1932

Abstract

A given pattern of optical stimulation can arise from countless possible real-world sources, creating a dilemma for vision: What in the world actually gives rise to the current pattern? This dilemma was pointed out centuries ago by the astronomer and mathematician Ibn Al-Haytham and was forcefully restated 150 years ago when von Helmholtz characterized perception as unconscious inference. To buttress his contention, von Helmholtz cited multistable perception: recurring changes in perception despite unchanging sensory input. Recent neuroscientific studies have exploited multistable perception to identify brain areas uniquely activated in association with these perceptual changes, but the specific roles of those activations remain controversial. This article provides an overview of theoretical models of multistable perception, a review of recent neuroimaging and brain stimulation studies focused on mechanisms associated with these perceptual changes, and a synthesis of available evidence within the context of current notions about Bayesian inference that find their historical roots in von Helmholtz's work.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-010417-085944
2018-01-04
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/psych/69/1/annurev-psych-010417-085944.html?itemId=/content/journals/10.1146/annurev-psych-010417-085944&mimeType=html&fmt=ahah

Literature Cited

  1. Al-Haytham I. 1989. The Optics of Ibn Al-Haytham: On Direct Vision Books I–III, ed. AI Sabra, transl. AI Sabra London: Warburg Inst. [Google Scholar]
  2. Alais D, Cass J, O'Shea RP, Blake R. 2010. Visual sensitivity underlying changes in visual consciousness. Curr. Biol. 20:151362–67 [Google Scholar]
  3. Alais D, Keetels M, Freeman AW. 2014. Measuring perception without introspection. J. Vis. 14:111 [Google Scholar]
  4. Arnold DH, Grove PM, Wallis TSA. 2007. Staying focused: a functional account of perceptual suppression during binocular rivalry. J. Vis. 7:77.1–8 [Google Scholar]
  5. Aron AR, Robbins TW, Poldrack RA. 2004. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 8:4170–77 [Google Scholar]
  6. Aron AR, Robbins TW, Poldrack RA. 2014. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Sci. 18:4177–85 [Google Scholar]
  7. Aston-Jones G, Cohen JD. 2005. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28:403–50 [Google Scholar]
  8. Azuar C, Reyes P, Slachevsky A, Volle E, Kinkingnehun S. et al. 2014. Testing the model of caudo-rostral organization of cognitive control in the human with frontal lesions. NeuroImage 84:1053–60 [Google Scholar]
  9. Badre D, Hoffman J, Cooney JW, D'Esposito M. 2009. Hierarchical cognitive control deficits following damage to the human frontal lobe. Nat. Neurosci. 12:4515–22 [Google Scholar]
  10. Baker DH, Karapanagiotidis T, Coggan DD, Wailes-Newson K, Smallwood J. 2015. Brain networks underlying bistable perception. NeuroImage 119:229–34 [Google Scholar]
  11. Baldauf D, Desimone R. 2014. Neural mechanisms of object-based attention. Science 344:6182424–27 [Google Scholar]
  12. Barlow HB, Narasimhan R, Rosenfeld A. 1972. Visual pattern analysis in machines and animals. Science 177:49567–75 [Google Scholar]
  13. Bastos AM, Vezoli J, Bosman CA, Schoffelen J-M, Oostenveld R. et al. 2015. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85:2390–401 [Google Scholar]
