1932

Abstract

Regenerative agriculture as a term and concept has gained much traction over recent years. Many farmers are convinced that by adopting these principles they will be able to address the triple crisis of biodiversity loss, climate change, and food security. However, the impact of regenerative agriculture practices on crop pathogens and their management has received little attention from the scientific community. Significant changes to cropping systems may result in certain diseases presenting more or less of a threat. Shifts in major diseases may have significant implications regarding optimal integrated pest management (IPM) strategies that aim to improve profitability and productivity in an environmentally sensitive manner. In particular, many aspects of regenerative agriculture change risk levels and risk management in ways that are central to effective IPM. This review outlines some of the challenges, gaps, and opportunities in our understanding of appropriate approaches for managing crop diseases in regenerative cropping systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-121423-042037
2024-09-09
2025-02-09
Loading full text...

Full text loading...

/deliver/fulltext/phyto/62/1/annurev-phyto-121423-042037.html?itemId=/content/journals/10.1146/annurev-phyto-121423-042037&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adeux G, Yvoz S, Biju-Duval L, Cadet E, Farcy P, et al. 2022.. Cropping system diversification does not always beget weed diversity. . Eur. J. Agron. 133::126438
    [Crossref] [Google Scholar]
  2. [Google Scholar]
  3. 3.
    AHDB. 2023.. Strategic cereal farms. . Agriculture and Horticulture Development Board. https://ahdb.org.uk/strategic-cereal-farms
    [Google Scholar]
  4. 4.
    AHDB. 2023.. United Kingdom cereal pathogen virulence survey. . Agriculture and Horticulture Development Board. https://ahdb.org.uk/knowledge-library/uk-cereal-pathogen-virulence-survey-ukcpvs
    [Google Scholar]
  5. 5.
    Akanmu AO, Babalola OO, Venturi V, Ayilara MS, Adeleke BS, et al. 2021.. Plant disease management: leveraging on the plant-microbe-soil interface in the biorational use of organic amendments. . Front. Plant Sci. 12::700507
    [Crossref] [Google Scholar]
  6. 6.
    Akhtar M, Malik A. 2000.. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. . Bioresour. Technol. 74::3547
    [Crossref] [Google Scholar]
  7. 7.
    Anderson W, Johansen C, Siddique KHM. 2016.. Addressing the yield gap in rainfed crops: a review. . Agron. Sustain. Dev. 36::18
    [Crossref] [Google Scholar]
  8. 8.
    Aono Y, Nakayama T, Ogawa S, Fujimoto T, Ohki T, et al. 2022.. Asteraceae weeds may be an alternative host of Dickeya dianthicola, a causal agent of potato blackleg in Japan. . Eur. J. Plant Pathol. 163::25768
    [Crossref] [Google Scholar]
  9. 9.
    Azpiazu C, Bosch J, Viñuela E, Medrzycki P, Teper D, Sgolastra F. 2019.. Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. . Sci. Rep. 9::13770
    [Crossref] [Google Scholar]
  10. 10.
    Bailey KL, Duczec LJ. 1996.. Managing cereal disease under reduced tillage. . Can. J. Plant Pathol. 18::15967
    [Crossref] [Google Scholar]
  11. 11.
    Bakker MG, Acharya J, Robertson AE, Moorman T, Kaspar T. 2016.. The potential for cereal rye cover crops to host corn pathogens. . Phytopathology 106::591601
    [Crossref] [Google Scholar]
  12. 12.
    Bankina B, Kaņeps J, Darguža M, Bimšteine G. 2022.. Development of wheat leaf blotches depending on soil tillage system. . Earth Environ. Sci. 1096::012002
    [Google Scholar]
  13. 13.
    Bartimote T. 2020.. Reduce pests by controlling green bridges. . Local Land Services NSW Government. https://www.lls.nsw.gov.au/regions/central-west/articles-and-publications/pest-control/reduce-pests-by-controlling-green-bridges
    [Google Scholar]
  14. 14.
    Barzman M, Barberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S. 2015.. Eight principles of integrated pest management. . Agron. Sustain. Dev. 35::1199215
    [Crossref] [Google Scholar]
  15. 15.
    Batista DC, Lima MA, Haddad F, Maffia LA, Mizubuti ESG. 2006.. Validation of decision support systems for tomato early blight and potato late blight, under Brazilian conditions. . Crop Prot. 25::66470
    [Crossref] [Google Scholar]
  16. 16.
    Beerling DJ, Leake JR, Long SP, Scholes JD, Ton J, et al. 2018.. Farming with crops and rocks to address global climate, food and soil security. . Nat. Plants 4::13847
    [Crossref] [Google Scholar]
  17. 17.
    Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P. 2012.. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. . Biol. Rev. 87::5271
    [Crossref] [Google Scholar]
  18. 18.
