1932

Abstract

The human brain rapidly develops during the final weeks of gestation and in the first two years following birth. Diffusion tensor imaging (DTI) is a unique in vivo imaging technique that allows three-dimensional visualization of the white matter anatomy in the brain. It has been considered to be a valuable tool for studying brain development in early life. In this review, we first introduce the DTI technique. We then review DTI findings on white matter development at the fetal stage and in infancy as well as DTI applications for understanding neurocognitive development and brain abnormalities in preterm infants. Finally, we discuss limitations of DTI and potential valuable imaging techniques for studying white matter myelination.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-010814-015340
2015-01-03
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/psych/66/1/annurev-psych-010814-015340.html?itemId=/content/journals/10.1146/annurev-psych-010814-015340&mimeType=html&fmt=ahah

Literature Cited

  1. Aeby A, Liu Y, De Tiege X, Denolin V, David P. et al. 2009. Maturation of thalamic radiations between 34 and 41 weeks' gestation: a combined voxel-based study and probabilistic tractography with diffusion tensor imaging. Am. J. Neuroradiol. 30:1780–86 [Google Scholar]
  2. Anjari M, Srinivasan L, Allsop JM, Hajnal JV, Rutherford MA. et al. 2007. Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. NeuroImage 35:1021–27 [Google Scholar]
  3. Armstrong CL, Traipe E, Hunter JV, Haselgrove JC, Ledakis GE. et al. 2004. Age-related, regional, hemispheric, and medial-lateral differences in myelin integrity in vivo in the normal adult brain. Am. J. Neuroradiol. 25:977–84 [Google Scholar]
  4. Barkovich AJ. 2000. Concepts of myelin and myelination in neuroradiology. Am. J. Neuroradiol. 21:1099–109 [Google Scholar]
  5. Barmpoutis A, Hwang MS, Howland D, Forder JR, Vemuri BC. 2009. Regularized positive-definite fourth order tensor field estimation from DW-MRI. NeuroImage 45:S153–62 [Google Scholar]
  6. Bartzokis G, Lu PH, Tingus K, Mendez MF, Richard A. et al. 2010. Lifespan trajectory of myelin integrity and maximum motor speed. Neurobiol. Aging 31:1554–62 [Google Scholar]
  7. Beaulieu C. 2002. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 15:435–55 [Google Scholar]
  8. Beaulieu C, Allen PS. 1994. Determinants of anisotropic water diffusion in nerves. Magn. Reson. Med. 31:394–400 [Google Scholar]
  9. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. 2007. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?. NeuroImage 34:144–55 [Google Scholar]
  10. Berman JI, Mukherjee P, Partridge SC, Miller SP, Ferriero DM. et al. 2005. Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. NeuroImage 27:862–71 [Google Scholar]
  11. Brody BA, Kinney HC, Kloman AS, Gilles FH. 1987. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J. Neuropathol. Exp. Neurol. 46:283–301 [Google Scholar]
  12. Broekman B, Wang C, Li Y, Rifkin-Graboi A, Saw SM. et al. 2014. Gestational age at birth and neonatal brain microstructure in term-born infants: a birth cohort study. PLOS ONE In press [Google Scholar]
  13. Caldu X, Narberhaus A, Junque C, Gimenez M, Vendrell P. et al. 2006. Corpus callosum size and neuropsychologic impairment in adolescents who were born preterm. J. Child Neurol. 21:406–10 [Google Scholar]
  14. Cascio CJ, Gerig G, Piven J. 2007. Diffusion tensor imaging: application to the study of the developing brain. J. Am. Acad. Child Adolesc. Psychiatry 46:213–23 [Google Scholar]
  15. Chen JT, Collins DL, Freedman MS, Atkins HL, Arnold DL. 2005. Local magnetization transfer ratio signal inhomogeneity is related to subsequent change in MTR in lesions and normal-appearing white-matter of multiple sclerosis patients. NeuroImage 25:1272–78 [Google Scholar]
  16. Colombo J, Mitchell DW. 2009. Infant visual habituation. Neurobiol. Learn. Mem. 92:225–34 [Google Scholar]