  14. Blake R, Fox R. 1974. Adaptation to invisible gratings and the site of binocular rivalry suppression. Nature 249:456488–90 [Google Scholar]
  15. Blake R, Sobel KV, Gilroy LA. 2003. Visual motion retards alternations between conflicting perceptual interpretations. Neuron 39:5869–78 [Google Scholar]
  16. Brascamp JW, Brascamp J, Blake R, Knapen T. 2015a. Negligible fronto-parietal BOLD activity accompanying unreportable switches in bistable perception. Nat. Neurosci. 18:111672–78 [Google Scholar]
  17. Brascamp JW, Klink PC, Levelt W. 2015b. The ‘laws’ of binocular rivalry: 50 years of Levelt's propositions. Vis. Res. 109:20–37 [Google Scholar]
  18. Brascamp JW, van Ee R, Noest AJ, Jacobs RHAH, van den Berg AV. 2006. The time course of binocular rivalry reveals a fundamental role of noise. J. Vis. 6:111244–56 [Google Scholar]
  19. Bressler SL, Tang W, Sylvester CM, Shulman GL, Corbetta M. 2008. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J. Neurosci. 28:4010056–61 [Google Scholar]
  20. Brouwer GJ, van Ee R. 2007. Visual cortex allows prediction of perceptual states during ambiguous structure-from-motion. J. Neurosci. 27:51015–23 [Google Scholar]
  21. Brown RJ, Norcia AM. 1997. A method for investigating binocular rivalry in real-time with the steady-state VEP. Vis. Res. 37:172401–8 [Google Scholar]
  22. Brunswik E. 1943. Organismic achievement and environmental probability. Psychol. Rev. 50:3255–72 [Google Scholar]
  23. Carmel D, Walsh V, Lavie N, Rees G. 2010. Right parietal TMS shortens dominance durations in binocular rivalry. Curr. Biol. 20:18R799–800 [Google Scholar]
  24. Carter OL, Pettigrew JD. 2003. A common oscillator for perceptual rivalries. Perception 32:3295–305 [Google Scholar]
  25. Cavanagh P. 2011. Visual cognition. Vis. Res. 51:131538–51 [Google Scholar]
  26. Cheadle S, Wyart V, Tsetsos K, Myers N, de Gardelle V. et al. 2014. Adaptive gain control during human perceptual choice. Neuron 81:61429–41 [Google Scholar]
  27. Cisek P, Pastor-Bernier A. 2014. On the challenges and mechanisms of embodied decisions. Philos. Trans. R. Soc. Lond. Biol. Sci. 369:165520130479 [Google Scholar]
  28. Clark A. 2013. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36:3181–204 [Google Scholar]
  29. Conrad V, Vitello MP, Noppeney U. 2012. Interactions between apparent motion rivalry in vision and touch. Psychol. Sci. 23:8940–48 [Google Scholar]
  30. Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM. et al. 1998. A common network of functional areas for attention and eye movements. Neuron 21:4761–73 [Google Scholar]
  31. Corbetta M, Patel G, Shulman GL. 2008. The reorienting system of the human brain: from environment to theory of mind. Neuron 58:3306–24 [Google Scholar]
  32. Corbetta M, Shulman GL. 2002. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3:3201–15 [Google Scholar]
  33. de Gee JW, Knapen T, Donner TH. 2014. Decision-related pupil dilation reflects upcoming choice and individual bias. PNAS 111:5E618–25 [Google Scholar]
  34. de Graaf TA, de Jong MC, Goebel R, van Ee R, Sack AT. 2011. On the functional relevance of frontal cortex for passive and voluntarily controlled bistable vision. Cereb. Cortex 21:102322–31 [Google Scholar]
  35. Di Luca M, Ernst MO, Backus BT. 2010. Learning to use an invisible visual signal for perception. Curr. Biol. 20:201860–63 [Google Scholar]
  36. Donner TH, Siegel M. 2011. A framework for local cortical oscillation patterns. Trends Cogn. Sci. 15:5191–99 [Google Scholar]
