1932

Abstract

Addiction is commonly identified with habitual nonmedical self-administration of drugs. It is usually defined by characteristics of intoxication or by characteristics of withdrawal symptoms. Such addictions can also be defined in terms of the brain mechanisms they activate; most addictive drugs cause elevations in extracellular levels of the neurotransmitter dopamine. Animals unable to synthesize or use dopamine lack the conditioned reflexes discussed by Pavlov or the appetitive behavior discussed by Craig; they have only unconditioned consummatory reflexes. Burst discharges (phasic firing) of dopamine-containing neurons are necessary to establish long-term memories associating predictive stimuli with rewards and punishers. Independent discharges of dopamine neurons (tonic or pacemaker firing) determine the motivation to respond to such cues. As a result of habitual intake of addictive drugs, dopamine receptors expressed in the brain are decreased, thereby reducing interest in activities not already stamped in by habitual rewards.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-010418-103337
2020-01-04
2024-07-23
Loading full text...

Full text loading...

/deliver/fulltext/psych/71/1/annurev-psych-010418-103337.html?itemId=/content/journals/10.1146/annurev-psych-010418-103337&mimeType=html&fmt=ahah

Literature Cited

  1. Abel EL. 1975. Cannabis: effects on hunger and thirst. Behav. Biol. 15:255–81
    [Google Scholar]
  2. Abrahao KP, Salinas AG, Lovinger DM 2017. Alcohol and the brain: neuronal molecular targets, synapses, and circuits. Neuron 96:1223–38
    [Google Scholar]
  3. Acquas E, Tanda G, Di Chiara G 2002. Differential effects of caffeine on dopamine and acetylcholine transmission in brain areas of drug-naive and caffeine-pretreated rats. Neuropsychopharmacology 27:182–93
    [Google Scholar]
  4. Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K 2010. Understanding wiring and volume transmission. Brain Res. Rev. 64:137–59
    [Google Scholar]
  5. Alhadeff AL, Rupprecht LE, Hayes MR 2012. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 153:647–58
    [Google Scholar]
  6. Anand BK, Brobeck JR. 1951. Hypothalamic control of food intake in rats and cats. Yale J. Biol. Med. 24:123–40
    [Google Scholar]
  7. Baker TB, Piper ME, McCarthy DE, Majeskie MR, Fiore MC 2004. Addiction motivation reformulated: an affective processing model of negative reinforcement. Psych Rev 111:33–51
    [Google Scholar]
  8. Bals-Kubik R, Herz A, Shippenberg TS 1989. Evidence that the aversive effects of opioid antagonists and κ-agonists are centrally mediated. Psychopharmacology 98:203–6
    [Google Scholar]
  9. Barker DJ, Root DH, Ma S, Jha S, Megehee L et al. 2010. Dose-dependent differences in short ultrasonic vocalizations emitted by rats during cocaine self-administration. Psychopharmacology 211:435–42
    [Google Scholar]
  10. Barker DJ, Simmons SJ, Servilio LC, Bercovicz D, Ma S et al. 2014. Ultrasonic vocalizations: evidence for an affective opponent process during cocaine self-administration. Psychopharmacology 231:909–18
    [Google Scholar]
  11. Bechara A, van der Kooy D 1985. Opposite motivational effects of endogenous opioids in brain and periphery. Nature 314:533–34
    [Google Scholar]
  12. Benveniste H. 1989. Brain microdialysis. J. Neurochem. 52:1667–79
    [Google Scholar]
  13. Bergh C, Eklund T, Sodersten P, Nordin C 1997. Altered dopamine function in pathological gambling. Psychol. Med. 27:473–75
    [Google Scholar]
  14. Beutler LR, Eldred KC, Quintana A, Keene CD, Rose SE et al. 2011. Severely impaired learning and altered neuronal morphology in mice lacking NMDA receptors in medium spiny neurons. PLOS ONE 6:e28168
    [Google Scholar]
  15. Bindra D. 1969. The interrelated mechanisms of reinforcement and motivation, and the nature of their influence on response. Nebr. Symp. Motiv. 17:1–37
    [Google Scholar]
  16. Blaine SK, Nautiyal N, Hart R, Guarnaccia JB, Sinha R 2018. Craving, cortisol and behavioral alcohol motivation responses to stress and alcohol cue contexts and discrete cues in binge and non-binge drinkers. Addict. Biol. 24:1096–108
    [Google Scholar]
  17. Bloomfield MA, Morgan CJ, Egerton A, Kapur S, Curran HV, Howes OD 2014. Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol. Psychiat. 75:470–78
    [Google Scholar]
  18. Bolles RC. 1972. Reinforcement, expectancy, and learning. Psychol. Rev. 79:394–409
    [Google Scholar]
  19. Bonaventura J, Navarro G, Casado-Anguera V, Azdad K, Rea W et al. 2015. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer. PNAS 112:E3609–18
    [Google Scholar]
  20. Bossong MG, van Berckel BN, Boellaard R, Zuurman L, Schuit RC et al. 2009. Δ9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology 34:759–66
    [Google Scholar]
  21. Bozarth MA, Wise RA. 1981. Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sci 28:551–55
    [Google Scholar]
  22. Brischoux F, Chakraborty S, Brierley DI, Ungless MA 2009. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. PNAS 106:4894–99
    [Google Scholar]
  23. Broekkamp CLE, Van den Bogaard JH, Heijnen HJ, Rops RH, Cools AR, Van Rossum JM 1976. Separation of inhibiting and stimulating effects of morphine on self-stimulation behavior by intracerebral microinjections. Eur. J. Pharmacol. 36:443–46
    [Google Scholar]
  24. Budney AJ, Hughes JR. 2006. The cannabis withdrawal syndrome. Curr. Opin. Psychiatry 19:233–38
    [Google Scholar]
  25. Cagniard B, Balsam PD, Brunner D, Zhuang X 2006. Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology 31:1362–70
    [Google Scholar]
  26. Campbell BA, Sheffield FD. 1953. Relation of random activity to food deprivation. J. Comp. Physiol. Psychol. 46:320–22
    [Google Scholar]
  27. Carelli RM, Deadwyler SA. 1994. A comparison of nucleus accumbens neuronal firing patterns during cocaine self-administration and water reinforcement in rats. J. Neurosci. 14:7735–46
    [Google Scholar]
  28. Champtiaux N, Changeux JP. 2004. Knockout and knockin mice to investigate the role of nicotinic receptors in the central nervous system. Prog. Brain Res. 145:235–51
    [Google Scholar]
