1932

Abstract

One Health has an aspirational goal of ensuring the health of humans, animals, plants, and the environment through transdisciplinary, collaborative research. At its essence, One Health addresses the human clash with Nature by formulating strategies to repair and restore a (globally) perturbed ecosystem. A more nuanced evaluation of humankind's impact on the environment (Nature, Earth, Gaia) would fully intercalate plants, plant pathogens, and beneficial plant microbes into One Health. Here, several examples point out how plants and plant microbes are keystones of One Health. Meaningful cross-pollination between plant, animal, and human health practitioners can drive discovery and application of innovative tools to address the many complex problems within the One Health framework.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-121423-042102
2024-09-09
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/phyto/62/1/annurev-phyto-121423-042102.html?itemId=/content/journals/10.1146/annurev-phyto-121423-042102&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Allen W. 2003.. Plant blindness. . BioScience 53::926
    [Crossref] [Google Scholar]
  2. 2.
    Andika IB, Tian M, Bian R, Cao X, Luo M, et al. 2023.. Cross-kingdom interactions between plant and fungal viruses. . Annu. Rev. Virol. 10::11938
    [Crossref] [Google Scholar]
  3. 3.
    Andrivon D, Montarry J, Fournet S. 2022.. Plant health in a One Health world: missing links and hidden treasures. . Plant Pathol. 71::2329
    [Crossref] [Google Scholar]
  4. 4.
    Armstrong EM, Larson ER, Harper H, Webb CR, Dohleman F, et al. 2023.. One hundred important questions facing plant science: an international perspective. . New Phytol. 238::47081
    [Crossref] [Google Scholar]
  5. 5.
    Bakker PAHM, Berendsen RL, Van Pelt JA, Vismans G, Yu K, et al. 2020.. The soil-borne identity and microbiome-assisted agriculture: looking back to the future. . Mol. Plant 13::1394401
    [Crossref] [Google Scholar]
  6. 6.
    Balding M, Williams KJH. 2016.. Plant blindness and the implications for plant conservation. . Conserv. Biol. 30::119299
    [Crossref] [Google Scholar]
  7. 7.
    Banerjee S, van der Heijden MGA. 2023.. Soil microbiomes and one health. . Nat. Rev. Microbiol. 21::620
    [Crossref] [Google Scholar]
  8. 8.
    Barak JD, Schroeder BK. 2011.. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. . Annu. Rev. Phytopathol. 50::24166
    [Crossref] [Google Scholar]
  9. 9.
    Barbour KM, Weihe C, Walters KE, Martiny JBH. 2023.. Testing the contribution of dispersal to microbial succession following a wildfire. . mSystems 8:(5):e00579-23
    [Crossref] [Google Scholar]
  10. 10.
    Bar-On YM, Phillips R, Milo R. 2018.. The biomass distribution on Earth. . PNAS 115::650611
    [Crossref] [Google Scholar]
  11. 11.
    Barrett MJ, Alphonsus KB, Harmin M, Epp T, Hoessler C, et al. 2019.. Learning for transdisciplinary leadership: why skilled scholars coming together is not enough. . BioScience 69::73645
    [Crossref] [Google Scholar]
  12. 12.
    Battilani P, Toscano P, Van der Fels-Klerx HJ, Moretti A, Camardo Leggieri M, et al. 2016.. Aflatoxin B1 contamination in maize in Europe increases due to climate change. . Sci. Rep. 6::24328
    [Crossref] [Google Scholar]
  13. 13.
    Berg G, Grube M, Schloter M, Smalla K. 2014.. Unraveling the plant microbiome: looking back and future perspectives. . Front. Microbiol. 5::148
    [Google Scholar]
  14. 14.
    Bozniak EC. 1994.. Challenges facing plant biology teaching programs. . Plant Sci. Bull. 40::4246
    [Google Scholar]
  15. 15.
    Brandl MT, Sundin GW. 2013.. Focus on food safety: human pathogens on plants. . Phytopathology 103::3045
    [Crossref] [Google Scholar]
  16. 16.
    Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, et al. 2005.. Regional vegetation die-off in response to global-change-type drought. . PNAS 102::1514448
    [Crossref] [Google Scholar]
  17. 17.
    Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, et al. 2019.. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. . Science 366::60612
    [Crossref] [Google Scholar]
  18. 18.
    Cassidy A. 2018.. Humans, other animals and ‘One Health’ in the early twenty-first century. . In Animals and the Shaping of Modern Medicine: One Health and its Histories, ed. A Woods, M Bresalier, A Cassidy, RM Dentinger , pp. 193236. London:: Palgrave Macmillan
    [Google Scholar]
  19. 19.
    Chaloner TM, Gurr SJ, Bebber DP. 2021.. Plant pathogen infection risk tracks global crop yields under climate change. . Nat. Clim. Change 11::71015
    [Crossref] [Google Scholar]
  20. 20.
    Chen G, Guo Y, Yue X, Tong S, Gasparrini A, et al. 2021.. Mortality risk attributable to wildfire-related PM2.5 pollution: a global time series study in 749 locations. . Lancet Planet. Health 5::e57987
    [Crossref] [Google Scholar]
  21. 21.
    Chen JC, Patel K, Smith PA, Vidyaprakash E, Snyder C, et al. 2023.. Reoccurring Escherichia coli O157:H7 strain linked to leafy greens–associated outbreaks, 2016–2019. . Emerg. Infect. Dis. 29::189599
    [Google Scholar]
  22. 22.
    Clark M, Hill J, Tilman D. 2018.. The diet, health, and environment trilemma. . Annu. Rev. Environ. Resourc. 43::10934
    [Crossref] [Google Scholar]
  23. 23.
    Coakley SM, Scherm H, Chakraborty S. 1999.. Climate change and plant disease management. . Annu. Rev. Phytopathol. 37::399426
    [Crossref] [Google Scholar]
  24. 24.
    Cook RJ. 2006.. Toward cropping systems that enhance productivity and sustainability. . PNAS 103::1838994
    [Crossref] [Google Scholar]
  25. 25.
    Cotty PJ. 1989.. Virulence and cultural characteristics of two Aspergillus flavus strains pathogenic on cotton. . Phytopathology 79::80814
    [Crossref] [Google Scholar]
  26. 26.
    Cotty PJ. 1990.. Effect of atoxigenic strains of Aspergillus flavus on aflatoxin contamination of developing cottonseed. . Plant Dis. 74::23335
    [Crossref] [Google Scholar]
  27. 27.
    Cotty PJ, Mellon JE. 2006.. Ecology of aflatoxin producing fungi and biocontrol of aflatoxin contamination. . Mycotox. Res. 22::11017
    [Crossref] [Google Scholar]
  28. 28.
    Covington WW, Moore MM. 1994.. Southwestern ponderosa forest structure: changes since Euro-American settlement. . J. For. 92::3947
    [Google Scholar]
  29. 29.
    D'Evelyn SM, Jung J, Alvarado E, Baumgartner J, Caligiuri P, et al. 2022.. Wildfire, smoke exposure, human health, and environmental justice need to be integrated into forest restoration and management. . Curr. Environ. Health Rep. 9::36685
    [Crossref] [Google Scholar]
  30. 30.
    Danielsen S. 2013.. Including plant health in the ‘One Health’ concept—in theory and in Uganda. . In A Success Story in Danish Development AidDBL (1964–2012), ed. A Olsen, N Ørnbjerg, K Winkel , pp. 10713. Gylling, Den:.: Narayana Press
    [Google Scholar]
  31. 31.
    Dieter CA, Maupin MA, Caldwell RR, Harris MA, Ivahnenko TI, et al. 2018.. Estimated use of water in the United States in 2015. Rep. 1441 , US Geol. Survey, Reston, VA:. https://pubs.usgs.gov/circ/1441/circ1441.pdf
    [Google Scholar]
  32. 32.
    Drott MT, Debenport T, Higgins SA, Buckley DH, Milgroom MG. 2019.. Fitness cost of aflatoxin production in Aspergillus flavus when competing with soil microbes could maintain balancing selection. . mBio 10::e02782-18
    [Crossref] [Google Scholar]
  33. 33.
    Du Toit A. 2023.. Bark beetles sniff out their fungal symbionts on trees. . Nat. Rev. Microbiol. 21::275
    [Google Scholar]
  34. 34.