  17. Colombo J, Mitchell DW, Coldren JT, Atwater JD. 1990. Discrimination learning during the first year: stimulus and positional cues. J. Exp. Psychol.: Learn. Mem. Cogn. 16:98–109 [Google Scholar]
  18. Colombo J, Mitchell DW, O'Brien M, Horowitz FD. 1987. The stability of visual habituation during the first year of life. Child Dev. 58:474–87 [Google Scholar]
  19. Constable RT, Ment LR, Vohr BR, Kesler SR, Fulbright RK. et al. 2008. Prematurely born children demonstrate white matter microstructural differences at 12 years of age, relative to term control subjects: an investigation of group and gender effects. Pediatrics 121:306–16 [Google Scholar]
  20. Counsell SJ, Edwards AD, Chew AT, Anjari M, Dyet LE. et al. 2008. Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain 131:3201–8 [Google Scholar]
  21. Courtney SM, Ungerleider LG, Keil K, Haxby JV. 1997. Transient and sustained activity in a distributed neural system for human working memory. Nature 386:608–11 [Google Scholar]
  22. De Bruine FT, Van Wezel-Meijler G, Leijser LM, Steggerda SJ, Van Den Berg-Huysmans AA. et al. 2013. Tractography of white-matter tracts in very preterm infants: a 2-year follow-up study. Dev. Med. Child Neurol. 55:427–33 [Google Scholar]
  23. Deoni SC, Dean DC 3rd, O'Muircheartaigh J, Dirks H, Jerskey BA. 2012. Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping. NeuroImage 63:1038–53 [Google Scholar]
  24. Deoni SC, Mercure E, Blasi A, Gasston D, Thomson A. et al. 2011. Mapping infant brain myelination with magnetic resonance imaging. J. Neurosci. 31:784–91The first quantitative study of myelination in healthy infants using a new myelin-specific MRI technique, multicomponent relaxometry. [Google Scholar]
  25. Deoni SC, Rutt BK, Arun T, Puerpaoli C, Jones DK. 2008. Gleaning multicomponent T1 and T2 information from steady-state imaging data. Magn. Reson. Med. 60:1372–87 [Google Scholar]
  26. Descoteaux M, Angelino E, Fitzgibbons S, Deriche R. 2007. Regularized, fast, and robust analytical Q-ball imaging. Magn. Reson. Med. 58:497–510 [Google Scholar]
  27. Drobyshevsky A, Song SK, Gamkrelidze G, Wyrwicz AM, Derrick M. et al. 2005. Developmental changes in diffusion anisotropy coincide with immature oligodendrocyte progression and maturation of compound action potential. J. Neurosci. 25:5988–97 [Google Scholar]
  28. Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Hüppi PS, Hertz-Pannier L. 2014. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276C48–71Insightful review of MRI techniques and their use in understanding white matter myelination. [Google Scholar]
  29. Dubois J, Dehaene-Lambertz G, Perrin M, Mangin JF, Cointepas Y. et al. 2008. Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging. Hum. Brain Mapp. 29:14–27A white matter maturation model based on the time course of mean diffusivity and anisotropy changes in early life. [Google Scholar]
  30. Dubois J, Hertz-Pannier L, Dehaene-Lambertz G, Cointepas Y. Bihan D. , Le 2006. Assessment of the early organization and maturation of infants' cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. NeuroImage 30:1121–32 [Google Scholar]
  31. Dudink J, Lequin M, van Pul C, Buijs J, Conneman N. et al. 2007. Fractional anisotropy in white matter tracts of very-low-birth-weight infants. Pediatr. Radiol. 37:1216–23 [Google Scholar]
  32. Eikenes L, Lohaugen GC, Brubakk AM, Skranes J, Haberg AK. 2011. Young adults born preterm with very low birth weight demonstrate widespread white matter alterations on brain DTI. NeuroImage 54:1774–85 [Google Scholar]
  33. Feldman HM, Lee ES, Yeatman JD, Yeom KW. 2012. Language and reading skills in school-aged children and adolescents born preterm are associated with white matter properties on diffusion tensor imaging. Neuropsychologia 50:3348–62 [Google Scholar]