    Bingham IJ, Newton AC. 2009.. Crop tolerance of foliar pathogens: possible mechanisms and potential for exploitation. . In Disease Control in Crops: Biological and Environmentally Friendly Approaches, ed. D Walters, pp. 14261. Chichester, UK:: Wiley-Blackwell.
    [Google Scholar]
  19. 19.
    Bombardi LM. 2022.. Brazil: more cultivation, more pesticides, more exports. . Heinrich-Böll-Stiftung. https://eu.boell.org/en/PesticideAtlas-Brazil
    [Google Scholar]
  20. 20.
    Brown G. 2018.. Dirt to Soil: One Family's Journey into Regenerative Agriculture. White River Junction, VT:: Chelsea Green Publ.
    [Google Scholar]
  21. 21.
    Brown JKM. 2015.. Durable resistance of crops to disease: a Darwinian perspective. . Annu. Rev. Phytopathol. 53::51339
    [Crossref] [Google Scholar]
  22. 22.
    Bullock DG. 1992.. Crop rotation. . Crit. Rev. Plant Sci. 11::30926
    [Crossref] [Google Scholar]
  23. 23.
    Calonnec A, Goyeau H, de Vallavieille-Pope C. 1996.. Effects of induced resistance on infection efficiency and sporulation of Puccinia striiformis on seedlings in varietal mixtures and on field epidemics in pure stands. . Eur. J. Plant Pathol. 102::73341
    [Crossref] [Google Scholar]
  24. 24.
    Cameron DD, Neal AL, van Wees SCM, Ton J. 2013.. Mycorrhiza-induced resistance: more than the sum of its parts?. Trends Plant Sci. 18::53945
    [Crossref] [Google Scholar]
  25. 25.
    Carmona MA, Ferrazini M, Barreto DE. 2006.. Tan spot of wheat caused by Drechslera tritici-repentis: detection, transmission, and control in wheat seed. . Cereal Res. Commun. 34::104349
    [Crossref] [Google Scholar]
  26. 26.
    Carpy SA, Kobel W, Doe J. 2000.. Health risk of low-dose pesticides mixtures: a review of the 1985–1998 literature on combination toxicology and health risk assessment. . J. Toxicol. Environ. Health 3::125
    [Crossref] [Google Scholar]
  27. 27.
    Chakraborty S, Newton AC. 2011.. Climate change, plant diseases and food security, an overview. . Plant Pathol. 60::214
    [Crossref] [Google Scholar]
  28. 28.
    Chaloner TM, Gurr SJ, Bebber DP. 2021.. Plant pathogen infection risk tracks global crop yields under climate change. . Nat. Clim. Change 11::71015
    [Crossref] [Google Scholar]
  29. 29.
    Chin KM, Wolfe MS. 1984.. The spread of Erysiphe graminis f. sp. hordei in mixtures of barley varieties. . Plant Pathol. 33::89100
    [Crossref] [Google Scholar]
  30. 30.
    Coakley SM, Scherm H, Chakraborty S. 1999.. Climate change and plant disease management. . Annu. Rev. Phytopathol. 37::399426
    [Crossref] [Google Scholar]
  31. 31.
    Corkley I, Fraaije B, Hawkins N. 2022.. Fungicide resistance management: maximizing the effective life of plant protection products. . Plant Pathol. 71::15069
    [Crossref] [Google Scholar]
  32. 32.
    Creissen HE, Glynn E, Spink JH, Kildea S. 2018.. The effect of fungicides applied pre-stem extension on Septoria tritici blotch and yield of winter wheat in Ireland. . Crop Prot. 104::710
    [Crossref] [Google Scholar]
  33. 33.
    Creissen HE, Jorgensen TH, Brown JKM. 2015.. Impact of disease on diversity and productivity of plant populations. . Funct. Ecol. 30::64957
    [Crossref] [Google Scholar]
  34. 34.
    Creissen HE, Jorgensen TH, Brown JKM. 2016.. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes. . Crop Prot. 85::18
    [Crossref] [Google Scholar]
  35. 35.
    Danial DL, Parlevliet JE. 1995.. Effects of nitrogen fertilization on disease severity and infection type of yellow rust on wheat genotypes varying in quantitative resistance. . J. Phytopathol. 143::67981
    [Crossref] [Google Scholar]
  36. 36.
    Davis JHC, Woolley JN. 1993.. Genotypic requirement for intercropping. . Field Crops Res. 34::40730
    [Crossref] [Google Scholar]
  37. 37.
    Davis JR, Huisman OC, Westerman DT, Hafez SL, Everson DO, et al. 2004.. Some unique benefits with sudangrass for improved U.S. #1 yields and size of Russet Burbank potato. . Am. J. Potato Res. 81::40313
    [Crossref] [Google Scholar]
  38. 38.