    Egan T. 2009.. The Big Burn: Teddy Roosevelt and the Fire that Saved America. New York:: Houghton Mifflin Harcourt
    [Google Scholar]
  35. 35.
    Elliott J, Müller C. 2015.. The AgMIP GRIDded Crop Modeling Initiative (AgGRID) and the Global Gridded Crop Model Intercomparison (GGCMI). . In Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project (AgMIP) Integrated Crop and Economic Assessments, Part 1, ed. C Rosenzweig, D Hillel , p. 17590. London:: Imperial College Press
    [Google Scholar]
  36. 36.
    Erb K-H, Kastner T, Plutzar C, Bais ALS, Carvalhais N, et al. 2018.. Unexpectedly large impact of forest management and grazing on global vegetation biomass. . Nature 553::7376
    [Crossref] [Google Scholar]
  37. 37.
    FAO. 2015.. Climate change and food security: risks and responses. Rep. , FAO, Rome:. https://www.fao.org/3/i5188e/I5188E.pdf
    [Google Scholar]
  38. 38.
    FAO, OIE, UNEP, WHO. 2021.. Tripartite and UNEP support OHHLEP's definition of “One Health. .” World Health Organization. https://www.who.int/news/item/01-12-2021-tripartite-and-unep-support-ohhlep-s-definition-of-one-health
    [Google Scholar]
  39. 39.
    FAO, UNEP, WHO, WOAH. 2022.. One Health joint plan of action (2022–2026): working together for the health of humans, animals, plants and the environment. Rep. , FAO, Rome:. https://iris.who.int/bitstream/handle/10665/363518/9789240059139-eng.pdf?sequence=1
    [Google Scholar]
  40. 40.
    Farmer P. 1999.. Infections and Inequalities. Berkeley:: Univ. Calif. Press
    [Google Scholar]
  41. 41.
    Fielding JE, Brownson RC, Green LW. 2023.. The urgency of addressing climate change. . Annu. Rev. Public Health 44::vvi
    [Crossref] [Google Scholar]
  42. 42.
    Fletcher J, Leach JE, Eversole K, Tauxe R. 2013.. Human pathogens on plants: designing a multidisciplinary strategy for research. . Phytopathology 103::30615
    [Crossref] [Google Scholar]
  43. 43.
    Fresco LO, Bouwstra RJ, de Jong MCM, van der Poel WHM, Scholten MCT, et al. 2015.. A European perspective. Global One Health: a new integrated approach. . In Global Health Challenges: A Report to the Trilateral Commission, ed. J Frenk, LO Fresco, KH Phua, P Kuri-Morales , pp. 67121. Washington, DC:: Trilateral Comm.
    [Google Scholar]
  44. 44.
    Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE. 2006.. Climate change effects on plant disease: genomes to ecosystems. . Annu. Rev. Phytopathol. 44::489509
    [Crossref] [Google Scholar]
  45. 45.
    Garrett L. 1994.. The Coming Plague. New York:: Penguin Books
    [Google Scholar]
  46. 46.
    Garrido-Sanz D, Vesga P, Heiman CM, Altenried A, Keel C, Vacheron J. 2023.. Relation of pest insect-killing and soilborne pathogen-inhibition abilities to species diversification in environmental Pseudomonas protegens. . ISME J 17::136981
    [Crossref] [Google Scholar]
  47. 47.
    Gatto A, Kuiper M, van Meijl H. 2023.. Economic, social and environmental spillovers decrease the benefits of a global dietary shift. . Nat. Food 4::496507
    [Crossref] [Google Scholar]
  48. 48.
    Gerlagh M. 1968.. Introduction of Ophiobolus graminis into new polders and its decline. . Neth. J. Plant Pathol. 74::197
    [Crossref] [Google Scholar]
  49. 49.
    Graber DR, Jones WJ, Johnson JA. 1995.. Human and ecosystem health. . J. Agromed. 2::4764
    [Crossref] [Google Scholar]
  50. 50.
    Greenspoon L, Krieger E, Sender R, Rosenberg Y, Bar-On YM, et al. 2023.. The global biomass of wild mammals. . PNAS 120::e2204892120
    [Crossref] [Google Scholar]
  51. 51.