  34. Flechsig P. 1920. Anatomie des menschlichen Gehirns und Ruckenmarks auf myelogenetischer Grundlage Liepzig: G. Thieme [Google Scholar]
  35. Frank LR. 2002. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med. 47:1083–99 [Google Scholar]
  36. Ghosh A, Descoteaux M, Deriche R. 2008. Riemannian framework for estimating symmetric positive definite 4th order diffusion tensors. Med. Image Comput. Comput. Assist. Interv. 11:858–65 [Google Scholar]
  37. Giacomini PS, Levesque IR, Ribeiro L, Narayanan S, Francis SJ. et al. 2009. Measuring demyelination and remyelination in acute multiple sclerosis lesion voxels. Arch. Neurol. 66:375–81 [Google Scholar]
  38. Gilles F, Shankle W, Dooling E. 1983. Myelinated Tracts: Growth Patterns Boston: John Wright PSG [Google Scholar]
  39. Gilmore JH, Lin W, Corouge I, Vetsa YS, Smith JK. et al. 2007. Early postnatal development of corpus callosum and corticospinal white matter assessed with quantitative tractography. Am. J. Neuroradiol. 28:1789–95 [Google Scholar]
  40. Glasser MF, Van Essen DC. 2011. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31:11597–616Pioneering research that demonstrates patterns of cortical myelination in early life using the ratio of T1-/T2-weighted image intensity. [Google Scholar]
  41. Gong G, He Y, Concha L, Lebel C, Gross DW. et al. 2009. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb. Cortex 19:524–36 [Google Scholar]
  42. Guillery RW. 2005. Is postnatal neocortical maturation hierarchical?. Trends Neurosci. 28:512–17 [Google Scholar]
  43. Hasegawa T, Yamada K, Morimoto M, Morioka S, Tozawa T. et al. 2011. Development of corpus callosum in preterm infants is affected by the prematurity: in vivo assessment of diffusion tensor imaging at term-equivalent age. Pediatr. Res. 69:249–54 [Google Scholar]
  44. Hermoye L, Saint-Martin C, Cosnard G, Lee SK, Kim J. et al. 2006. Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. NeuroImage 29:493–504 [Google Scholar]
  45. Hess CP, Mukherjee P, Han ET, Xu D, Vigneron DB. 2006. Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn. Reson. Med. 56:104–17 [Google Scholar]
  46. Hoon AH Jr, Stashinko EE, Nagae LM, Lin DD, Keller J. et al. 2009. Sensory and motor deficits in children with cerebral palsy born preterm correlate with diffusion tensor imaging abnormalities in thalamocortical pathways. Dev. Med. Child Neurol. 51:697–704 [Google Scholar]
  47. Huang H, Xue R, Zhang J, Ren T, Richards LJ. et al. 2009. Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J. Neurosci. 29:4263–73 [Google Scholar]
  48. Huang H, Zhang J, Wakana S, Zhang W, Ren T. et al. 2006. White and gray matter development in human fetal, newborn and pediatric brains. NeuroImage 33:27–38An ex vivo and in vivo DTI study on the appearance of major white matter tracts in fetus, newborn, and pediatric brains. [Google Scholar]
  49. Hunt RW, Neil JJ, Coleman LT, Kean MJ, Inder TE. 2004. Apparent diffusion coefficient in the posterior limb of the internal capsule predicts outcome after perinatal asphyxia. Pediatrics 114:999–1003 [Google Scholar]
  50. Hüppi PS, Dubois J. 2006. Diffusion tensor imaging of brain development. Semin. Fetal Neonatal Med. 11:489–97 [Google Scholar]
  51. Hüppi PS, Maier SE, Peled S, Zientara GP, Barnes PD. et al. 1998. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr. Res. 44:584–90The earliest DTI study on white matter anatomy in newborns. [Google Scholar]
  52. Hüppi PS, Murphy B, Maier SE, Zientara GP, Inder TE. et al. 2001. Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics 107:455–60 [Google Scholar]
  53. Izawa J, Criscimagna-Hemminger SE, Shadmehr R. 2012. Cerebellar contributions to reach adaptation and learning sensory consequences of action. J. Neurosci. 32:4230–39 [Google Scholar]
  54. Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA. 1993. Spatial working memory in humans as revealed by PET. Nature 363:623–25 [Google Scholar]