    Devadas R, Simpfendorfer S, Backhouse D, Lamb DW. 2014.. Effect of stripe rust on the yield response of wheat to nitrogen. . Crop J. 2::2016
    [Crossref] [Google Scholar]
  39. 39.
    Elliot M, Green S, Litterick A, Yeomans A. 2023.. Identifying the plant health risks associated with plant waste disposal and peat-free growing media and developing best practice guidance for waste disposal and composting across sectors. Rep. PHC2021/02, Scotland's Cent . Expert. Plant Health Cent., Dundee:. https://doi.org/10.5281/zenodo.7688446
    [Google Scholar]
  40. 40.
    Erreguerena I, Carmona M. 2021.. Fosfitos como complemento para el manejo de enfermedades fúngicas en cebada (Hordeum vulgare L.). . In 5to Congreso Argentino de Fitopatología y 59th International Meeting APS, Septiembre, 2021 . Córdoba, Argent.:: Ed Asoc. Civ. Argent. Fitopatól.
    [Google Scholar]
  41. 41.
    Erreguerena I, Carmona M. 2021.. Manejo integrado de enfermedades en cebada y evaluación de fungicidas para el control de Ramularia collo-cygni. . In 5to Congreso Argentino de Fitopatología y 59th International Meeting APS, Septiembre, 2021. Córdoba, Argent:.: Ed Asoc. Civ. Argent. Fitopatól.
    [Google Scholar]
  42. 42.
    Erreguerena IA, Cordes G, Rodriguez A, Ovando C, Gimenez L. 2022.. Cereales invernales de cobertura: comportamiento varietal y rol epidemiológico en enfermedades de trigo. Rep., INTA, Buenos Aires:. https://repositorio.inta.gob.ar/handle/20.500.12123/11555
    [Google Scholar]
  43. 43.
    Erreguerena IA, Formento AN, Couretot LA. 2020.. En los cultivos de cobertura ¿Se “esconden” los patógenos que afectan a los principales cultivos agrícolas? Rep., INTA, Buenos Aires:. https://repositoriosdigitales.mincyt.gob.ar/vufind/Record/INTADig_6258263c6178865af87c6e144fdbb072
    [Google Scholar]
  44. 44.
    Faberi AJ, Montoya MRA, Faura A, Erreguerena I, Quiroz F. 2020.. Trichoderma harzianum como potencial agente de control de Plasmopara halstedii en girasol. . 1er Congreso Argentino de Semillas. Noviembre 2 y 3–2020 . Córdoba, Argent.:: Ed Asoc. Lab. Agropecu. Priv. , 1 ed..
  45. 45.
    Finckh MR, Gacek ES, Goyeau H, Lannou C, Merz U, et al. 2000.. Cereal variety and species mixtures in practice, with emphasis on disease resistance. . Agronomie 20::81337
    [Crossref] [Google Scholar]
  46. 46.
    Fischer RA. 2009.. Farming systems of Australia: exploiting the synergy between genetic improvement and agronomy. . In Crop Physiology: Applications for Genetic Improvement and Agronomy, ed. V Sadras, D Calderini , pp. 2254. Cambridge, MA:: Academic
    [Google Scholar]
  47. 47.
    Fischer RA, Connor DJ. 2018.. Issues for cropping and agricultural science in the next 20 years. . Field Crops Res. 222::12142
    [Crossref] [Google Scholar]
  48. 48.
    Foulkes MJ, Molero G, Griffiths S, Slafer GA, Reynolds MP. 2022.. Yield potential. . In Wheat Improvement: Food Security in a Changing Climate, ed. MP Reynolds, H-J Braun , pp. 37996. Cham, Switz:.: Springer
    [Google Scholar]
  49. 49.
    Francis CA, Clegg MD. 1990.. Crop rotations in sustainable agricultural systems. . In Sustainable Agricultural Systems, ed. CA Edwards, R Lal, P Madden, RH Miller, G House , pp. 10722. Ankeny, IA:: Soil Water Conserv. Soc.
    [Google Scholar]
  50. 50.
    Gajri PR, Arora VK, Prihar SS. 2002.. Tillage for Sustainable Cropping. New York:: Food Products Press
    [Google Scholar]
  51. 51.
    Gregory PJ, Johnson SN, Newton AC, Ingram JSI. 2009.. Integrating pests and pathogens into the climate change/food security debate. . J. Exp. Bot. 60::282738
    [Crossref] [Google Scholar]
  52. 52.
    Gruner K, Esser T, Acevedo-Garcia J, Freh M, Habig M, et al. 2020.. Evidence for allele-specific levels of enhanced susceptibility of wheat mlo mutants to the hemibiotrophic fungal pathogen Magnaporthe oryzae pv. triticum. . Genes 11::517
    [Crossref] [Google Scholar]
  53. 53.