  29. Chen J, Paredes W, Lowinson JH, Gardner EL 1990. Δ9-tetrahydrocannabinol enhances presynaptic dopamine efflux in medial prefrontal cortex. Eur. J. Pharmacol. 190:259–62
    [Google Scholar]
  30. Chen JP, Paredes W, Gardner EL 1991. Chronic treatment with clozapine selectively decreases basal dopamine release in nucleus accumbens but not in caudate putamen as measured by in vivo brain microdialysis: further evidence for depolarization block. Neurosci. Lett. 122:127–31
    [Google Scholar]
  31. Chiodo LA, Caggiula AR, Antelman SM, Lineberry CG 1979. Reciprocal influences of activating and immobilizing stimuli on the activity of nigrostriatal dopamine neurons. Brain Res 176:385–90
    [Google Scholar]
  32. Chong TT, Bonnelle V, Manohar S, Veromann KR, Muhammed K et al. 2015. Dopamine enhances willingness to exert effort for reward in Parkinson's disease. Cortex 69:40–46
    [Google Scholar]
  33. Clark L, Stokes PR, Wu K, Michalczuk R, Benecke A et al. 2012. Striatal dopamine D2/D3 receptor binding in pathological gambling is correlated with mood-related impulsivity. NeuroImage 63:40–46
    [Google Scholar]
  34. Cohen A, Ettenberg A. 2007. Motivational effects of nicotine as measured in a runway model of drug self-administration. Behav. Pharmacol. 18:265–71
    [Google Scholar]
  35. Cooper BR, Breese GR, Grant LD, Howard JL 1973. Effects of 6-hydroxydopamine treatments on active avoidance responding: evidence for involvement of brain dopamine. J. Pharmacol. Exp. Ther. 185:358–70
    [Google Scholar]
  36. Corre J, van Zessen R, Loureiro M, Patriarchi T, Tian L et al. 2018. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. eLife 7:e39945
    [Google Scholar]
  37. Correa M, Carlson BB, Wisniecki A, Salamone JD 2002. Nucleus accumbens dopamine and work requirements on interval schedules. Behav. Brain Res. 137:179–87
    [Google Scholar]
  38. Corrigall WA, Franklin KBJ, Coen KM, Clarke P 1992. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 107:285–89
    [Google Scholar]
  39. Costenla AR, Cunha RA, de Mendonca A 2010. Caffeine, adenosine receptors, and synaptic plasticity. J. Alzheimer's Dis. 20:Suppl. 1S25–34
    [Google Scholar]
  40. Cragg SJ, Rice ME. 2004. DAncing past the DAT at a DA synapse. Trends Neurosci 27:270–77
    [Google Scholar]
  41. Craig W. 1918. Appetites and aversions as constituents of instincts. Biol. Bull. 34:91–107
    [Google Scholar]
  42. Creed M, Ntamati NR, Chandra R, Lobo MK, Luscher C 2016. Convergence of reinforcing and anhedonic cocaine effects in the ventral pallidum. Neuron 92:214–26
    [Google Scholar]
  43. Cui G, Jun SB, Jin X, Pham MD, Vogel SS et al. 2013. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238–42
    [Google Scholar]
  44. Curran HV, Freeman TP, Mokrysz C, Lewis DA, Morgan CJ, Parsons LH 2016. Keep off the grass? Cannabis, cognition and addiction. Nat. Rev. Neurosci. 17:293–306
    [Google Scholar]
  45. Daberkow DP, Brown HD, Bunner KD, Kraniotis SA, Doellman MA et al. 2013. Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals. J. Neurosci. 33:452–63
    [Google Scholar]
  46. Danjo T, Yoshimi K, Funabiki K, Yawata S, Nakanishi S 2014. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens. PNAS 111:6455–60
    [Google Scholar]
  47. Davis MI, Crittenden JR, Feng AY, Kupferschmidt DA, Naydenov A et al. 2018. The cannabinoid-1 receptor is abundantly expressed in striatal striosomes and striosome-dendron bouquets of the substantia nigra. PLOS ONE 13:e0191436
    [Google Scholar]
  48. de Jong JW, Afjei SA, Pollak Dorocic I, Peck JR, Liu C et al. 2018. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron 101:133–51.E7
    [Google Scholar]
  49. de Wit H, Wise RA 1977. Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine. Can. J. Psychol. 31:195–203
    [Google Scholar]
  50. Deneau G, Yanagita T, Seevers MH 1969. Self-administration of psychoactive substances by the monkey. Psychopharmacologia 16:30–48
    [Google Scholar]
  51. Denenberg VH, Kim DS, Palmiter RD 2004. The role of dopamine in learning, memory, and performance of a water escape task. Behav. Brain Res. 148:73–78
    [Google Scholar]
  52. Deroche-Gamonet V, Belin D, Piazza PV 2004. Evidence for addiction-like behavior in the rat. Science 305:1014–17
    [Google Scholar]
  53. Devine DP, Leone P, Pocock D, Wise RA 1993. Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies. J. Pharmacol. Exp. Ther. 266:1236–46
    [Google Scholar]
  54. Devine DP, Wise RA. 1994. Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. J. Neurosci. 14:1978–84
    [Google Scholar]
  55. Di Chiara G, Imperato A 1986. Preferential stimulation of dopamine release in the nucleus accumbens by opiates, alcohol, and barbiturates: studies with transcerebral dialysis in freely moving rats. Ann. N.Y. Acad. Sci. 473:367–81
    [Google Scholar]
  56. Di Chiara G, Imperato A 1988. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. PNAS 85:5274–78
    [Google Scholar]
  57. Diana M, Melis M, Gessa GL 1998. Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. Eur. J. Neurosci. 10:2825–30
    [Google Scholar]
  58. Donny EC, Caggiula AR, Knopf S, Brown C 1995. Nicotine self-administration in rats. Psychopharmacology 122:390–94
    [Google Scholar]
  59. Doyon WM, Thomas AM, Ostroumov A, Dong Y, Dani JA 2013. Potential substrates for nicotine and alcohol interactions: a focus on the mesocorticolimbic dopamine system. Biochem. Pharmacol. 86:1181–93
    [Google Scholar]
  60. Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD 2010. Influence of phasic and tonic dopamine release on receptor activation. J. Neurosci. 30:14273–83
    [Google Scholar]
  61. Engel JA, Jerlhag E. 2014. Role of appetite-regulating peptides in the pathophysiology of addiction: implications for pharmacotherapy. CNS Drugs 28:875–86
    [Google Scholar]
  62. Ericson M, Blomqvist O, Engel JA, Soderpalm B 1998. Voluntary ethanol intake in the rat and the associated accumbal dopamine overflow are blocked by ventral tegmental mecamylamine. Eur. J. Pharmacol. 358:189–96
    [Google Scholar]
  63. Essig CF. 1966. Barbiturate withdrawal in white rats. Int. J. Neuropharmacol. 5:105–7
    [Google Scholar]