  37. Dosher BA, Sperling G, Wurst SA. 1986. Tradeoffs between stereopsis and proximity luminance covariance as determinants of perceived 3D structure. Vis. Res. 26:6973–90 [Google Scholar]
  38. Eldar E, Cohen JD, Niv Y. 2013. The effects of neural gain on attention and learning. Nat. Neurosci. 16:81146–53 [Google Scholar]
  39. Fox R, Todd S, Bettinger LA. 1975. Optokinetic nystagmus as an objective indicator of binocular rivalry. Vis. Res. 15:7849–53 [Google Scholar]
  40. Fracasso A, Petridou N, Dumoulin SO. 2016. Systematic variation of population receptive field properties across cortical depth in human visual cortex. NeuroImage 139:427–38 [Google Scholar]
  41. Frässle S, Sommer J, Jansen A, Naber M, Einhäuser W. 2014. Binocular rivalry: frontal activity relates to introspection and action but not to perception. J. Neurosci. 34:51738–47 [Google Scholar]
  42. Friston K. 2005. A theory of cortical responses. Philos. Trans. R. Soc. Lond. Biol. Sci. 360:1456815–36 [Google Scholar]
  43. Friston KJ, Harrison LM, Harrison L, Penny W. 2003. Dynamic causal modelling. NeuroImage 19:41273–302 [Google Scholar]
  44. Funk AP, Pettigrew JD. 2003. Does interhemispheric competition mediate motion-induced blindness? A transcranial magnetic stimulation study. Perception 32:111325–38 [Google Scholar]
  45. Fuster JM, Bressler SL. 2012. Cognit activation: a mechanism enabling temporal integration in working memory. Trends Cogn. Sci. 16:4207–18 [Google Scholar]
  46. Ge S, Ueno S, Iramina K. 2008. Effects of repetitive transcranial magnetic stimulation on perceptual reversal. J. Magnet. Soc. Jpn. 32:4458–61 [Google Scholar]
  47. Gershman SJ, Vul E, Tenenbaum JB. 2012. Multistability and perceptual inference. Neural Comput 24:11–24 [Google Scholar]
  48. Giles N, Lau H, Odegaard B. 2016. What type of awareness does binocular rivalry assess. Trends Cogn. Sci. 20:10719–20 [Google Scholar]
  49. Gilroy LA, Blake R. 2004. Physics embedded in visual perception of three-dimensional shape from motion. Nat. Neurosci. 7:9921–22 [Google Scholar]
  50. Gregory RL. 1980. Perceptions as hypotheses. Philos. Trans. R. Soc. Lond. Biol. Sci. 290:1038181–97 [Google Scholar]
  51. Grotheer M, Kovács G. 2016. Can predictive coding explain repetition suppression. Cortex 80:113–24 [Google Scholar]
  52. Harris KD, Thiele A. 2011. Cortical state and attention. Nat. Rev. Neurosci. 12:9509–23 [Google Scholar]
  53. Haynes J-D, Driver J, Rees G. 2005. Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex. Neuron 46:5811–21 [Google Scholar]
  54. Haynes J-D, Rees G. 2005. Predicting the stream of consciousness from activity in human visual cortex. Curr. Biol. 15:141301–7 [Google Scholar]
  55. Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG. 2004. A general mechanism for perceptual decision-making in the human brain. Nature 431:7010859–62 [Google Scholar]
  56. Hock HS, Schöner G, Giese M. 2003. The dynamical foundations of motion pattern formation: stability, selective adaptation, and perceptual continuity. Percept. Psychophys. 65:3429–57 [Google Scholar]
  57. Hohwy J. 2012. Attention and conscious perception in the hypothesis testing brain. Front. Psychol. 3:96 [Google Scholar]
  58. Hohwy J, Roepstorff A, Friston K. 2008. Predictive coding explains binocular rivalry: an epistemological review. Cognition 108:3687–701 [Google Scholar]