    Hannula SE, Ma H-K, Pérez-Jaramillo JE, Pineda A, Bezemer TM. 2020.. Structure and ecological function of the soil microbiome affecting plant–soil feedbacks in the presence of a soil-borne pathogen. . Environ. Microbiol. 22::66076
    [Crossref] [Google Scholar]
  54. 54.
    Hansen ZR, Keinath AP. 2013.. Increased pepper yields following incorporation of biofumigation cover crops and the effects on soilborne pathogen populations and pepper diseases. . Appl. Soil Ecol. 63::6777
    [Crossref] [Google Scholar]
  55. 55.
    Hillocks RJ. 2012.. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. . Crop Prot. 31::8593
    [Crossref] [Google Scholar]
  56. 56.
    Holden N, Marshall J, Pugh L, Newton AC. 2020.. The impact of agricultural management strategies on crop microbiomes. . The Dundee Conference: Crop Production in Northern Britain 2020, Dundee, 25–26 February 2020 , pp. 3338. Dundee:: T.D. Heilbronn
    [Google Scholar]
  57. 57.
    Hollomon DW. 2015.. Fungicide resistance: 40 years on and still a major problem. . In Fungicide Resistance in Plant Pathogens, ed. H Ishii, D Hollomon , pp. 311. Tokyo:: Springer
    [Google Scholar]
  58. 58.
    Hopkins DW, Wheatley RE, Coakley CM, Daniell TJ, Newton AC, Neilson R. 2016.. Soil carbon and nitrogen and barley yield responses to repeated additions of compost and slurry. . J. Agric. Sci. 155::14155
    [Crossref] [Google Scholar]
  59. 59.
    Hu X, Liu J, Liang A, Li L, Yao Q, et al. 2021.. Conventional and conservation tillage practices affect soil microbial co-occurrence patterns and are associated with crop yields. . Agric. Ecosyst. Environ. 319::107534
    [Crossref] [Google Scholar]
  60. 60.
    Jasper DA, Abbott LK, Robson AD. 1991.. The effect of soil disturbance on vesicular–arbuscular mycorrhizal fungi in soils from different vegetation types. . New Phytol. 118::47176
    [Crossref] [Google Scholar]
  61. 61.
    Jaworski CC, Thomine E, Rusch A, Lavoir A-V, Wang S, Desneux N. 2023.. Crop diversification to promote arthropod pest management: a review. . Agric. Commun. 1::100004
    [Google Scholar]
  62. 62.
    Johnson R. 1984.. A critical analysis of durable resistance. . Annu. Rev. Phytopathol. 22::30930
    [Crossref] [Google Scholar]
  63. 63.
    Jørgensen LN, Nielsen GC, Ørum JE, Jensen JE, Pinnschmidt HO. 2008.. Integrating disease control in winter wheat—optimizing fungicide input. . Outlooks Pest Manag. 19::20613
    [Crossref] [Google Scholar]
  64. 64.
    Kabir MH, Rainis R. 2013.. Determinants and methods of integrated pest management adoption in Bangladesh: an environment friendly approach. . Am. Eurasian J. Sustain. Agric. 7::99107
    [Google Scholar]
  65. 65.
    Kaur J, Bala R, Singh P. 2022.. Forecasting of wheat diseases: insights, methods and challenges. . In New Horizons in Wheat and Barley Research: Crop Protection and Resource Management, ed. PL Kashyap, V Gupta, OP Gupta, R Sendhil, K Gopalareddy , et al. pp. 2175. Singapore:: Springer
    [Google Scholar]
  66. 66.
    Khoury CK, Bjorkman AD, Dempewolf H, Ramirez-Villegas J, Guarino L, et al. 2014.. Increasing homogeneity in global food supplies and the implications for food security. . PNAS 111::40016
    [Crossref] [Google Scholar]
  67. 67.
    Kopp EB, Niklaus PA, Wuest SE. 2023.. Ecological principles to guide the development of crop variety mixtures. . J. Plant Ecol. 16::rtad017
    [Crossref] [Google Scholar]
  68. 68.
    Kraut-Cohen J, Zolti A, Shaltiel-Harpaz L, Argaman E, Rabinovich R, et al. 2020.. Effects of tillage practices on soil microbiome and agricultural parameters. . Sci. Total Environ. 705::135791
    [Crossref] [Google Scholar]
  69. 69.
    Kristoffersen R, Eriksen LB, Nilsen GC, Jørgensen JR, Jørgensen LN. 2022.. Management of Septoria tritici blotch using cultivar mixtures. . Plant Dis. 106::134149
    [Crossref] [Google Scholar]
  70. 70.
    Kristoffersen R, Heick TM, Müller GM, Eriksen LB, Nielsen GC, Jørgensen LN. 2020.. The potential of cultivar mixtures to reduce fungicide input and mitigate fungicide resistance development. . Agron. Sustain. Dev. 40::36
    [Crossref] [Google Scholar]
  71. 71.