  64. Ettenberg A, Pettit HO, Bloom FE, Koob GF 1982. Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology 78:204–9
    [Google Scholar]
  65. Ettenberg A, Raven MA, Danluck DA, Necessary BD 1999. Evidence for opponent-process actions of intravenous cocaine. Pharmacol. Biochem. Behav. 64:507–12
    [Google Scholar]
  66. Fehr C, Yakushev I, Hohmann N, Buchholz HG, Landvogt C et al. 2008. Association of low striatal dopamine D2 receptor availability with nicotine dependence similar to that seen with other drugs of abuse. Am. J. Psychiatry 165:507–14
    [Google Scholar]
  67. Ferre S. 2016. Mechanisms of the psychostimulant effects of caffeine: implications for substance use disorders. Psychopharmacology 233:1963–79
    [Google Scholar]
  68. Ferre S, Quiroz C, Woods AS, Cunha R, Popoli P et al. 2008. An update on adenosine A2A-dopamine D2 receptor interactions: implications for the function of G protein-coupled receptors. Curr. Pharm. Des. 14:1468–74
    [Google Scholar]
  69. Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG 2003. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964:107–15
    [Google Scholar]
  70. Fiorillo CD, Tobler PN, Schultz W 2003. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299:1898–902
    [Google Scholar]
  71. Floresco SB, West AR, Ash B, Moore H, Grace AA 2003. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 6:968–73
    [Google Scholar]
  72. Foltin RW, Brady JV, Fischman MW 1986. Behavioral analysis of marijuana effects on food intake in humans. Pharmacol. Biochem. Behav. 25:577–82
    [Google Scholar]
  73. Fox ME, Wightman RM. 2017. Contrasting regulation of catecholamine neurotransmission in the behaving brain: pharmacological insights from an electrochemical perspective. Pharmacol. Rev. 69:12–32
    [Google Scholar]
  74. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE 1999. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 51:83–133
    [Google Scholar]
  75. French ED, Dillon K, Wu X 1997. Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport 8:649–52
    [Google Scholar]
  76. Freund TF, Katona I, Piomelli D 2003. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 83:1017–66
    [Google Scholar]
  77. Fu Y, Matta SG, Gao W, Sharp BM 2000. Local α-bungarotoxin-sensitive nicotinic receptors in the nucleus accumbens modulate nicotine-stimulated dopamine secretion in vivo. Neuroscience 101:369–75
    [Google Scholar]
  78. Fudala PJ, Iwamoto ET. 1987. Conditioned aversion after delay place conditioning with nicotine. Psychopharmacology 92:376–81
    [Google Scholar]
  79. Fudala PJ, Iwamoto ET. 1990. Conditioned aversion after delay place conditioning with amphetamine. Pharmacol. Biochem. Behav. 35:89–92
    [Google Scholar]
  80. Fulton S, Pissios P, Manchon RP, Stiles L, Frank L et al. 2006. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51:811–22
    [Google Scholar]
  81. Garcia C, Palomo-Garo C, Gomez-Galvez Y, Fernandez-Ruiz J 2016. Cannabinoid-dopamine interactions in the physiology and physiopathology of the basal ganglia. Br. J. Pharmacol. 173:2069–79
    [Google Scholar]
  82. Gardner EL, Lowinson JH. 1991. Marijuana's interaction with brain reward systems: update 1991. Pharmacol. Biochem. Behav. 40:571–80
    [Google Scholar]
  83. Gerfen CR, Surmeier DJ. 2011. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34:441–66
    [Google Scholar]
  84. Gonon FG. 1988. Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 24:19–28
    [Google Scholar]
  85. Gough B, Pereira FC, Fontes Ribeiro CA, Ali SF, Binienda ZK 2014. Propentophylline increases striatal dopamine release but dampens methamphetamine-induced dopamine dynamics: a microdialysis study. Neurochem. Int. 76:109–13
    [Google Scholar]
  86. Grace AA. 1991. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24
    [Google Scholar]
  87. Grace AA, Bunney BS. 1984a. The control of firing pattern in nigral dopamine neurons: burst firing. J. Neurosci. 4:2877–90
    [Google Scholar]
  88. Grace AA, Bunney BS. 1984b. The control of firing pattern in nigral dopamine neurons: single spike firing. J. Neurosci. 4:2866–76
    [Google Scholar]
  89. Grenhoff J, Aston-Jones G, Svensson TH 1986. Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiol. Scand. 128:351–58
    [Google Scholar]
  90. Griffiths RR, Juliano LM, Chausmer AL 2003. Caffeine pharmacology and clinical effects. Princ. Addict. Med. 3:193–224
    [Google Scholar]
  91. Griffiths RR, Lukas SE, Bradford LE, Brady JV, Snell JD 1981. Self-injection of barbiturates and benzodiazepines in baboons. Psychopharmacology 75:101–9
    [Google Scholar]
  92. Grigson PS, Twining RC. 2002. Cocaine-induced suppression of saccharin intake: a model of drug-induced devaluation of natural rewards. Behav. Neurosci. 116:321–33
    [Google Scholar]
  93. Hajnal A, Smith GP, Norgren R 2004. Oral sucrose stimulation increases accumbens dopamine in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286:R31–37
    [Google Scholar]
  94. Hamid AA, Pettibone JR, Mabrouk OS, Hetrick VL, Schmidt R et al. 2016. Mesolimbic dopamine signals the value of work. Nat. Neurosci. 19:117–26
    [Google Scholar]
  95. Haney M, Miczek KA. 1994. Ultrasounds emitted by female rats during agonistic interactions: effects of morphine and naltrexone. Psychopharmacology 114:441–48
    [Google Scholar]
  96. Hawes SL, Salinas AG, Lovinger DM, Blackwell KT 2017. Long-term plasticity of corticostriatal synapses is modulated by pathway-specific co-release of opioids through κ-opioid receptors. J. Physiol. 595:5637–52
    [Google Scholar]
  97. Hebb DO. 1949. The Organization of Behavior New York: Wiley
    [Google Scholar]
  98. Heien ML, Johnson MA, Wightman RM 2004. Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal. Chem. 76:5697–704
    [Google Scholar]
  99. Henschen CW, Palmiter RD, Darvas M 2013. Restoration of dopamine signaling to the dorsal striatum is sufficient for aspects of active maternal behavior in female mice. Endocrinology 154:4316–27
    [Google Scholar]
  100. Herman BH, Panksepp J. 1978. Effects of morphine and naloxone on separation distress and approach attachment: evidence for opiate mediation of social affect. Pharmacol. Biochem. Behav. 9:213–20