  55. Kinney HC, Brody BA, Kloman AS, Gilles FH. 1988. Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J. Neuropathol. Exp. Neurol. 47:217–34 [Google Scholar]
  56. Klingberg T. 2006. Development of a superior frontal-intraparietal network for visuo-spatial working memory. Neuropsychologia 44:2171–77 [Google Scholar]
  57. Knaap MS, Valk J. 1990. MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 31:459–70 [Google Scholar]
  58. Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K. et al. 2008. A structural MRI study of human brain development from birth to 2 years. J. Neurosci. 28:12176–82 [Google Scholar]
  59. Kolasinski J, Takahashi E, Stevens AA, Benner T, Fischl B. et al. 2013. Radial and tangential neuronal migration pathways in the human fetal brain: anatomically distinct patterns of diffusion MRI coherence. NeuroImage 79:412–22An ex vivo structural MRI and DTI study on patterns of diffusion coherence associated with subcortical neuroproliferative structures in fetus brain. [Google Scholar]
  60. Kolind SH, Laule C, Vavasour IM, Li DK, Traboulsee AL. et al. 2008. Complementary information from multi-exponential T2 relaxation and diffusion tensor imaging reveals differences between multiple sclerosis lesions. NeuroImage 40:77–85 [Google Scholar]
  61. Kostovic I, Jovanov-Milosevic N. 2006. The development of cerebral connections during the first 20–45 weeks' gestation. Semin. Fetal Neonatal. Med. 11:415–22 [Google Scholar]
  62. Kroeker RM, Henkelman RM. 1986. Analysis of biological NMR relaxation data with continuous distributions of relaxation times. J. Magn. Reson. 69:218–35 [Google Scholar]
  63. Kuo LW, Chen JH, Wedeen VJ, Tseng WY. 2008. Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. NeuroImage 41:7–18 [Google Scholar]
  64. Kwon H, Reiss AL, Menon V. 2002. Neural basis of protracted developmental changes in visuo-spatial working memory. Proc. Natl. Acad. Sci. USA 99:13336–41 [Google Scholar]
  65. Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G. 2001. Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J. Magn. Reson. Imaging 13:313–17 [Google Scholar]
  66. Laule C, Kozlowski P, Leung E, Li DK, MacKay AL, Moore GR. 2008. Myelin water imaging of multiple sclerosis at 7 T: correlations with histopathology. NeuroImage 40:1575–80 [Google Scholar]
  67. Laule C, Leung E, Lis DK, Traboulsee AL, Paty DW. et al. 2006. Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult. Scler. 12:747–53 [Google Scholar]
  68. Law N, Bouffet E, Laughlin S, Laperriere N, Briere ME. et al. 2011. Cerebello-thalamo-cerebral connections in pediatric brain tumor patients: impact on working memory. NeuroImage 56:2238–48 [Google Scholar]
  69. Bihan D, Breton E. Le 1985. Imagerie de diffusion in-vivo par résonance. C. R. Acad. Sci. (Paris) 301:1109–12 [Google Scholar]
  70. Leergaard TB, White NS, de Crespigny A, Bolstad I, D'Arceuil H. et al. 2010. Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain. PLOS ONE 5e8595 [Google Scholar]
  71. Leutscher-Broekman B, Wang C, Rifkin-Graboi A, Chong Y-S, Kwek K. et al. 2014. Association between gestational age and neonatal brain microstructure. PLOS ONE In press [Google Scholar]
  72. Lobel U, Sedlacik J, Gullmar D, Kaiser WA, Reichenbach JR, Mentzel HJ. 2009. Diffusion tensor imaging: the normal evolution of ADC, RA, FA, and eigenvalues studied in multiple anatomical regions of the brain. Neuroradiology 51:253–63 [Google Scholar]
  73. MacKay AL, Vavasour IM, Rauscher A, Kolind SH, Madler B. et al. 2009. MR relaxation in multiple sclerosis. Neuroimaging Clin. N. Am. 19:1–26 [Google Scholar]
  74. Madler B, Drabycz SA, Kolind SH, Whittall KP, MacKay AL. 2008. Is diffusion anisotropy an accurate monitor of myelination? Correlation of multicomponent T2 relaxation and diffusion tensor anisotropy in human brain. Magn. Reson. Imaging 26:874–88 [Google Scholar]