  59. Howard IP. 1996. Alhazen's neglected discoveries of visual phenomena. Perception 25:101203–17 [Google Scholar]
  60. Hsiao J-Y, Chen Y-C, Spence C, Yeh S-L. 2012. Assessing the effects of audiovisual semantic congruency on the perception of a bistable figure. Conscious. Cogn. 21:2775–87 [Google Scholar]
  61. Hupé J-M, Lamirel C, Lorenceau J. 2009. Pupil dynamics during bistable motion perception. J. Vis. 9:710 [Google Scholar]
  62. Jazayeri M, Movshon JA. 2006. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9:5690–96 [Google Scholar]
  63. Jazayeri M, Movshon JA. 2007. A new perceptual illusion reveals mechanisms of sensory decoding. Nature 446:7138912–15 [Google Scholar]
  64. Jerde TA, Merriam EP, Riggall AC, Hedges JH, Curtis CE. 2012. Prioritized maps of space in human frontoparietal cortex. J. Neurosci. 32:4817382–90 [Google Scholar]
  65. Kalarickal GJ, Marshall JA. 2000. Neural model of temporal and stochastic properties of binocular rivalry. Neurocomputing 32–33:843–53 [Google Scholar]
  66. Kanai R, Bahrami B, Rees G. 2010. Human parietal cortex structure predicts individual differences in perceptual rivalry. Curr. Biol. 20:181626–30 [Google Scholar]
  67. Kanai R, Carmel D, Bahrami B, Rees G. 2011. Structural and functional fractionation of right superior parietal cortex in bistable perception. Curr. Biol. 21:3R106–7 [Google Scholar]
  68. Kang M-S, Blake R. 2011. An integrated framework of spatiotemporal dynamics of binocular rivalry. Front. Hum. Neurosci. 5:88 [Google Scholar]
  69. Kleinschmidt A, Büchel C, Zeki S, Frackowiak RSJ. 1998. Human brain activity during spontaneously reversing perception of ambiguous figures. Proc. Biol. Sci. 265:14132427–33 [Google Scholar]
  70. Klink PC, van Ee R, van Wezel RJA. 2008. General validity of Levelt's propositions reveals common computational mechanisms for visual rivalry. PLOS ONE 3:10e3473 [Google Scholar]
  71. Kloosterman NA, Meindertsma T, Hillebrand A, van Dijk BW, Lamme VAF, Donner TH. 2015. Top-down modulation in human visual cortex predicts the stability of a perceptual illusion. J. Neurophysiol. 113:41063–76 [Google Scholar]
  72. Knapen T, Brascamp J, Pearson J, van Ee R, Blake R. 2011. The role of frontal and parietal brain areas in bistable perception. J. Neurosci. 31:2810293–301 [Google Scholar]
  73. Knapen T, de Gee JW, Brascamp J, Nuiten S. Hoppenbrouwers S, Theeuwes J. 2016. Cognitive and ocular factors jointly determine pupil responses under equiluminance. PLOS ONE 11:5e0155574 [Google Scholar]
  74. Knill DC, Richards W. 1996. Perception as Bayesian Inference Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  75. Kok P, Bains LJ, van Mourik T, Norris DG, de Lange FP. 2016. Selective activation of the deep layers of the human primary visual cortex by top-down feedback. Curr. Biol. 26:3371–76 [Google Scholar]
  76. Konen CS, Kastner S. 2008. Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex. J. Neurosci. 28:338361–75 [Google Scholar]
  77. Kornmeier J, Bach M. 2012. Ambiguous figures—what happens in the brain when perception changes but not the stimulus. Front. Hum. Neurosci. 6:51 [Google Scholar]
  78. Laing CR, Chow CC. 2002. A spiking neuron model for binocular rivalry. J. Comput. Neurosci. 12:139–53 [Google Scholar]
  79. Lancaster JL, Tordesillas-Gutiérrez D, Martinez M, Salinas F, Evans A. et al. 2007. Bias between MNI and Talairach coordinates analyzed using the ICBM‐152 brain template. Hum. Brain Mapp. 28:111194–205 [Google Scholar]