    [Google Scholar]
  101. Hernandez L, Hoebel BG. 1988. Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiol. Behav. 44:599–606
    [Google Scholar]
  102. Heusner CL, Hnasko TS, Szczypka MS, Liu Y, During MJ, Palmiter RD 2003. Viral restoration of dopamine to the nucleus accumbens is sufficient to induce a locomotor response to amphetamine. Brain Res 980:266–74
    [Google Scholar]
  103. Horvitz JC. 2000. Mesolimbocortical and nigrostriatal dopamine responses to salient non-rewards. Neuroscience 96:651–56
    [Google Scholar]
  104. Hsu TM, McCutcheon JE, Roitman MF 2018. Parallels and overlap: the integration of homeostatic signals by mesolimbic dopamine neurons. Front. Psychiatry 9:410
    [Google Scholar]
  105. Ikemoto S, Kohl RR, McBride WJ 1997. GABAA receptor blockade in the anterior ventral tegmental area increases extracellular levels of dopamine in the nucleus accumbens of rats. J. Neurochem. 69:137–43
    [Google Scholar]
  106. Ikemoto S, Panksepp J. 1996. Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. Behav. Neurosci. 110:331–45
    [Google Scholar]
  107. Ikemoto S, Qin M, Liu ZH 2006. Primary reinforcing effects of nicotine are triggered from multiple regions both inside and outside the ventral tegmental area. J. Neurosci. 26:723–30
    [Google Scholar]
  108. Ilango A, Kesner AJ, Keller KL, Stuber GD, Bonci A, Ikemoto S 2014. Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion. J. Neurosci. 34:817–22
    [Google Scholar]
  109. Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ 2000. Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J. Neurosci. 20:7489–95
    [Google Scholar]
  110. Ito R, Dalley JW, Robbins TW, Everitt BJ 2002. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of drug-associated cue. J. Neurosci. 22:6247–53
    [Google Scholar]
  111. Jerlhag E, Egecioglu E, Dickson SL, Engel JA 2011. Glutamatergic regulation of ghrelin-induced activation of the mesolimbic dopamine system. Addict. Biol. 16:82–91
    [Google Scholar]
  112. Jhou TC, Good CH, Rowley CS, Xu SP, Wang H et al. 2013. Cocaine drives aversive conditioning via delayed activation of dopamine-responsive habenular and midbrain pathways. J. Neurosci. 33:7501–12
    [Google Scholar]
  113. Jhou TC, Xu SP, Lee MR, Gallen CL, Ikemoto S 2012. Mapping of reinforcing and analgesic effects of the mu opioid agonist endomorphin-1 in the ventral midbrain of the rat. Psychopharmacology 224:303–12
    [Google Scholar]
  114. Johnson PM, Kenny PJ. 2010. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 13:635–41
    [Google Scholar]
  115. Johnson SW, North RA. 1992. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12:483–88
    [Google Scholar]
  116. Jones IW, Bolam JP, Wonnacott S 2001. Presynaptic localisation of the nicotinic acetylcholine receptor β2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones. J. Comp. Neurol. 439:235–47
    [Google Scholar]
  117. Jones RT. 1984. The pharmacology of cocaine. Cocaine: Pharmacology, Effects, and Treatment of Abuse J Grabowski 34–53 Washington, DC: US Gov. Print. Off.
    [Google Scholar]
  118. Jones SR, Gainetdinov RR, Wightman RM, Caron MG 1998. Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J. Neurosci. 18:1979–86
    [Google Scholar]
  119. Kalant H. 1977. Comparative aspects of tolerance to, and dependence on, alchohol, barbiturates, and opiates. Alcohol Intoxication and Withdrawal MM Gross 169–86 New York: Plenum
    [Google Scholar]
  120. Keefe KA, Salamone JD, Zigmond MJ, Stricker EM 1989. Paradoxical kinesia in Parkinsonism is not caused by dopamine release. Studies in an animal model. Arch. Neurol. 46:1070–75
    [Google Scholar]
  121. Kirkham TC. 2005. Endocannabinoids in the regulation of appetite and body weight. Behav. Pharmacol. 16:297–313
    [Google Scholar]
  122. Koob GF. 1999. Corticotropin-releasing factor, norepinephrine, and stress. Biol. Psychiatry 46:1167–80
    [Google Scholar]
  123. Kravitz AV, Tye LD, Kreitzer AC 2012. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15:816–18
    [Google Scholar]
  124. Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW 2015. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat. Neurosci. 18:1230–32
    [Google Scholar]
  125. Lammel S, Ion DI, Roeper J, Malenka RC 2011. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70:855–62
    [Google Scholar]
  126. Laverty R, Taylor KM. 1970. Effects of intraventricular 2,4,5-trihydroxyphenylethylamine (6-hydroxydopamine) on rat behaviour and brain catecholamine metabolism. Br. J. Pharmacol. 40:836–46
    [Google Scholar]
  127. Leinninger GM, Jo YH, Leshan RL, Louis GW, Yang H et al. 2009. Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metab 10:89–98
    [Google Scholar]
  128. Leshner AI. 1997. Addiction is a brain disease, and it matters. Science 278:45–47
    [Google Scholar]
  129. Liang NC, Hajnal A, Norgren R 2006. Sham feeding corn oil increases accumbens dopamine in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291:R1236–39
    [Google Scholar]
  130. Liu C, Kershberg L, Wang J, Schneeberger S, Kaeser PS 2018. Dopamine secretion is mediated by sparse active zone-like release sites. Cell 172:706–18.e15
    [Google Scholar]
  131. Liu ZH, Ikemoto S. 2007. The midbrain raphe nuclei mediate primary reinforcement via GABAA receptors. Eur. J. Neurosci. 25:735–43
    [Google Scholar]
  132. Liu ZH, Shin R, Ikemoto S 2008. Dual role of medial A10 dopamine neurons in affective encoding. Neuropsychopharmacology 33:3010–20
    [Google Scholar]
  133. Ljungberg T, Apicella P, Schultz W 1992. Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol. 67:145–63
    [Google Scholar]
  134. Lodge DJ, Grace AA. 2006. The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. PNAS 103:5167–72
    [Google Scholar]
  135. Lupica CR, Riegel AC. 2005. Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology 48:1105–16
    [Google Scholar]
  136. Lüscher C, Malenka RC. 2011. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69:650–63
    [Google Scholar]
  137. Manzanares J, Cabanero D, Puente N, Garcia-Gutierrez MS, Grandes P, Maldonado R 2018. Role of the endocannabinoid system in drug addiction. Biochem. Pharmacol. 157:108–21