    Grummon AH, Lee CJY, Robinson TN, Rimm EB, Rose D. 2023.. Simple dietary substitutions can reduce carbon footprints and improve dietary quality across diverse segments of the US population. . Nat. Food 4::96677
    [Crossref] [Google Scholar]
  52. 52.
    Hansen JE, Sato M, Simons L, Nazarenko LS, Sangha I, et al. 2023.. Global warming in the pipeline. . arXiv:2212.04474
  53. 53.
    Hawkins H-J, Cargill RIM, Van Nuland ME, Hagen SC, Field KJ, et al. 2023.. Mycorrhizal mycelium as a global carbon pool. . Curr. Biol. 33::R56073
    [Crossref] [Google Scholar]
  54. 54.
    Henriquez T, Lenzi A, Baldi A, Marvasi M. 2020.. Frontiers in plant breeding: perspectives for the selection of vegetables less susceptible to enteric pathogens. . Front. Microbiol. 11::1087
    [Crossref] [Google Scholar]
  55. 55.
    Hirt H. 2020.. Healthy soils for healthy plants for healthy humans: how beneficial microbes in the soil, food and gut are interconnected and how agriculture can contribute to human health. . EMBO Rep. 21::e51069
    [Crossref] [Google Scholar]
  56. 56.
    Hoffmann V, Paul B, Falade T, Moodley A, Ramankutty N, et al. 2022.. A One Health approach to plant health. . CABI Agric. Biosci. 3::62
    [Crossref] [Google Scholar]
  57. 57.
    Huang MHJ, Demarais S, Strickland BK, Brookshire WC. 2022.. Identifying aflatoxin exposure risk from supplemental feeding of deer. . J. Wildl. Dis. 58::38488
    [Crossref] [Google Scholar]
  58. 58.
    Hulcr J, Dunn RR. 2011.. The sudden emergence of pathogenicity in insect–fungus symbioses threatens naive forest ecosystems. . Proc. R. Soc. Lond. B 278::286673
    [Google Scholar]
  59. 59.
    Inst. Feed Educ. Res. 2020.. Animal feed/food consumption and COVID-19 impact analysis. Rep. , Inst. Feed Educ. Res., Arlington, VA:
    [Google Scholar]
  60. 60.
    Inst. Med. 2010.. Infectious Disease Movement in a Borderless World: Workshop Summary. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  61. 61.
    Interag. Food Saf. Anal. Collab. 2022.. Foodborne illness source attribution estimates for 2020 for Salmonella, Escherichia coli O157, and Listeria monocytogenes using multi-year outbreak surveillance data, United States. Rep. , US Dep. Health Human Serv., US Dep. Agric., Washington, DC:. https://www.cdc.gov/ifsac/media/pdfs/P19-2020-report-TriAgency-508.pdf
    [Google Scholar]
  62. 62.
    Jayaraman S, Naorem AK, Lal R, Dalal RC, Sinha NK, et al. 2021.. Disease-suppressive soils—beyond food production: a critical review. . J. Soil Sci. Plant Nutr. 21::143765
    [Crossref] [Google Scholar]
  63. 63.
    Jiranek J, Miller IF, An R, Bruns E, Metcalf CJE. 2023.. Mechanistic models to meet the challenge of climate change in plant–pathogen systems. . Philos. Trans. R. Soc. B 378::20220017
    [Crossref] [Google Scholar]
  64. 64.
    Juroszek P, Racca P, Link S, Farhumand J, Kleinhenz B. 2020.. Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. . Plant Pathol. 69::17993
    [Crossref] [Google Scholar]
  65. 65.
    Kabeshita L, Sloat LL, Fischer EV, Kampf S, Magzamen S, et al. 2023.. Pathways framework identifies wildfire impacts on agriculture. . Nat. Food 4::66472
    [Crossref] [Google Scholar]
  66. 66.
    Kandasamy D, Zaman R, Nakamura Y, Zhao T, Hartmann H, et al. 2023.. Conifer-killing bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. . PLOS Biol. 21::e3001887
    [Crossref] [Google Scholar]
  67. 67.
    Kleczkowski A, Hoyle A, McMenemy P. 2019.. One model to rule them all? Modelling approaches across One Health for human, animal and plant epidemics. . Philos. Trans. R. Soc. B 374::20180255
    [Crossref] [Google Scholar]
  68. 68.