  80. Lee M, Blake R, Kim S, Kim C-Y. 2015. Melodic sound enhances visual awareness of congruent musical notes, but only if you can read music. PNAS 112:278493–98 [Google Scholar]
  81. Lee TS, Mumford D. 2003. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. Opt. Image Sci. Vis. 20:71434–48 [Google Scholar]
  82. Leopold DA, Logothetis NK. 1999. Multistable phenomena: changing views in perception. Trends Cogn. Sci. 3:7254–64 [Google Scholar]
  83. Leopold DA, Wilke M, Maier A, Logothetis NK. 2002. Stable perception of visually ambiguous patterns. Nat. Neurosci. 5:6605–9 [Google Scholar]
  84. Lepora NF, Pezzulo G. 2015. Embodied choice: how action influences perceptual decision making. PLOS Comput. Biol. 11:4e1004110 [Google Scholar]
  85. Levelt WJM. 1966. The alternation process in binocular rivalry. Br. J. Psychol. 57:3–4225–38 [Google Scholar]
  86. Lumer ED, Friston KJ, Rees G. 1998. Neural correlates of perceptual rivalry in the human brain. Science 280:53711930–34 [Google Scholar]
  87. Lumer ED, Rees G. 1999. Covariation of activity in visual and prefrontal cortex associated with subjective visual perception. PNAS 96:41669–73 [Google Scholar]
  88. Lunghi C, Binda P, Morrone MC. 2010. Touch disambiguates rivalrous perception at early stages of visual analysis. Curr. Biol. 20:4R143–44 [Google Scholar]
  89. MacKay DM. 1956. Towards an information-flow model of human behaviour. Br. J. Psychol. 47:130–43 [Google Scholar]
  90. Mamassian P, Goutcher R. 2005. Temporal dynamics in bistable perception. J. Vis. 5:47–15 [Google Scholar]
  91. Maruya K, Yang E, Blake R. 2007. Voluntary action influences visual competition. Psychol. Sci. 18:121090–98 [Google Scholar]
  92. McDougall W. 1903. The nature of inhibitory processes within the nervous system. Brain 26:2153–91 [Google Scholar]
  93. McGinley MJ, David SV, McCormick DA. 2015a. Cortical membrane potential signature of optimal states for sensory signal detection. Neuron 87:1179–92 [Google Scholar]
  94. McGinley MJ, Vinck M, Reimer J, Batista-Brito R, Zagha E. et al. 2015b. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87:61143–61 [Google Scholar]
  95. Megumi F, Bahrami B, Kanai R, Rees G. 2015. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception. NeuroImage 107:190–97 [Google Scholar]
  96. Miller SM, Liu GB, Liu GB, Ngo TT, Hooper G. et al. 2000. Interhemispheric switching mediates perceptual rivalry. Curr. Biol. 10:7383–92 [Google Scholar]
  97. Moreno-Bote R, Rinzel J, Rubin N. 2007. Noise-induced alternations in an attractor network model of perceptual bistability. J. Neurophysiol. 98:31125–39 [Google Scholar]
  98. Naber M, Frässle S, Einhäuser W. 2011. Perceptual rivalry: reflexes reveal the gradual nature of visual awareness. PLOS ONE 6:6e20910 [Google Scholar]
  99. Neisser U. 1967. Cognitive Psychology New York: Appleton-Century-Crofts [Google Scholar]
  100. Ngo TT, Barsdell WN, Law PCF, Miller SM. 2013. Binocular rivalry, brain stimulation and bipolar disorder. The Constitution of Visual Consciousness SM Miller 211–52 Amsterdam: John Benjamins [Google Scholar]
  101. Nienborg H, Cumming BG. 2009. Decision-related activity in sensory neurons reflects more than a neuron's causal effect. Nature 459:724389–92 [Google Scholar]