    Langdale GW, Blevins RL, Karlen DL, McCool DK, Nearing MA, et al. 1991.. Cover crop effects on soil erosion by wind and water. . In Cover Crops for Clean Water, ed. WL Hargrove , pp. 1522. Ankeny, IA:: Soil Water Conserv. Soc.
    [Google Scholar]
  72. 72.
    Larkin RP, Griffin TS, Honeycutt CW. 2010.. Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. . Plant Dis. 94::1491502
    [Crossref] [Google Scholar]
  73. 73.
    Lechenet M, Dessaint F, Py G, Makowski D, Munier-Jolain N. 2017.. Reducing pesticide use while preserving crop productivity and profitability on arable farms. . Nat. Plants 3::17008
    [Crossref] [Google Scholar]
  74. 74.
    Li X, Sorensen P, Li F, Petersen SO, Olensen JE. 2015.. Quantifying biological nitrogen fixation of different catch crops, and residual effects of roots and tops on nitrogen uptake in barley using in-situ 15N labelling. . Plant Soil 395::27387
    [Crossref] [Google Scholar]
  75. 75.
    Li X, Storkey J, Mead A, Shield I, Clark I, et al. 2023.. A new Rothamsted long-term field experiment for the twenty-first century: principles and practice. . Agron. Sustain. Dev. 43::60
    [Crossref] [Google Scholar]
  76. 76.
    Li Y, Wang Z, Li T, Zhao D, Han J, Liao Y. 2021.. Wheat rhizosphere fungal community is affected by tillage and plant growth. . Agric. Ecosyst. Environ. 317::107475
    [Crossref] [Google Scholar]
  77. 77.
    Liu X, Hannula SE, Li X, Hundscheid MPJ, Klein Gunnewiek PJA, et al. 2021.. Decomposing cover crops modify root-associated microbiome composition and disease tolerance of cash crop seedlings. . Soil Biol. Biochem. 160::108343
    [Crossref] [Google Scholar]
  78. 78.
    Lu YC, Watkins KB, Teasdale JR, Abdul-Baki AA. 2000.. Cover crops in sustainable food production. . Food Rev. Int. 16::12157
    [Crossref] [Google Scholar]
  79. 79.
    Lucca F, Crespo C, Huarte M. 2014.. Advances in control of potato late blight in Argentina. . PPO Spec. Rep. 16::299304
    [Google Scholar]
  80. 80.
    Ma H-K, Pineda A, van der Wurff AWG, Bezemer TM. 2018.. Synergistic and antagonistic effects of mixing monospecific soils on plantsoil feedbacks. . Plant Soil 429::27179
    [Crossref] [Google Scholar]
  81. 81.
    Mahaut L, Violle C, Renard D. 2021.. Complementary mechanisms stabilize national food production. . Nat. Sci. Rep. 11::4922
    [Google Scholar]
  82. 82.
    Maloney TS, Grau CR. 2001.. Unconventional approaches to combat soybean diseases. . In Proceedings of the 2001 Fertilizer, Aglime, and Pest Management Conference, Vol. 40. Madison, WI:: Univ. Wisc.
    [Google Scholar]
  83. 83.
    Maxwell A, Vettraino A, Eschen R, Andjic V. 2014.. International plant trade and biosecurity. . In Horticulture: Plants for People and Places, Vol. 3, ed. G Dixon, D Aldous . Dordrecht, Neth:.: Springer
    [Google Scholar]
  84. 84.
    McGrann GRD, Yoxall T, Paterson LJ, Taylor JMG, Birmphilis IG, et al. 2017.. Control of light leaf spot and clubroot in brassica crops using defence elicitors. . Eur. J. Plant Pathol. 148::44761
    [Crossref] [Google Scholar]
  85. 85.
    Mielniczuk E, Skwarylo-Bednarz B. 2020.. Fusarium head blight, mycotoxins and strategies for their reduction. . Agronomy 10::509
    [Crossref] [Google Scholar]
  86. 86.
    Morgan C, Wright P, Blake J, Corkley I, Knight S, Burnett F. 2021.. Combining agronomy, variety and chemistry to maintain control of Septoria tritici in wheat. Proj. Rep. No. 634 , AHDB, Coventry, UK:. https://projectblue.blob.core.windows.net/media/Default/Research%20Papers/Cereals%20and%20Oilseed/2021/PR634%20final%20project%20report.pdf
    [Google Scholar]
  87. 87.
    Moschini RC, Martínez MI, Sepulcri MG. 2013.. Modeling and forecasting systems for Fusarium head blight and deoxynivalenol content in wheat in Argentina. . In Fusarium Head Blight in Latin America, ed. TM Alconada Magliano, SN Chulze , pp. 20527. Dordrecht, Neth:.: Springer
    [Google Scholar]
  88. 88.