    [Google Scholar]
  138. Marshall JF, Teitelbaum P. 1974. Further analysis of sensory inattention following lateral hypothalamic damage in rats. J. Comp. Physiol. Psychol. 86:375–95
    [Google Scholar]
  139. Marshall JF, Turner BH, Teitelbaum P 1971. Sensory neglect produced by lateral hypothalamic damage. Science 174:523–25
    [Google Scholar]
  140. Mateo Y, Johnson KA, Covey DP, Atwood BK, Wang HL et al. 2017. Endocannabinoid actions on cortical terminals orchestrate local modulation of dopamine release in the nucleus accumbens. Neuron 96:1112–26.e5
    [Google Scholar]
  141. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI 1990. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–64
    [Google Scholar]
  142. Mazzoni P, Hristova A, Krakauer JW 2007. Why don't we move faster? Parkinson's disease, movement vigor, and implicit motivation. J. Neurosci. 27:7105–16
    [Google Scholar]
  143. McBride WJ, Lovinger DM, Machu T, Thielen RJ, Rodd ZA et al. 2004. Serotonin-3 receptors in the actions of alcohol, alcohol reinforcement, and alcoholism. Alcohol. Clin. Exp. Res. 28:257–67
    [Google Scholar]
  144. McCutcheon JE, Ebner SR, Loriaux AL, Roitman MF 2012. Encoding of aversion by dopamine and the nucleus accumbens. Front. Neurosci. 6:137
    [Google Scholar]
  145. McDonald RJ, White NM. 1993. A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav. Neurosci. 107:3–22
    [Google Scholar]
  146. McGehee DS, Role LW. 1995. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu. Rev. Physiol. 57:521–46
    [Google Scholar]
  147. McGregor A, Baker G, Roberts DC 1994. Effect of 6-hydroxydopamine lesions of the amygdala on intravenous cocaine self-administration under a progressive ratio schedule of reinforcement. Brain Res 646:273–78
    [Google Scholar]
  148. McGregor A, Baker G, Roberts DC 1996. Effect of 6-hydroxydopamine lesions of the medial prefrontal cortex on intravenous cocaine self-administration under a progressive ratio schedule of reinforcement. Pharmacol. Biochem. Behav. 53:5–9
    [Google Scholar]
  149. Menegas W, Akiti K, Amo R, Uchida N, Watabe-Uchida M 2018. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci. 21:1421–30
    [Google Scholar]
  150. Meredith SE, Juliano LM, Hughes JR, Griffiths RR 2013. Caffeine use disorder: a comprehensive review and research agenda. J. Caffeine Res. 3:114–30
    [Google Scholar]
  151. Mifsud J-C, Hernandez L, Hoebel BG 1989. Nicotine infused into the nucleus accumbens increases synaptic dopamine as measured by in vivo microdialysis. Brain Res 478:365–67
    [Google Scholar]
  152. Mileykovskiy B, Morales M. 2011. Duration of inhibition of ventral tegmental area dopamine neurons encodes a level of conditioned fear. J. Neurosci. 31:7471–76
    [Google Scholar]
  153. Miller AD, Forster GL, Yeomans JS, Blaha CD 2005. Midbrain muscarinic receptors modulate morphine-induced accumbal and striatal dopamine efflux in the rat. Neuroscience 136:531–38
    [Google Scholar]
  154. Moore TJ, Glenmullen J, Mattison DR 2014. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs. JAMA Intern. Med. 174:1930–33
    [Google Scholar]
  155. Nader MA, Morgan D, Gage HD, Nader SH, Calhoun TL et al. 2006. PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat. Neurosci. 9:1050–56
    [Google Scholar]
  156. Nesbitt KM, Jaquins-Gerstl A, Skoda EM, Wipf P, Michael AC 2013. Pharmacological mitigation of tissue damage during brain microdialysis. Anal. Chem. 85:8173–79
    [Google Scholar]
  157. Nestler EJ. 2013. Cellular basis of memory for addiction. Dialog Clin. Neurosci. 15:431–43
    [Google Scholar]
  158. Ng Cheong Ton JM, Gerhardt GA, Friedemann M, Etgen A, Rose GM et al. 1988. The effects of Δ9-tetrahydrocannabinol on potassium-evoked release of dopamine in the rat caudate nucleus: an in vivo electrochemical and in vivo dialysis study. Brain Res 451:59–68
    [Google Scholar]
  159. O'Brien DP, White FJ. 1987. Inhibition of non-dopamine cells in the ventral tegmental area by benzodiazepines: relationship to A10 dopamine cell activity. Eur. J. Pharmacol. 142:343–54
    [Google Scholar]
  160. Ogawa SK, Watabe-Uchida M. 2017. Organization of dopamine and serotonin system: anatomical and functional mapping of monosynaptic inputs using rabies virus. Pharmacol. Biochem. Behav. 9:9–22
    [Google Scholar]
  161. Okada M, Kiryu K, Kawata Y, Mizuno K, Wada K et al. 1997. Determination of the effects of caffeine and carbamazepine on striatal dopamine release by in vivo microdialysis. Eur. J. Pharmacol. 321:181–88
    [Google Scholar]
  162. Okada M, Mizuno K, Kaneko S 1996. Adenosine A1 and A2 receptors modulate extracellular dopamine levels in rat striatum. Neurosci. Lett. 212:53–56
    [Google Scholar]
  163. Oleson EB, Cheer JF. 2012. A brain on cannabinoids: the role of dopamine release in reward seeking. Cold Spring Harb. Perspect. Med. 2:a012229
    [Google Scholar]
  164. Owesson-White CA, Roitman MF, Sombers LA, Belle AM, Keithley RB et al. 2012. Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens. J. Neurochem. 121:252–62
    [Google Scholar]
  165. Palmiter RD. 2008. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann. N.Y. Acad. Sci. 1129:35–46
    [Google Scholar]
  166. Parker JG, Zweifel LS, Clark JJ, Evans SB, Phillips PE, Palmiter RD 2010. Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning. PNAS 107:13491–96
    [Google Scholar]
  167. Parsons LH, Justice JB. 1992. Extracellular concentration and in vivo recovery of dopamine in the nucleus accumbens using microdialysis. J. Neurochem. 58:212–18
    [Google Scholar]
  168. Pavlov IP. 1927. Conditioned Reflexes Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  169. Pecina S, Berridge KC. 2005. Hedonic hot spot in nucleus accumbens shell: Where do μ-opioids cause increased hedonic impact of sweetness. ? J. Neurosci. 25:11777–86
    [Google Scholar]
  170. Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM 2003. Subsecond dopamine release promotes cocaine seeking. Nature 422:614–18
    [Google Scholar]
  171. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM et al. 1998. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–77