  102. Noest AJ, van Ee R, Nijs MM, van Wezel RJA. 2007. Percept-choice sequences driven by interrupted ambiguous stimuli: a low-level neural model. J. Vis. 7:810 [Google Scholar]
  103. Nojima K, Ge S, Katayama Y, Iramina K. 2010. Time change of perceptual reversal of ambiguous figures by rTMS. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010:6579–82 [Google Scholar]
  104. Orbach J, Ehrlich D, Heath HA. 1963. Reversibility of the Necker cube. I. An examination of the concept of “satiation of orientation.”. Percept. Mot. Skills 17:439–58 [Google Scholar]
  105. Ozkan K, Braunstein ML. 2009. Predominance of ground over ceiling surfaces in binocular rivalry. Atten. Percept. Psychophys. 71:61305–12 [Google Scholar]
  106. Pastukhov A, Braun J. 2011. Cumulative history quantifies the role of neural adaptation in multistable perception. J. Vis. 11:1012 [Google Scholar]
  107. Pearson J, Brascamp JW. 2008. Sensory memory for ambiguous vision. Trends Cogn. Sci. 12:9334–41 [Google Scholar]
  108. Pearson J, Clifford CWG, Tong F. 2008. The functional impact of mental imagery on conscious perception. Curr. Biol. 18:13982–86 [Google Scholar]
  109. Pearson J, Tadin D, Blake R. 2007. The effects of transcranial magnetic stimulation on visual rivalry. J. Vis. 7:72.1–11 [Google Scholar]
  110. Petrovici MA, Bill J, Bytschok I, Schemmel J, Meier K. 2016. Stochastic inference with spiking neurons in the high-conductance state. Phys. Rev. E 94:4042312 [Google Scholar]
  111. Pettigrew JD, Miller SM. 1998. A “sticky” interhemispheric switch in bipolar disorder?. Proc. Biol. Sci. 265:14112141–48 [Google Scholar]
  112. Rahnev D, Nee DE, Riddle J, Larson AS, D'Esposito M. 2016. Causal evidence for frontal cortex organization for perceptual decision making. PNAS 113:216059–64 [Google Scholar]
  113. Ricci C, Blundo C. 1990. Perception of ambiguous figures after focal brain lesions. Neuropsychologia 28:111163–73 [Google Scholar]
  114. Rock I. 1983. The Logic of Perception Cambridge, MA: MIT Press [Google Scholar]
  115. Sack AT, Cohen Kadosh R, Schuhmann T, Moerel M, Walsh V, Goebel R. 2009. Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. J. Cogn. Neurosci. 21:2207–21 [Google Scholar]
  116. Sandberg K, Blicher JU, Del Pin SH, Andersen LM. 2016. Improved estimates for the role of grey matter volume and GABA in bistable perception. Cortex 83:292–305 [Google Scholar]
  117. Sara SJ. 2009. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10:3211–23 [Google Scholar]
  118. Schauer G, Kanai R, Brascamp JW. 2016. Parietal theta burst TMS: functional fractionation observed during bistable perception not evident in attention tasks. Conscious. Cogn. 40:105–15 [Google Scholar]
  119. Schmack K, de Castro A, Rothkirch M, Sekutowicz M, Rössler H. et al. 2013a. Delusions and the role of beliefs in perceptual inference. J. Neurosci. 33:3413701–12 [Google Scholar]
  120. Schmack K, Sekutowicz M, Rössler H, Brandl EJ, Müller DJ, Sterzer P. 2013b. The influence of dopamine-related genes on perceptual stability. Eur. J. Neurosci. 38:93378–83 [Google Scholar]
  121. Schmack K, Weilnhammer V, Heinzle J, Stephan KE, Sterzer P. 2016. Learning what to see in a changing world. Front. Hum. Neurosci. 10:39263 [Google Scholar]
  122. Schrater PR, Sundareswara R. 2006. Theory and dynamics of perceptual bistability. Advances in Neural Information Processing Systems 19, ed B Schölkopf, JC Platt, T Hoffman 1217–24 Cambridge, MA: MIT Press [Google Scholar]