    Knapp S. 2019.. Are humans really blind to plants?. Plants People Planet 1::16468
    [Crossref] [Google Scholar]
  69. 69.
    Kock R, Kebkiba B, Heinonen R, Bedane B. 2002.. Wildlife and pastoral society—shifting paradigms in disease control. . Ann. N. Y. Acad. Sci. 969::2433
    [Crossref] [Google Scholar]
  70. 70.
    Kornhuber K, Lesk C, Schleussner CF, Jägermeyr J, Pfleiderer P, Horton RM. 2023.. Risks of synchronized low yields are underestimated in climate and crop model projections. . Nat. Comm. 14::3528
    [Crossref] [Google Scholar]
  71. 71.
    Large EC. 1962.. The Advance of the Fungi. St. Paul, MN:: APS Press
    [Google Scholar]
  72. 72.
    Lederberg J, Shope RE, Stanley C, Oaks J, eds. 1992.. Emerging Infections: Microbial Threats to Health in the United States. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  73. 73.
    Leopold A. 1941.. Wilderness as a land laboratory. . Living Wilderness 6::3
    [Google Scholar]
  74. 74.
    Lewis MH, Carbone I, Luis JM, Payne GA, Bowen KL, et al. 2019.. Biocontrol strains differentially shift the genetic structure of indigenous soil populations of Aspergillus flavus. . Front. Microbiol. 10::1738
    [Crossref] [Google Scholar]
  75. 75.
    Lucas E, Guo M, Guillén-Gosálbez G. 2023.. Low-carbon diets can reduce global ecological and health costs. . Nat. Food 4::394406
    [Crossref] [Google Scholar]
  76. 76.
    Marroquín-Cardona AG, Johnson NM, Phillips TD, Hayes AW. 2014.. Mycotoxins in a changing global environment—a review. . Food Chem. Toxicol. 69::22030
    [Crossref] [Google Scholar]
  77. 77.
    McNeill JR, Engelke P. 2014.. The Great Acceleration: An Environmental History of the Anthropocene Since 1945. Cambridge, MA:: Belknap Press
    [Google Scholar]
  78. 78.
    McNeill WH. 1976.. Plagues and Peoples. New York:: Anchor
    [Google Scholar]
  79. 79.
    McNew GL. 1960.. The nature, origin, and evolution of parasitism. . In Plant Pathology: An Advanced Treatise, ed. JG Horsfall, AE Dimond , pp. 1969. New York:: Academic
    [Google Scholar]
  80. 80.
    Mendes R, Garbeva P, Raaijmakers JM. 2013.. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. . FEMS Microbiol. Rev. 37::63463
    [Crossref] [Google Scholar]
  81. 81.
    Morse SS, ed. 1996.. Emerging Viruses. New York:: Oxford Univ. Press
    [Google Scholar]
  82. 82.
    Natl. Acad. Sci. Med. 2019.. Science breakthroughs to advance food and agricultural research by 2030. Rep. , Natl. Acad. Sci. Med., Washington, DC:
    [Google Scholar]
  83. 83.
    NOAA. 2024.. Billion-dollar weather and climate disasters. Rep. , Natl. Cent. Environ. Inf., Asheville, NC:. https://www.ncei.noaa.gov/access/billions/
    [Google Scholar]
  84. 84.
    Ojiambo PS, Battilani P, Cary JW, Blum BH, Carbone I. 2018.. Cultural and genetic approaches to manage aflatoxin contamination: recent insights provide opportunities for improved control. . Phytopathology 108::102437
    [Crossref] [Google Scholar]
  85. 85.
    One Health High-Level Expert Panel, Adisasmito WB, Almuhairi S, Behravesh CB, Bilivogui P, et al. 2022.. One Health: a new definition for a sustainable and healthy future. . PLOS Pathog. 18::e1010537
    [Crossref] [Google Scholar]
  86. 86.
    Osofsky SA, Kock RA, Kock MD, Kalema-Zikusoka G, Grahn R, et al. 2003.. Building support for protected areas using a “One Health” perspective. . In Friends for Life: New Partners in Support of Protected Areas, ed. JAM McNeely, A Jeffrey , pp. 6579. Cambridge, UK:: IUCN
    [Google Scholar]
  87. 87.
