar]
  189. 189.
    Zhang YC, Zou YN, Liu LP, Wu QS. 2019.. Common mycorrhizal networks activate salicylic acid defense responses of trifoliate orange (Poncirus trifoliata). . J. Integr. Plant Biol. 61:(10):1099111
    [Crossref] [Google Scholar]
  190. 190.
    Zhao Y, Cartabia A, Lalaymia I, Declerck S. 2022.. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. . Mycorrhiza 32::22156
    [Crossref] [Google Scholar]
  191. 191.
    Zhou X, Wang Z, Su C, Cui J, Meng J, Luan Y. 2023.. Genome-wide analyses of miRNAs in mycorrhizal plants in response to late blight and elucidation of the role of miR319c in tomato resistance. . Hortic. Plant J. In press. https://doi.org/10.1016/j.hpj.2023.03.016
    [Google Scholar]
  192. 192.
    Zou YN, Wang P, Liu CY, Ni QD, Zhang DJ, Wu QS. 2017.. Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. . Sci. Rep. 7::41134
    [Crossref] [Google Scholar]
  193. 193.
    Zouari I, Salvioli A, Chialva M, Novero M, Miozzi L, et al. 2014.. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. . BMC Genom. 15:(1):221
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-phyto-121423-042014
Loading
/content/journals/10.1146/annurev-phyto-121423-042014
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error