  123. Serences JT. 2004. Control of object-based attention in human cortex. Cereb. Cortex 14:121346–57 [Google Scholar]
  124. Shepard RN. 1990. Mind Sights: Original Visual Illusions, Ambiguities, and Other Anomalies, with a Commentary on the Play of Mind in Perception and Art New York: W.H. Freeman [Google Scholar]
  125. Sheremata SL, Bettencourt KC, Somers DC. 2010. Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load. J. Neurosci. 30:3812581–88 [Google Scholar]
  126. Sheremata SL, Silver MA. 2015. Hemisphere-dependent attentional modulation of human parietal visual field representations. J. Neurosci. 35:2508–17 [Google Scholar]
  127. Siegel M, Donner TH, Engel AK. 2012. Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13:2121–34 [Google Scholar]
  128. Silver MA, Kastner S. 2009. Topographic maps in human frontal and parietal cortex. Trends Cogn. Sci. 13:11488–95 [Google Scholar]
  129. Silver MA, Ress D, Heeger DJ. 2005. Topographic maps of visual spatial attention in human parietal cortex. J. Neurophysiol. 94:21358–71 [Google Scholar]
  130. Silver MA, Ress D, Heeger DJ. 2006. Neural correlates of sustained spatial attention in human early visual cortex. J. Neurophysiol. 97:1229–37 [Google Scholar]
  131. Srinivasan MV, Laughlin SB, Dubs A. 1982. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. Biol. Sci. 216:1205427–59 [Google Scholar]
  132. Stefanics G, Kremláček J, Czigler I. 2014. Visual mismatch negativity: a predictive coding view. Front. Hum. Neurosci. 8:47666 [Google Scholar]
  133. Sterzer P. 2016. Moving forward in perceptual decision making. PNAS 113:215771–73 [Google Scholar]
  134. Sterzer P, Frith C, Petrovic P. 2008. Believing is seeing: Expectations alter visual awareness. Curr. Biol. 18:16R697–98 [Google Scholar]
  135. Sterzer P, Kleinschmidt A. 2007. A neural basis for inference in perceptual ambiguity. PNAS 104:1323–28 [Google Scholar]
  136. Sterzer P, Kleinschmidt A, Rees G. 2009. The neural bases of multistable perception. Trends Cogn. Sci. 13:7310–18 [Google Scholar]
  137. Summerfield C, de Lange FP. 2014. Expectation in perceptual decision making: neural and computational mechanisms. Nat. Rev. Neurosci. 15:11745–56 [Google Scholar]
  138. Sunaert S, Van Hecke P, Marchal G, Orban GA. 2000. Attention to speed of motion, speed discrimination, and task difficulty: an fMRI study. NeuroImage 11:612–23 [Google Scholar]
  139. Sundareswara R, Schrater PR. 2008. Perceptual multistability predicted by search model for Bayesian decisions. J. Vis. 8:512.1–19 [Google Scholar]
  140. Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC. 2007. Visual topography of human intraparietal sulcus. J. Neurosci. 27:205326–37 [Google Scholar]
  141. Szczepanski SM, Konen CS, Kastner S. 2010. Mechanisms of spatial attention control in frontal and parietal cortex. J. Neurosci. 30:1148–60 [Google Scholar]
  142. Todd JJ, Marois R. 2004. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428:6984751–54 [Google Scholar]
  143. Tsuchiya N, Wilke M, Frässle S, Lamme V. 2015. No-report paradigms: extracting the true neural correlates of consciousness. Trends Cogn. Sci. 19:12757–70 [Google Scholar]
  144. Valle-Inclan F, Gallego E. 2006. Bilateral frontal leucotomy does not alter perceptual alternation during binocular rivalry. Prog. Brain Res. 155:235–39 [Google Scholar]