    Mundt CC. 2002.. Use of multiline cultivars and cultivar mixtures for disease management. . Annu. Rev. Phytopathol. 40::381410
    [Crossref] [Google Scholar]
  89. 89.
    Newlands NK. 2018.. Model-based forecasting of agricultural crop disease risk at the regional scale, integrating airborne inoculum, environmental, and satellite-based monitoring data. . Front. Environ. Sci. 6::63
    [Crossref] [Google Scholar]
  90. 90.
    Newton AC. 2016.. Exploitation of diversity within crops—the key to disease tolerance?. Front. Plant Sci. 7::665
    [Crossref] [Google Scholar]
  91. 91.
    Newton AC, Begg G, Swanston JS. 2009.. Deployment of diversity for enhanced crop function. . Ann. Appl. Biol. 154::30922
    [Crossref] [Google Scholar]
  92. 92.
    Newton AC, Fitt BDL, Atkins SD, Walters DR, Daniell T. 2010.. Pathogenesis, mutualism and parasitism in the trophic space of microbe-plant interactions. . Trends Microbiol. 18::36573
    [Crossref] [Google Scholar]
  93. 93.
    Newton AC, Gravouil C, Fountaine JM. 2010.. Managing the ecology of foliar pathogens: ecological tolerance in crops. . Ann. Appl. Biol. 157::34359
    [Crossref] [Google Scholar]
  94. 94.
    Newton AC, Guy DC. 2020.. Assessing effects of crop history and soil amendments on yields of subsequent crops. . Agric. Sci. 11::51427
    [Google Scholar]
  95. 95.
    Newton AC, Guy DC, Gaunt RE, Thomas WTB. 2000.. The effect of powdery mildew inoculum pressure and fertiliser level on disease tolerance in spring barley. . J. Plant Dis. Prot. 107::6773
    [Google Scholar]
  96. 96.
    Newton AC, Hawes C, Hackett CA. 2021.. Adaptation of winter barley cultivars to inversion and non-inversion tillage for yield and Rhynchosporium symptoms. . Agronomy 11::30
    [Crossref] [Google Scholar]
  97. 97.
    Newton AC, Johnson SN, Gregory PJ. 2011.. Implications of climate change on diseases, crop yields and food security. . Euphytica 179::318
    [Crossref] [Google Scholar]
  98. 98.
    Newton AC, Karley AJ. 2023.. Concepts of trait diversity—the key to effective IPM for resilience in arable systems?. Outlook Agric. 52:(3):26472
    [Crossref] [Google Scholar]
  99. 99.
    Newton AC, Skelsey P. 2023.. Understanding the effect of component proportions on disease control in two-component cultivar cereal mixtures using a pathogen dispersal scaling hypothesis. . Nat. Sci. Rep. 13::4091
    [Google Scholar]
  100. 100.
    Newton AC, Thomas WTB. 1994.. Detection of tolerance of barley cultivars to infection by powdery mildew (Erysiphe graminis f.sp. hordei). . Euphytica 75::17987
    [Crossref] [Google Scholar]
  101. 101.
    Newton AC, Thomas WTB, Guy DC, Gaunt R. 1998.. The interaction of fertiliser treatment with tolerance to powdery mildew in spring barley. . Field Crops Res. 55::4556
    [Crossref] [Google Scholar]
  102. 102.
    Newton AC, Torrance L, Holden N, Toth I, Cooke DEL, et al. 2012.. Climate change and defence against pathogens in plants. . Adv. Appl. Microbiol. 81::89132
    [Crossref] [Google Scholar]
  103. 103.
    Newton AC, Valentine TA, McKenzie BM, George TS, Guy DC, Hackett CA. 2020.. Identifying spring barley cultivars with differential response to tillage. . Agronomy 10::686
    [Crossref] [Google Scholar]
  104. 104.
    Newton P, Civita N, Frankel-Goldwater L, Bartel K, Johns C. 2020.. What is regenerative agriculture? A review of scholar and practitioner definitions based on processes and outcomes. . Front. Sustain. Food Syst. 4::577723
    [Crossref] [Google Scholar]
  105. 105.
    Noble R, Coventry E. 2005.. Suppression of soil-borne plant diseases with composts: a review. . Biocontrol Sci. Technol. 15::320
    [Crossref] [Google Scholar]
  106. 106.
    Notz I, Topp CFE, Schuler J, Alves S, Gallardo LA, et al. 2023.. Transition to legume-supported farming in Europe through redesigning cropping systems. . Agron. Sustain. Dev. 43::12
    [Crossref] [Google Scholar]
  107. 107.
    Nyiraneza J, Dahu C, Tandra F, Louis-Pierre C. 2021.. Improving soil quality and potato productivity with manure and high-residue cover crops in eastern Canada. . Plants 10::1436
    [Crossref] [Google Scholar]
  108. [Google Scholar]
  109. 109.