    Peters JS, Aguirre BA, DiPaola A, Power AG. 2022.. Ecology of yellow dwarf viruses in crops and grasslands: interactions in the context of climate change. . Annu. Rev. Phytopathol. 60::283305
    [Crossref] [Google Scholar]
  88. 88.
    Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. 2013.. Going back to the roots: the microbial ecology of the rhizosphere. . Nat. Rev. Microbiol. 11::78999
    [Crossref] [Google Scholar]
  89. 89.
    Phillips TD, Wang M, Elmore SE, Hearon S, Wang J-S. 2019.. NovaSil clay for the protection of humans and animals from aflatoxins and other contaminants. . Clays Clay Miner. 67::99110
    [Crossref] [Google Scholar]
  90. 90.
    Pixley KV, Falck-Zepeda JB, Giller KE, Glenna LL, Gould F, et al. 2019.. Genome editing, gene drives, and synthetic biology: Will they contribute to disease-resistant crops, and who will benefit?. Annu. Rev. Phytopathol. 57::16588
    [Crossref] [Google Scholar]
  91. 91.
    Poza-Carrion C, Suslow T, Lindow S. 2013.. Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica. . Phytopathology 103::34151
    [Crossref] [Google Scholar]
  92. 92.
    Reid DA. 2017.. Interpreting Agriculture at Museums and Historic Sites. Lanham, MD:: Rowman & Littlefield
    [Google Scholar]
  93. 93.
    Reid DA, Schothof K-BG, Vail DD. 2023.. Interpreting Science at Museums and Historic Sites. Lanham, MD:: Rowman & Littlefield
    [Google Scholar]
  94. 94.
    Reid DA, Vail DD. 2019.. Interpreting the Environment at Museums and Historic Sites. Lanham, MD:: Rowman & Littlefield
    [Google Scholar]
  95. 95.
    Richardson J, Lockhart C, Pongolini S, Karesh WB, Baylis M, et al. 2016.. Drivers for emerging issues in animal and plant health. . EFSA J. 14::e00512
    [Crossref] [Google Scholar]
  96. 96.
    Ristaino JB, Anderson PK, Bebber DP, Brauman KA, Cunniffe NJ, et al. 2021.. The persistent threat of emerging plant disease pandemics to global food security. . PNAS 118::e2022239118
    [Crossref] [Google Scholar]
  97. 97.
    Ritchie H. 2017.. How much of the world's land would we need in order to feed the global population with the average diet of a given country?. Our World in Data. https://ourworldindata.org/agricultural-land-by-global-diets
    [Google Scholar]
  98. 98.
    Rittel HWJ, Webber MM. 1973.. Dilemmas in a general theory of planning. . Policy Sci. 4::15569
    [Crossref] [Google Scholar]
  99. 99.
    Rizzo DM, Lichtveld M, Mazet JAK, Togami E, Miller SA. 2021.. Plant health and its effects on food safety and security in a One Health framework: four case studies. . One Health Outlook 3::6
    [Crossref] [Google Scholar]
  100. 100.
    Ronald PC. 2023.. Enhancing sustainable development through plant genetics. . Nat. Rev. Genet. 24::65960
    [Crossref] [Google Scholar]
  101. 101.
    Roossinck MJ. 2019.. Viruses in the phytobiome. . Curr. Opin. Virol. 37::7276
    [Crossref] [Google Scholar]
  102. 102.
    Sagova-Mareckova M, Omelka M, Kopecky J. 2022.. The golden goal of soil management: disease-suppressive soils. . Phytopathology 113::74152
    [Crossref] [Google Scholar]
  103. 103.
    Samaddar S, Karp DS, Schmidt R, Devarajan N, McGarvey JA, et al. 2021.. Role of soil in the regulation of human and plant pathogens: soils’ contributions to people. . Philos. Trans. R. Soc. B 376::20200179
    [Crossref] [Google Scholar]
  104. 104.
    Scholthof K-BG. 1999.. Plant pathology and public health. . Emerg. Infect. Dis. 5::59798
    [Crossref] [Google Scholar]
  105. 105.
    Scholthof K-BG. 2003.. One foot in the furrow: linkages between agriculture, plant pathology, and public health. . Annu. Rev. Public Health 24::15374
    [Crossref] [Google Scholar]
  106. 106.