  145. van Loon AM, Knapen T, Scholte HS, St John-Saaltink E, Donner TH, Lamme VAF. 2013. GABA shapes the dynamics of bistable perception. Curr. Biol. 23:9823–27 [Google Scholar]
  146. VanRullen R, Pascual-Leone A, Battelli L. 2008. The continuous Wagon wheel illusion and the “when” pathway of the right parietal lobe: a repetitive transcranial magnetic stimulation study. PLOS ONE 3:8e2911 [Google Scholar]
  147. Vernet M, Brem A-K, Farzan F, Pascual-Leone A. 2015. Synchronous and opposite roles of the parietal and prefrontal cortices in bistable perception: a double-coil TMS-EEG study. Cortex 64:78–88 [Google Scholar]
  148. von Helmholtz H. 1867. Handbuch Der Physiologischen Optik Leipzig: Leopold Voss [Google Scholar]
  149. Wade NJ, Ono H. 1985. The stereoscopic views of Wheatstone and Brewster. Psychol. Res. 47:3125–33 [Google Scholar]
  150. Wang M, Arteaga D, He BJ. 2013. Brain mechanisms for simple perception and bistable perception. PNAS 110:35E3350–59 [Google Scholar]
  151. Watanabe T, Masuda N, Megumi F, Kanai R, Rees G. 2014. Energy landscape and dynamics of brain activity during human bistable perception. Nat. Commun. 5:4765 [Google Scholar]
  152. Weilnhammer VA, Ludwig K, Hesselmann G, Sterzer P. 2013. Frontoparietal cortex mediates perceptual transitions in bistable perception. J. Neurosci. 33:4016009–15 [Google Scholar]
  153. Weilnhammer VA, Stuke H, Hesselmann G, Sterzer P, Schmack K. 2017. A predictive coding account of bistable perception—a model-based fMRI study. PLOS Comput. Biol. 13:5e1005536 [Google Scholar]
  154. Wheatstone C. 1838. Contributions to the physiology of vision. Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos. Trans. R. Soc. Lond. 128:371–94 [Google Scholar]
  155. Wilbertz G, van Slooten J, Sterzer P. 2014. Reinforcement of perceptual inference: Reward and punishment alter conscious visual perception during binocular rivalry. Front. Psychol. 5:7495 [Google Scholar]
  156. Wilson HR. 2007. Minimal physiological conditions for binocular rivalry and rivalry memory. Vis. Res. 47:212741–50 [Google Scholar]
  157. Xu H, Han C, Chen M, Li P, Zhu S. et al. 2016. Rivalry-like neural activity in primary visual cortex in anesthetized monkeys. J. Neurosci. 36:113231–42 [Google Scholar]
  158. Yantis S, Schwarzbach J, Serences JT, Carlson RL, Steinmetz MA. et al. 2002. Transient neural activity in human parietal cortex during spatial attention shifts. Nat. Neurosci. 5:10995–1002 [Google Scholar]
  159. Yu K, Blake R. 1992. Do recognizable figures enjoy an advantage in binocular rivalry. J. Exp. Psychol. Hum. Percept. Perform. 18:41158–73 [Google Scholar]
  160. Zaretskaya N, Thielscher A, Logothetis NK, Bartels A. 2010. Disrupting parietal function prolongs dominance durations in binocular rivalry. Curr. Biol. 20:232106–11 [Google Scholar]
  161. Zhang P, Jamison K, Engel S, He B, He S. 2011. Binocular rivalry requires visual attention. Neuron 71:2362–69 [Google Scholar]
  162. Zhou W, Zhang X, Chen J, Wang L, Chen D. 2012. Nostril-specific olfactory modulation of visual perception in binocular rivalry. J. Neurosci. 32:4817225–29 [Google Scholar]
  163. Zou J, He S, Zhang P. 2016. Binocular rivalry from invisible patterns. PNAS 113:308408–13 [Google Scholar]
/content/journals/10.1146/annurev-psych-010417-085944
Loading
/content/journals/10.1146/annurev-psych-010417-085944
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error