    [Google Scholar]
  172. Pickens R, Harris WC. 1968. Self-administration of d-amphetamine by rats. Psychopharmacologia 12:158–63
    [Google Scholar]
  173. Potenza MN, Balodis IM, Franco CA, Bullock S, Xu J et al. 2013. Neurobiological considerations in understanding behavioral treatments for pathological gambling. Psychol. Addict. Behav. 27:380–92
    [Google Scholar]
  174. Ranaldi R, Pocock D, Zereik R, Wise RA 1999. Dopamine fluctuations in the nucleus accumbens during maintenance, extinction, and reinstatement of intravenous d-amphetamine self-administration. J. Neurosci. 19:4102–9
    [Google Scholar]
  175. Reuben M, Clarke PB. 2000. Nicotine-evoked [3H]5-hydroxytryptamine release from rat striatal synaptosomes. Neuropharmacology 39:290–99
    [Google Scholar]
  176. Reynolds JN, Hyland BI, Wickens JR 2001. A cellular mechanism of reward-related learning. Nature 413:67–70
    [Google Scholar]
  177. Rezvani AH, Sexton HG, Johnson J, Wells C, Gordon K, Levin ED 2013. Effects of caffeine on alcohol consumption and nicotine self-administration in rats. Alcohol Clin. Exp. Res. 37:1609–17
    [Google Scholar]
  178. Rice ME, Cragg SJ. 2004. Nicotine amplifies reward-related dopamine signals in striatum. Nat. Neurosci. 7:583–84
    [Google Scholar]
  179. Rice ME, Cragg SJ. 2008. Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res. Rev. 58:303–13
    [Google Scholar]
  180. Richfield EK, Penney JB, Young AB 1989. Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30:767–77
    [Google Scholar]
  181. Riegel AC, Lupica CR. 2004. Independent presynaptic and postsynaptic mechanisms regulate endocannabinoid signaling at multiple synapses in the ventral tegmental area. J. Neurosci. 24:11070–78
    [Google Scholar]
  182. Robbins SJ, Ehrman RN, Childress AR, Cornish JW, O'Brien CP 2000. Mood state and recent cocaine use are not associated with levels of cocaine cue reactivity. Drug Alcohol Depend 59:33–42
    [Google Scholar]
  183. Roberts DCS, Corcoran ME, Fibiger HC 1977. On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol. Biochem. Behav. 6:615–20
    [Google Scholar]
  184. Robinson DL, Howard EC, McConnell S, Gonzales RA, Wightman RM 2009. Disparity between tonic and phasic ethanol-induced dopamine increases in the nucleus accumbens of rats. Alcohol. Clin. Exper. Res. 33:1187–96
    [Google Scholar]
  185. Robinson DL, Phillips PE, Budygin EA, Trafton BJ, Garris PA, Wightman RM 2001. Sub-second changes in accumbal dopamine during sexual behavior in male rats. Neuroreport 12:2549–52
    [Google Scholar]
  186. Roop RG, Hollander JA, Carelli RM 2002. Accumbens activity during a multiple schedule for water and sucrose reinforcement in rats. Synapse 43:223–26
    [Google Scholar]
  187. Saal D, Dong Y, Bonci A, Malenka RC 2003. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37:577–82
    [Google Scholar]
  188. Salamone JD, Correa M, Farrar A, Mingote SM 2007. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461–82
    [Google Scholar]
  189. Salminen O, Murphy KL, McIntosh JM, Drago J, Marks MJ et al. 2004. Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol. Pharmacol. 65:1526–35
    [Google Scholar]
  190. Sam PM, Justice JB Jr. 1996. Effect of general microdialysis-induced depletion on extracellular dopamine. Anal. Chem. 68:724–28
    [Google Scholar]
  191. Scardochio T, Trujillo-Pisanty I, Conover K, Shizgal P, Clarke PB 2015. The effects of electrical and optical stimulation of midbrain dopaminergic neurons on rat 50-kHz ultrasonic vocalizations. Front. Behav. Neurosci. 9:331
    [Google Scholar]
  192. Schelp SA, Brodnik ZD, Rakowski DR, Pultorak KJ, Sambells AT et al. 2018. Diazepam concurrently increases the frequency and decreases the amplitude of transient dopamine release events in the nucleus accumbens. J. Pharmacol. Exp. Ther. 364:145–55
    [Google Scholar]
  193. Schrantee A, Vaclavu L, Heijtel DF, Caan MW, Gsell W et al. 2015. Dopaminergic system dysfunction in recreational dexamphetamine users. Neuropsychopharmacology 40:1172–80
    [Google Scholar]
  194. Schultz W. 1986. Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. J. Neurophysiol. 56:1439–61
    [Google Scholar]
  195. Schultz W. 1997. Dopamine neurons and their role in reward mechanisms. Curr. Opin. Neurobiol. 7:191–97
    [Google Scholar]
  196. Schultz W, Apicella P, Ljungberg T 1993. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 13:900–13
    [Google Scholar]
  197. Sheppard AB, Gross SC, Pavelka SA, Hall MJ, Palmatier MI 2012. Caffeine increases the motivation to obtain non-drug reinforcers in rats. Drug Alcohol Depend 124:216–22
    [Google Scholar]
  198. Sinha R. 2008. Chronic stress, drug use, and vulnerability to addiction. Ann. N.Y. Acad. Sci. 1141:105–30
    [Google Scholar]
  199. Sinha R, Fox HC, Hong KA, Bergquist K, Bhagwagar Z, Siedlarz KM 2009. Enhanced negative emotion and alcohol craving, and altered physiological responses following stress and cue exposure in alcohol dependent individuals. Neuropsychopharmacology 34:1198–208
    [Google Scholar]
  200. Smith TT, Rupprecht LE, Cwalina SN, Onimus MJ, Murphy SE et al. 2016. Effects of monoamine oxidase inhibition on the reinforcing properties of low-dose nicotine. Neuropsychopharmacology 41:2335–43
    [Google Scholar]
  201. Smith-Roe SL, Kelley AE. 2000. Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J. Neurosci. 20:7737–42
    [Google Scholar]
  202. Söderpalm B, Lidö HH, Ericson M 2017. The glycine receptor—a functionally important primary brain target of ethanol. Alcohol Clin. Exp. Res. 41:1816–30
    [Google Scholar]
  203. Sotak BN, Hnasko TS, Robinson S, Kremer EJ, Palmiter RD 2005. Dysregulation of dopamine signaling in the dorsal striatum inhibits feeding. Brain Res 1061:88–96
    [Google Scholar]
  204. Sperlagh B, Windisch K, Ando RD, Sylvester Vizi E 2009. Neurochemical evidence that stimulation of CB1 cannabinoid receptors on GABAergic nerve terminals activates the dopaminergic reward system by increasing dopamine release in the rat nucleus accumbens. Neurochem. Int. 54:452–57
    [Google Scholar]