    Scholthof K-BG. 2007.. The disease triangle: pathogens, the environment and society. . Nat. Rev. Microbiol. 5::15256
    [Crossref] [Google Scholar]
  107. 107.
    Schwabe CW. 1964.. Veterinary Medicine and Human Health. Baltimore:: Williams & Wilkins
    [Google Scholar]
  108. 108.
    Schwabe CW. 1968.. Animal diseases and world health. . J. Am. Vet. Med. Assoc. 153::185963
    [Google Scholar]
  109. 109.
    Schwabe CW. 1978.. Cattle, Priests, and Progress in Medicine. Minneapolis, MN:: Univ. Minnesota Press
    [Google Scholar]
  110. 110.
    Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML, et al. 2022.. Future of bacterial disease management in crop production. . Annu. Rev. Phytopathol. 60::25982
    [Crossref] [Google Scholar]
  111. 111.
    Simard S. 2021.. Finding the Mother Tree: Discovering the Wisdom of the Forest. New York:: Knopf
    [Google Scholar]
  112. 112.
    Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, et al. 2023.. Climate change impacts on plant pathogens, food security and paths forward. . Nat. Rev. Microbiol. 21::64056
    [Crossref] [Google Scholar]
  113. 113.
    Six DL. 2020.. Niche construction theory can link bark beetle-fungus symbiosis type and colonization behavior to large scale causal chain-effects. . Curr. Opin. Insect Sci. 39::2734
    [Crossref] [Google Scholar]
  114. 114.
    Six DL, Biedermann PHW. 2023.. Fidelity or love the one you're with? Biotic complexity and tradeoffs can drive strategy and specificity in beetle-fungus by-product mutualisms. . Ecol. Evol 13::e10345
    [Crossref] [Google Scholar]
  115. 115.
    Suffert F, Suffert M. 2022.. “ Phytopathological strolls” in the dual context of COVID-19 lockdown and IYPH2020: transforming constraints into an opportunity for public education about plant pathogens. . Plant Pathol. 71::3042
    [Crossref] [Google Scholar]
  116. 116.
    Sweany RR, Breunig M, Opoku J, Clay K, Spatafora JW, et al. 2022.. Why do plant-pathogenic fungi produce mycotoxins? Potential roles for mycotoxins in the plant ecosystem. . Phytopathology 112::204451
    [Crossref] [Google Scholar]
  117. 117.
    Sweany RR, DeRobertis CD, Kaller MD, Damann KE. 2022.. Intraspecific growth and aflatoxin inhibition responses to atoxigenic Aspergillus flavus: evidence of secreted, inhibitory substances in biocontrol. . Phytopathology 112::208498
    [Crossref] [Google Scholar]
  118. 118.
    Swett CL. 2020.. Managing crop diseases under water scarcity. . Annu. Rev. Phytopathol. 58::387406
    [Crossref] [Google Scholar]
  119. 119.
    Tansley AG. 1935.. The use and abuse of vegetational concepts and terms. . Ecology 16::284307
    [Crossref] [Google Scholar]
  120. 120.
    Thompson RN, Brooks-Pollock E. 2019.. Detection, forecasting and control of infectious disease epidemics: modelling outbreaks in humans, animals and plants. . Philos. Trans. R. Soc. B 374::20190038
    [Crossref] [Google Scholar]
  121. 121.
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. 2020.. Plant–microbiome interactions: from community assembly to plant health. . Nat. Rev. Microbiol. 18::60721
    [Crossref] [Google Scholar]
  122. 122.
    USDA. 2024.. U.S. drought monitor. Map , Natl. Drought Mitig. Cent., Univ. Neb., Lincoln:. https://droughtmonitor.unl.edu/CurrentMap.aspx
    [Google Scholar]
  123. 123.
    USDA Econ. Res. Serv. 2024.. Farm income and wealth statistics: annual cash receipts by commodity. USDA Econ. Res. Serv. Database, Washington, DC:, updated Febr. 7, 2024. https://data.ers.usda.gov/reports.aspx?ID=17832
    [Google Scholar]
  124. 124.