  75. Mathew P, Pannek K, Snow P, D'Acunto MG, Guzzetta A. et al. 2013. Maturation of corpus callosum anterior midbody is associated with neonatal motor function in eight preterm-born infants. Neural Plast. 2013:359532 [Google Scholar]
  76. Menon RS, Rusinko MS, Allen PS. 1991. Multiexponential proton relaxation in model cellular systems. Magn. Reson. Med. 20:196–213 [Google Scholar]
  77. Miao X, Qi M, Cui S, Guan Y, Jia Z. et al. 2014. Assessing sequence and relationship of regional maturation in corpus callosum and internal capsule in preterm and term newborns by diffusion-tensor imaging. Int. J. Dev. Neurosci. 34C:42–47 [Google Scholar]
  78. Miller KL, Stagg CJ, Douaud G, Jbabdi S, Smith SM. et al. 2011. Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner. NeuroImage 57:167–81 [Google Scholar]
  79. Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J. et al. 2010. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63:1144–53 [Google Scholar]
  80. Moore GP, Lemyre B, Barrowman N, Daboval T. 2013. Neurodevelopmental outcomes at 4 to 8 years of children born at 22 to 25 weeks' gestational age: a meta-analysis. JAMA Pediatr. 167:967–74 [Google Scholar]
  81. Mullen KM, Vohr BR, Katz KH, Schneider KC, Lacadie C. et al. 2011. Preterm birth results in alterations in neural connectivity at age 16 years. NeuroImage 54:2563–70 [Google Scholar]
  82. Nagy Z, Westerberg H, Klingberg T. 2004. Maturation of white matter is associated with the development of cognitive functions during childhood. J. Cogn. Neurosci. 16:1227–33 [Google Scholar]
  83. Nagy Z, Westerberg H, Skare S, Andersson JL, Lilja A. et al. 2003. Preterm children have disturbances of white matter at 11 years of age as shown by diffusion tensor imaging. Pediatr. Res. 54:672–79 [Google Scholar]
  84. Narberhaus A, Segarra D, Caldu X, Gimenez M, Junque C. et al. 2007. Gestational age at preterm birth in relation to corpus callosum and general cognitive outcome in adolescents. J. Child Neurol. 22:761–65 [Google Scholar]
  85. Northam GB, Liégeois F, Tournier JD, Croft LJ, Johns PN. et al. 2012. Interhemispheric temporal lobe connectivity predicts language impairment in adolescents born preterm. Brain 135:3781–98 [Google Scholar]
  86. O'Muircheartaigh J, Dean DC 3rd, Ginestet CE, Walker L, Waskiewicz N. et al. 2014. White matter development and early cognition in babies and toddlers. Hum. Brain Mapp. 35:4475–87 [Google Scholar]
  87. Oishi K, Mori S, Donohue PK, Ernst T, Anderson L. et al. 2011. Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. NeuroImage 56:8–20Neonatal brain T1- and T2-weighted MRI and DTI atlases with comprehensive anatomical parcellation. [Google Scholar]
  88. Ozarslan E, Mareci TH. 2003. Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50:955–65 [Google Scholar]
  89. Padilla N, Junque C, Figueras F, Sanz-Cortes M, Bargallo N. et al. 2014. Differential vulnerability of gray matter and white matter to intrauterine growth restriction in preterm infants at 12 months corrected age. Brain Res. 15451–11 [Google Scholar]
  90. Parnavelas JG, Alifragis P, Nadarajah B. 2002. The origin and migration of cortical neurons. Prog. Brain Res. 136:73–80 [Google Scholar]
  91. Partridge SC, Mukherjee P, Henry RG, Miller SP, Berman JI. et al. 2004. Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. NeuroImage 22:1302–14 [Google Scholar]
  92. Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A. 2001. Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res. Bull. 54:255–66 [Google Scholar]
  93. Perenyi A, Amodio J, Katz JS, Stefanov DG. 2013. Clinical utility of corpus callosum measurements in head sonograms of preterm infants: a cohort study. BMJ Open 3e002499 [Google Scholar]
  94. Pogribna U, Yu X, Burson K, Zhou Y, Lasky RE. et al. 2013. Perinatal clinical antecedents of white matter microstructural abnormalities on diffusion tensor imaging in extremely preterm infants. PLOS ONE 8e72974 [Google Scholar]