    Oerke EC, Schönbeck F. 1990.. Effect of nitrogen and powdery mildew on the yield formation of two winter barley cultivars. . J. Phytopathol. 130::89104
    [Crossref] [Google Scholar]
  110. 110.
    Pautasso M, Jeger MJ. 2014.. Network epidemiology and plant trade networks. . AoB Plants 6::plu007
    [Crossref] [Google Scholar]
  111. 111.
    Perrings C. 2016.. Options for managing the infectious animal and plant disease risks of international trade. . Food Secur. 8::2735
    [Crossref] [Google Scholar]
  112. 112.
    Planisich A, Utsumi SA, Larripa M, Galli JR. 2021.. Grazing of cover crops in integrated crop-livestock systems. . Animal 15::100054
    [Crossref] [Google Scholar]
  113. 113.
    Prokopy R, Kogan M. 2003.. Integrated pest management. . In Encyclopedia of Insects, ed. VH Resh, RT Carde , pp. 58995. San Diego:: Academic
    [Google Scholar]
  114. 114.
    Quiroz F, Molas AC, Rojo R, Fernández JP, Escande A. 2008.. Effects of no tillage and genetic resistance on sunflower wilt by Verticillium dahliae. . Soil Till. Res. 99::6675
    [Crossref] [Google Scholar]
  115. 115.
    Rätsep J, Havis ND, Loake GJ, Walters DR, McGrann GR. 2018.. In-field assessment of an arabinoxylan polymer on disease control in spring barley. . Crop Prot. 109::1029
    [Crossref] [Google Scholar]
  116. 116.
    Raza MM, Bebber DP. 2022.. Climate change and plant pathogens. . Curr. Opin. Microbiol. 70::102233
    [Crossref] [Google Scholar]
  117. 117.
    Reglinski T, Havis N, Rees HJ, de Jong H. 2023.. The practical role of induced resistance for crop protection. . Phytopathology 113::71931
    [Crossref] [Google Scholar]
  118. 118.
    Reis A, Ribeiro FHS, Maffia LA, Mizubuti ESG. 2005.. Sensitivity of Brazilian isolates of Phytophthora infestans to commonly used fungicides in tomato and potato crops. . Plant Dis. 89::127984
    [Crossref] [Google Scholar]
  119. 119.
    Reiss ER, Drinkwater LE. 2018.. Cultivar mixtures: a meta-analysis of the effect of intraspecific diversity on crop yield. . Ecol. Appl. 28::6277
    [Crossref] [Google Scholar]
  120. 120.
    Rittl TF, Grønmyr F, Bakken I, Løes A-K. 2023.. Effects of organic amendments and cover crops on soil characteristics and potato yields. . Acta Agric. Scand. B 73::1326
    [Google Scholar]
  121. 121.
    Robinson C, Portier C, Čavoški A, Mesnage R, Roger A, et al. 2020.. Achieving a high level of protection from pesticides in Europe: problems with the current risk assessment procedure and solutions. . Eur. J. Risk Reg. 11::45080
    [Crossref] [Google Scholar]
  122. 122.
    Rodríguez-Moreno VM, Jiménez-Lagunes A, Estrada-Avalos J, Mauricio-Ruvalcaba J, Padilla-Ramírez JS. 2020.. Weather-data-based model: an approach for forecasting leaf and stripe rust on winter wheat. . Meteorol. Appl. 27::e1896
    [Crossref] [Google Scholar]
  123. 123.
    SENASA. 2018.. Nota N° 39689337/2018 (APN-DCA-SENASA), Rizoderma®, Rizobacter S.A. Argentina como insumo apto para producción orgánica. N° Registro comercial 38.004
    [Google Scholar]
  124. 124.
    Sánchez-Bayo F, Wyckhuys KAG. 2019.. Worldwide decline of the entomofauna: a review of its drivers. . Biol. Cons. 232::827
    [Crossref] [Google Scholar]
  125. 125.
    Sautua FJ, Carmona MA. 2023.. SDHI resistance in Pyrenophora teres f teres and molecular detection of novel double mutations in sdh genes conferring high resistance. . Pest Manag. Sci. 79::330011
    [Crossref] [Google Scholar]
  126. 126.
    Shamshina JL, Kelly A, Oldham T, Rogers RD. 2020.. Agricultural uses of chitin polymers. . Environ. Chem. Lett. 18::5360
    [Crossref] [Google Scholar]
  127. 127.
    Siddiqui S, Alamri SA, Alrumman SA, Meghvansi MK, Chaudhary KK, et al. 2015.. Role of soil amendment with micronutrients in suppression of certain soilborne plant fungal diseases: a review. . In Organic Amendments and Soil Suppressiveness in Plant Disease Management, ed. M Meghvansi, A Varma , pp. 36380. Cham, Switz:.: Springer
    [Google Scholar]
  128. 128.