    USDA Natl. Agric. Stat. Serv. 2022.. Cattle & beef. Rep. , US Dep. Agric. Econ. Res. Serv., Washington, D.C:. https://www.ers.usda.gov/topics/animal-products/cattle-beef/
    [Google Scholar]
  125. 125.
    US Food Drug Adm. 2022.. Summary report on antimicrobials sold or distributed for use in food-producing animals. Rep. , Cent. Vet. Med., Rockville, MD:. https://www.fda.gov/media/163739/download
    [Google Scholar]
  126. 126.
    US For. Serv. 2022.. Confronting the wildfire crisis: a strategy for protecting communities and improving resilience in America's forests. Rep. , US Dep. Agric., Washington, DC:. https://www.fs.usda.gov/sites/default/files/Confronting-Wildfire-Crisis.pdf
    [Google Scholar]
  127. 127.
    US For. Serv. 2023.. Confronting the wildfire crisis. . US Forest Service. https://www.fs.usda.gov/managing-land/wildfire-crisis
    [Google Scholar]
  128. 128.
    van Bruggen AHC, Goss EM, Havelaar A, van Diepeningen AD, Finckh MR, Morris JG. 2019.. One Health—cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. . Sci. Total Environ. 664::92737
    [Crossref] [Google Scholar]
  129. 129.
    Van Overbeek L, van Doorn J, Wichers J, van Amerongen A, van Roermund H, Willemsen P. 2014.. The arable ecosystem as battleground for emergence of new human pathogens. . Front. Microbiol. 5::104
    [Crossref] [Google Scholar]
  130. 130.
    Wall DH, Nielsen UN, Six J. 2015.. Soil biodiversity and human health. . Nature 528::6976
    [Crossref] [Google Scholar]
  131. 131.
    Wandersee JH, Schussler EE. 1999.. Preventing plant blindness. . Am. Biol. Teach. 61::8286
    [Crossref] [Google Scholar]
  132. 132.
    Waring TM, Niles MT, Kling MM, Miller SN, Hébert-Dufresne L, et al. 2023.. Operationalizing cultural adaptation to climate change: contemporary examples from United States agriculture. . Philos. Trans. R. Soc. B 378::20220397
    [Crossref] [Google Scholar]
  133. 133.
    Weisskopf L, Schulz S, Garbeva P. 2021.. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. . Nat. Rev. Microbiol. 19::391404
    [Crossref] [Google Scholar]
  134. 134.
    Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS. 2002.. Microbial populations responsible for specific soil suppressiveness to plant pathogens. . Annu. Rev. Phytopathol. 40::30948
    [Crossref] [Google Scholar]
  135. 135.
    Whetzel HH. 1928.. The relation of plant pathology to human affairs. . In Mayo Foundation Lectures, 1926–1927, pp. 15178. Philadelphia:: W. B. Saunders Co
    [Google Scholar]
  136. 136.
    Williams GM, Ginzel MD, Ma Z, Adams DC, Campbell F, et al. 2023.. The global forest health crisis: a public-good social dilemma in need of international collective action. . Annu. Rev. Phytopathol. 61::377401
    [Crossref] [Google Scholar]
  137. 137.
    Woods A, Bresalier M, Cassidy A, Dentinger RM. 2017.. Animals and the Shaping of Modern Medicine: One Health and Its Histories. London:: Palgrave Macmillan
    [Google Scholar]
  138. 138.
    Xu R, Yu P, Abramson MJ, Johnston FH, Samet JM, et al. 2020.. Wildfires, global climate change, and human health. . New Engl. J. Med. 383::217381
    [Crossref] [Google Scholar]
  139. 139.
    Yazvenko SB, Rapport DJ. 1997.. The history of ponderosa pine pathology: implications for management. . J. For. 95::1620
    [Google Scholar]
  140. 140.
    Yong E. 2022.. An Immense World: How Animal Senses Reveal the Hidden Realms Around Us. New York:: Random House
    [Google Scholar]
  141. 141.
    Zanon MSA, Pena G, Yerkovich N, Bossa M, Chiotta ML, Chulze SN. 2023.. Aflatoxins and fumonisins in maize under a climate change scenario. Biocontrol strategies at the pre-harvest stage. . Eur. J. Plant Pathol. 167::55167
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-phyto-121423-042102
Loading
/content/journals/10.1146/annurev-phyto-121423-042102
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error