  205. Spiller KJ, Bi GH, He Y, Galaj E, Gardner EL, Xi ZX 2019. Cannabinoid CB1 and CB2 receptor mechanisms underlie cannabis reward and aversion in rats. Br. J. Pharmacol. 176:1268–81
    [Google Scholar]
  206. Steinberg EE, Boivin JR, Saunders BT, Witten IB, Deisseroth K, Janak PH 2014. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens. PLOS ONE 9:e94771
    [Google Scholar]
  207. Steinfels GF, Heym J, Strecker RE, Jacobs BL 1983. Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Res 258:217–28
    [Google Scholar]
  208. Strecker RE, Jacobs BL. 1985. Substantia nigra dopaminergic unit activity in behaving cats: effect of arousal on spontaneous discharge and sensory evoked activity. Brain Res 361:339–50
    [Google Scholar]
  209. Stricker EM, Zigmond MJ. 1976. Recovery of function after damage to central catecholamine-containing neurons: a neurochemical model for the lateral hypothalamic syndrome. Progress in Psychobiology and Physiological Psychology JM Sprague, AN Epstein 121–88 New York: Academic
    [Google Scholar]
  210. Stuber GD, Roitman MF, Phillips PE, Carelli RM, Wightman RM 2005. Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology 30:853–63
    [Google Scholar]
  211. Sugita S, Johnson SW, North RA 1992. Synaptic inputs to GABAA and GABAB receptors originate from discrete afferent neurons. Neurosci. Lett. 134:207–11
    [Google Scholar]
  212. Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A 1995. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J. Neurosci. 15:4102–8
    [Google Scholar]
  213. Szczypka MS, Kwok K, Brot MD, Marck BT, Matsumoto AM et al. 2001. Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 30:819–28
    [Google Scholar]
  214. Szczypka MS, Rainey MA, Kim DS, Alaynick WA, Marck BT et al. 1999. Feeding behavior in dopamine-deficient mice. PNAS 96:12138–43
    [Google Scholar]
  215. Tecuapetla F, Jin X, Lima SQ, Costa RM 2016. Complementary contributions of striatal projection pathways to action initiation and execution. Cell 166:703–15
    [Google Scholar]
  216. Thanos PK, Kim R, Delis F, Rocco MJ, Cho J, Volkow ND 2017. Effects of chronic methamphetamine on psychomotor and cognitive functions and dopamine signaling in the brain. Behav. Brain Res. 320:282–90
    [Google Scholar]
  217. Tung AS, Yaksh TL. 1982. In vivo evidence for multiple opiate receptors mediating analgesia in the rat spinal cord. Brain Res 247:75–83
    [Google Scholar]
  218. Twining RC, Wheeler DS, Ebben AL, Jacobsen AJ, Robble MA et al. 2015. Aversive stimuli drive drug seeking in a state of low dopamine tone. Biol. Psychiatry 77:895–902
    [Google Scholar]
  219. Ungerstedt U. 1971. Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand. 367:95–122
    [Google Scholar]
  220. van de Giessen E, Weinstein JJ, Cassidy CM, Haney M, Dong Z et al. 2017. Deficits in striatal dopamine release in cannabis dependence. Mol. Psychiatry 22:68–75
    [Google Scholar]
  221. van der Kooij MA, Hollis F, Lozano L, Zalachoras I, Abad S et al. 2018. Diazepam actions in the VTA enhance social dominance and mitochondrial function in the nucleus accumbens by activation of dopamine D1 receptors. Mol. Psychiatry 23:569–78
    [Google Scholar]
  222. Vander Weele CM, Porter-Stransky KA, Mabrouk OS, Lovic V, Singer BF et al. 2014. Rapid dopamine transmission within the nucleus accumbens: dramatic difference between morphine and oxycodone delivery. Eur. J. Neurosci. 40:3041–54
    [Google Scholar]
  223. Vanderschuren LJ, Everitt BJ. 2004. Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305:1017–19
    [Google Scholar]
  224. Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS et al. 2001. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am. J. Psychiatry 158:2015–21
    [Google Scholar]
  225. Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J et al. 1993. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14:169–77
    [Google Scholar]
  226. Volkow ND, Hitzemann R, Wang GJ, Fowler JS, Wolf AP et al. 1992. Long-term frontal brain metabolic changes in cocaine abusers. Synapse 11:184–90
    [Google Scholar]
  227. Volkow ND, Wang GJ, Logan J, Alexoff D, Fowler JS et al. 2015. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. Transl. Psychiatry 5:e549
    [Google Scholar]
  228. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J et al. 2007. Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J. Neurosci. 27:12700–6
    [Google Scholar]
  229. Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK et al. 2008. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. NeuroImage 42:1537–43
    [Google Scholar]
  230. Volkow ND, Wiers CE, Shokri-Kojori E, Tomasi D, Wang GJ, Baler R 2017. Neurochemical and metabolic effects of acute and chronic alcohol in the human brain: studies with positron emission tomography. Neuropharmacology 122:175–88
    [Google Scholar]
  231. Wang B, Shaham Y, Zitzman D, Azari S, Wise RA, You A-B 2005. Cocaine experience establishes control of midbrain dopamine glutamate and dopamine by corticotropin-releasing factor: a role in stress-induced relapse to drug seeking. J. Neurosci. 25:5389–96
    [Google Scholar]
  232. Wang GJ, Volkow ND, Fowler JS, Logan J, Abumrad NN et al. 1997. Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuropsychopharmacology 16:174–82
    [Google Scholar]
  233. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT et al. 2001. Brain dopamine and obesity. Lancet 357:354–57
    [Google Scholar]
  234. Wang HL, Zhang S, Qi J, Wang H, Cachope R et al. 2019. Dorsal raphe dual serotonin-glutamate neurons drive reward by establishing excitatory synapses on VTA mesoaccumbens dopamine neurons. Cell Rep 26:1128–42.e7
    [Google Scholar]
  235. Wardle MC, Treadway MT, Mayo LM, Zald DH, de Wit H 2011. Amping up effort: effects of d-amphetamine on human effort-based decision-making. J. Neurosci. 31:16597–602
    [Google Scholar]
  236. Weiss F, Hurd YL, Ungerstedt U, Markou A, Plotsky PM, Koob GF 1992. Neurochemical correlates of cocaine and ethanol self-administration. Ann. N.Y. Acad. Sci. 654:220–41
    [Google Scholar]
  237. Wenzel JM, Su ZI, Shelton K, Dominguez HM, von Furstenberg VA, Ettenberg A 2013. The dopamine antagonist cis-flupenthixol blocks the expression of the conditioned positive but not the negative effects of cocaine in rats. Pharmacol. Biochem. Behav. 114–15:90–96