    Skelsey P. 2019.. One-class classification for blight risk forecasting. . In Proceedings of the Seventeenth Euroblight Workshop, pp. 5156. Wageningen:: WUR. https://edepot.wur.nl/523176#page=53
    [Google Scholar]
  129. 129.
    Skelsey P, Newton AC. 2015.. Future environmental and geographic risks of Fusarium head blight of wheat in Scotland. . Eur. J. Plant Pathol. 142::13347
    [Crossref] [Google Scholar]
  130. 130.
    Skelsey P, Rossing WA, Kessel GJ, van der Werf W. 2010.. Invasion of Phytophthora infestans at the landscape level: How do spatial scale and weather modulate the consequences of spatial heterogeneity in host resistance?. Phytopathology 100::114661
    [Crossref] [Google Scholar]
  131. 131.
    Snapp SS, Swinton SM, Labarta R, Mutch D, Black JR, et al. 2005.. Evaluating cover crops for benefits, costs and performance within cropping system niches. . Agron. J. 97::32232
    [Crossref] [Google Scholar]
  132. 132.
    Stukenbrock E, Gurr S. 2023.. Address the growing urgency of fungal disease in crops. . Nature 617::3134
    [Crossref] [Google Scholar]
  133. 133.
    Tatlidil FF, Boz I, Tatlidil H. 2009.. Farmers' perception of sustainable agriculture and its determinants: a case study in Kahramanmaras province of Turkey. . Environ. Dev. Sustain. 11::1091106
    [Crossref] [Google Scholar]
  134. 134.
    Thorup-Kristensen K, Magid J, Jensen LS. 2003.. Catch crops and green manures as biological tools in nitrogen management in temperate zones. . Adv. Agron. 79::227302
    [Crossref] [Google Scholar]
  135. 135.
    Valkama E, Lemola R, Känkänen H, Turtola E. 2015.. Meta-analysis of the effects of undersown catch crops on nitrogen leaching loss and grain yields in the Nordic countries. . Agric. Ecosyst. Environ. 203::93101
    [Crossref] [Google Scholar]
  136. 136.
    van Bruggen AHC, Gamliel A, Finckh MR. 2016.. Plant disease management in organic farming systems. . Pest Manag. Sci. 72::3044
    [Crossref] [Google Scholar]
  137. 137.
    van den Bosch F, Oliver R, van den Berg F, Paveley N. 2014.. Governing principles can guide fungicide-resistance management tactics. . Annu. Rev. Phytopathol. 52::17595
    [Crossref] [Google Scholar]
  138. 138.
    Walters DR. 2009.. Are plants in the field already induced? Implications for practical disease control. . Crop Prot. 28::45965
    [Crossref] [Google Scholar]
  139. 139.
    Walters DR, Bingham IJ. 2007.. Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. . Ann. Appl. Biol. 151::30724
    [Crossref] [Google Scholar]
  140. 140.
    Walters DR, Ratsep J, Havis ND. 2013.. Controlling crop diseases using induced resistance: challenges for the future. . J. Exp. Bot. 64::126380
    [Crossref] [Google Scholar]
  141. 141.
    Wang Y, Cheng Zhu Y, Li W. 2020.. Interaction patterns and combined toxic effects of acetamiprid in combination with seven pesticides on honey bee (Apis mellifera L.). . Ecotoxicol. Environ. Saf. 190::110100
    [Crossref] [Google Scholar]
  142. 142.
    Wen L, Lee-Marzano L, Ortiz-Ribbing LM, Gruver J, Hartman GL, Eastburn DM. 2017.. Suppression of soilborne diseases of soybean with cover crop. . Plant Dis. 101::191828
    [Crossref] [Google Scholar]
  143. 143.
    White CA, Holmes HF, Morris NL, Stobart RM. 2016.. A review of the benefits, optimal crop management practices and knowledge gaps associated with different cover crop species. . Res. Rev. No. 90 , AHDB Cereals and Oilseeds, Coventry, UK:. https://projectblue.blob.core.windows.net/media/Default/Research%20Papers/Cereals%20and%20Oilseed/rr90.pdf
  144. 144.
    Xie H, Huang Y, Chen Q, Zhang Y, Wu Q. 2019.. Prospects for agricultural sustainable intensification: a review of research. . Land 8::157
    [Crossref] [Google Scholar]
  145. 145.
    Yassin M, Ton J, Rolfe SA, Valentine T, Cromey M, et al. 2021.. The rise, fall and resurrection of chemical-induced resistance agents. . Pest Manag. Sci. 77::39009
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-phyto-121423-042037
Loading
/content/journals/10.1146/annurev-phyto-121423-042037
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error