  95. Prayer D, Barkovich AJ, Kirschner DA, Prayer LM, Roberts TP. et al. 2001. Visualization of nonstructural changes in early white matter development on diffusion-weighted MR images: evidence supporting premyelination anisotropy. Am. J. Neuroradiol. 22:1572–76 [Google Scholar]
  96. Provenzale JM, Liang L, DeLong D, White LE. 2007. Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year. Am. J. Roentgenol. 189:476–86 [Google Scholar]
  97. Pujol J, Soriano-Mas C, Ortiz H, Sebastian-Galles N, Losilla JM, Deus J. 2006. Myelination of language-related areas in the developing brain. Neurology 66:339–43 [Google Scholar]
  98. Rademaker KJ, Lam JN, Van Haastert IC, Uiterwaal CS, Lieftink AF. et al. 2004. Larger corpus callosum size with better motor performance in prematurely born children. Semin. Perinatol. 28:279–87 [Google Scholar]
  99. Ratnarajah N, Rifkin-Graboi A, Fortier MV, Chong YS, Kwek K. et al. 2013. Structural connectivity asymmetry in the neonatal brain. NeuroImage 75:187–94The first study to show asymmetry of brain structural networks in a large sample of normal neonates. [Google Scholar]
  100. Rose J, Butler EE, Lamont LE, Barnes PD, Atlas SW, Stevenson DK. 2009. Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children. Dev. Med. Child Neurol. 51:526–35 [Google Scholar]
  101. Saksena S, Husain N, Das V, Pradhan M, Trivedi R. et al. 2008. Diffusion tensor imaging in the developing human cerebellum with histologic correlation. Int. J. Dev. Neurosci. 26:705–11 [Google Scholar]
  102. Schmahmann JD, Pandya DN, Wang R, Dai G, D'Arceuil HE. et al. 2007. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–53 [Google Scholar]
  103. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH. 2004. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann. Neurol. 56:407–15 [Google Scholar]
  104. Serenius F, Kallen K, Blennow M, Ewald U, Fellman V. et al. 2013. Neurodevelopmental outcome in extremely preterm infants at 2.5 years after active perinatal care in Sweden. JAMA 309:1810–20 [Google Scholar]
  105. Shinohara T, Sasaki H, Morimatsu Y, Ishihara K. 1976. Thalamic lesions during the development period and their clinical correlation. Appl. Neurophysiol. 39:251–56 [Google Scholar]
  106. Short SJ, Elison JT, Goldman BD, Styner M, Gu H. et al. 2013. Associations between white matter microstructure and infants' working memory. NeuroImage 64:156–66 [Google Scholar]
  107. Sigalovsky IS, Fischl B, Melcher JR. 2006. Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differences. NeuroImage 32:1524–37 [Google Scholar]
  108. Skranes J, Vangberg TR, Kulseng S, Indredavik MS, Evensen KA. et al. 2007. Clinical findings and white matter abnormalities seen on diffusion tensor imaging in adolescents with very low birth weight. Brain 130:654–66 [Google Scholar]
  109. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. 2002. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17:1429–36 [Google Scholar]
  110. Staudt M, Krageloh-Mann I, Grodd W. 2000. [Normal myelination in childhood brains using MRI—a meta analysis.]. Rofo 172:802–11 [Google Scholar]
  111. Su P, Kuan CC, Kaga K, Sano M, Mima K. 2008. Myelination progression in language-correlated regions in brain of normal children determined by quantitative MRI assessment. Int. J. Pediatr. Otorhinolaryngol. 72:1751–63 [Google Scholar]
  112. Supekar K, Musen M, Menon V. 2009. Development of large-scale functional brain networks in children. PLOS Biol. 7:e1000157 [Google Scholar]
  113. Takahashi E, Folkerth RD, Galaburda AM, Grant PE. 2012. Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb. Cortex 22:455–64 [Google Scholar]
  114. Takenouchi T, Heier LA, Engel M, Perlman JM. 2010. Restricted diffusion in the corpus callosum in hypoxic-ischemic encephalopathy. Pediatr. Neurol. 43:190–96 [Google Scholar]