    [Google Scholar]
  238. Westerink BHC, Damsma G, Rollema H, De Vries JB, Horn AS 1987a. Scope and limitations of in vivo brain dialysis: a comparison of its application to various transmitter systems. Life Sci 41:1763–76
    [Google Scholar]
  239. Westerink BHC, Tuntler J, Damsma G, Rollema H, De Vries JB 1987b. The use of tetrodotoxin for the characterization of drug-enhanced dopamine release in conscious rats studied by brain dialysis. Naunyn-Schmiedeberg's Arch. Pharmacol. 336:502–7
    [Google Scholar]
  240. Wheeler DS, Robble MA, Hebron EM, Dupont MJ, Ebben AL, Wheeler RA 2015. Drug predictive cues activate aversion-sensitive striatal neurons that encode drug seeking. J. Neurosci. 35:7215–25
    [Google Scholar]
  241. Wheeler RA, Aragona BJ, Fuhrmann KA, Jones JL, Day JJ et al. 2011. Cocaine cues drive opposing context-dependent shifts in reward processing and emotional state. Biol. Psychiatry 69:1067–74
    [Google Scholar]
  242. Wheeler RA, Twining RC, Jones JL, Slater JM, Grigson PS, Carelli RM 2008. Behavioral and electrophysiological indices of negative affect predict cocaine self-administration. Neuron 57:774–85
    [Google Scholar]
  243. Wickens JR, Reynolds JN, Hyland BI 2003. Neural mechanisms of reward-related motor learning. Curr. Opin. Neurobiol. 13:685–90
    [Google Scholar]
  244. Wiers CE, Cabrera EA, Tomasi D, Wong CT, Demiral SB et al. 2017. Striatal dopamine D2/D3 receptor availability varies across smoking status. Neuropsychopharmacology 42:2325–32
    [Google Scholar]
  245. Windels F, Kiyatkin EA. 2003. Modulatory action of acetylcholine on striatal neurons: microiontophoretic study in awake, unrestrained rats. Eur. J. Neurosci. 17:613–22
    [Google Scholar]
  246. Wise RA. 1987. Sensorimotor modulation and the variable action pattern (VAP): toward a noncircular definition of drive and motivation. Psychobiology 15:7–20
    [Google Scholar]
  247. Wise RA, Bozarth MA. 1987. A psychomotor stimulant theory of addiction. Psychol. Rev. 94:469–92
    [Google Scholar]
  248. Wise RA, Koob GF. 2014. The development and maintenance of drug addiction. Neuropsychopharmacology 39:254–62
    [Google Scholar]
  249. Wise RA, Leone P, Rivest R, Leeb K 1995a. Elevations of nucleus accumbens dopamine and DOPAC levels during intravenous heroin self-administration. Synapse 21:140–48
    [Google Scholar]
  250. Wise RA, Newton P, Leeb K, Burnette B, Pocock P, Justice JB 1995b. Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology 120:10–20
    [Google Scholar]
  251. Wise RA, Yokel RA, DeWit H 1976. Both positive reinforcement and conditioned aversion from amphetamine and from apomorphine in rats. Science 191:1273–75
    [Google Scholar]
  252. Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA et al. 2011. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72:721–33
    [Google Scholar]
  253. Wyvell CL, Berridge KC. 2000. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J. Neurosci. 20:8122–30
    [Google Scholar]
  254. Wyvell CL, Berridge KC. 2001. Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J. Neurosci. 21:7831–40
    [Google Scholar]
  255. Xiu J, Zhang Q, Zhou T, Zhou TT, Chen Y, Hu H 2014. Visualizing an emotional valence map in the limbic forebrain by TAI-FISH. Nat. Neurosci. 17:1552–59
    [Google Scholar]
  256. Yagishita S, Hayashi-Takagi A, Ellis-Davies GC, Urakubo H, Ishii S, Kasai H 2014. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345:1616–20
    [Google Scholar]
  257. Yin HH, Knowlton BJ, Balleine BW 2004. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 19:181–89
    [Google Scholar]
  258. Yoder KK, Albrecht DS, Dzemidzic M, Normandin MD, Federici LM et al. 2016. Differences in IV alcohol-induced dopamine release in the ventral striatum of social drinkers and nontreatment-seeking alcoholics. Drug Alcohol Depend 160:163–69
    [Google Scholar]
  259. Yohn SE, Errante EE, Rosenbloom-Snow A, Somerville M, Rowland M et al. 2016. Blockade of uptake for dopamine, but not norepinephrine or 5-HT, increases selection of high effort instrumental activity: implications for treatment of effort-related motivational symptoms in psychopathology. Neuropharmacology 109:270–80
    [Google Scholar]
  260. Yokel RA, Wise RA. 1975. Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward. Science 187:547–49
    [Google Scholar]
  261. You ZB, Wang B, Gardner EL, Wise RA 2018. Cocaine and cocaine expectancy increase growth hormone, ghrelin, GLP-1, IGF-1, adiponectin, and corticosterone while decreasing leptin, insulin, GIP, and prolactin. Pharmacol. Biochem. Behav. 176:53–56
    [Google Scholar]
  262. You ZB, Wang B, Liu Q-R, Wu Y, Otvos L, Wise RA 2016. Reciprocal inhibitory interactions between the reward-related effects of leptin and cocaine. Neuropsychopharmacology 41:1024–33
    [Google Scholar]
  263. Yung KK, Smith AD, Levey AI, Bolam JP 1996. Synaptic connections between spiny neurons of the direct and indirect pathways in the neostriatum of the rat: evidence from dopamine receptor and neuropeptide immunostaining. Eur. J. Neurosci. 8:861–69
    [Google Scholar]
  264. Zangen A, Ikemoto S, Zadina JE, Wise RA 2002. Rewarding and psychomotor stimulant effects of endomorphin-1: anterior-posterior differences within the ventral tegmental area and lack of effect in nucleus accumbens. J. Neurosci. 22:7225–33
    [Google Scholar]
  265. Zhang H, Sulzer D. 2004. Frequency-dependent modulation of dopamine release by nicotine. Nat. Neurosci. 7:581–82
    [Google Scholar]
  266. Zhou QY, Palmiter RD. 1995. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83:1197–209
    [Google Scholar]
  267. Zhu Y, Wienecke CF, Nachtrab G, Chen X 2016. A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 530:219–22
    [Google Scholar]
  268. Zorrilla EP, Logrip ML, Koob GF 2014. Corticotropin releasing factor: a key role in the neurobiology of addiction. Front. Neuroendocrinol. 35:234–44
    [Google Scholar]
/content/journals/10.1146/annurev-psych-010418-103337
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error