  115. Tam EW, Miller SP, Studholme C, Chau V, Glidden D. et al. 2011. Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth. J. Pediatr. 158:366–71 [Google Scholar]
  116. Thompson DK, Inder TE, Faggian N, Johnston L, Warfield SK. et al. 2011. Characterization of the corpus callosum in very preterm and full-term infants utilizing MRI. NeuroImage 55:479–90 [Google Scholar]
  117. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. 2002. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48:577–82 [Google Scholar]
  118. Tuch DS, Wedeen VJ, Dale AM, George JS, Belliveau JW. 2001. Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc. Natl. Acad. Sci. USA 98:11697–701 [Google Scholar]
  119. Ulfig N, Neudorfer F, Bohl J. 2000. Transient structures of the human fetal brain: subplate, thalamic reticular complex, ganglionic eminence. Histol. Histopathol. 15:771–90 [Google Scholar]
  120. Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE. et al. 2012. The Human Connectome Project: a data acquisition perspective. NeuroImage 62:2222–31 [Google Scholar]
  121. Vangberg TR, Skranes J, Dale AM, Martinussen M, Brubakk AM, Haraldseth O. 2006. Changes in white matter diffusion anisotropy in adolescents born prematurely. NeuroImage 32:1538–48 [Google Scholar]
  122. Vavasour IM, Laule C, Li DK, Traboulsee AL, MacKay AL. 2011. Is the magnetization transfer ratio a marker for myelin in multiple sclerosis?. J. Magn. Reson. Imaging 33:713–18 [Google Scholar]
  123. Volpe JJ. 2003. Cerebral white matter injury of the premature infant—more common than you think. Pediatrics 112:176–80 [Google Scholar]
  124. Volpe JJ. 2008. Neurology of the Newborn Philadelphia, PA: Saunders [Google Scholar]
  125. Wang S, Fan G, Xu K, Wang C. 2013. Potential of diffusion tensor MR imaging in the assessment of cognitive impairments in children with periventricular leukomalacia born preterm. Eur. J. Radiol. 82:158–64 [Google Scholar]
  126. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM. 2005. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54:1377–86 [Google Scholar]
  127. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY. et al. 2008. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage 41:1267–77 [Google Scholar]
  128. Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DK, Paty DW. 1997. In vivo measurement of T2 distributions and water contents in normal human brain. Magn. Reson. Med. 7:34–43 [Google Scholar]
  129. Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J. 1995. Identification of “premyelination” by diffusion-weighted MRI. J. Comput. Assist. Tomogr. 19:28–33 [Google Scholar]
  130. Wolff SD, Balaban RS. 1989. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn. Reson. Med. 10:135–44 [Google Scholar]
  131. Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. 2006. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N. Engl. J. Med. 355:685–94 [Google Scholar]
  132. Wozniak JR, Lim KO. 2006. Advances in white matter imaging: a review of in vivo magnetic resonance methodologies and their applicability to the study of development and aging. Neurosci. Biobehav. Rev. 30:762–74 [Google Scholar]
  133. Wu YC, Alexander AL. 2007. Hybrid diffusion imaging. NeuroImage 36:617–29 [Google Scholar]
  134. Yap PT, Fan Y, Chen Y, Gilmore JH, Lin W, Shen D. 2011. Development trends of white matter connectivity in the first years of life. PLOS ONE 6:e24678 [Google Scholar]
  135. Yokota Y, Gashghaei HT, Han C, Watson H, Campbell KJ, Anton ES. 2007. Radial glial dependent and independent dynamics of interneuronal migration in the developing cerebral cortex. PLOS ONE 2:e794 [Google Scholar]
  136. Yoshida S, Hayakawa K, Yamamoto A, Okano S, Kanda T. et al. 2010. Quantitative diffusion tensor tractography of the motor and sensory tract in children with cerebral palsy. Dev. Med. Child Neurol. 52:935–40 [Google Scholar]
  137. Yoshiura T, Higano S, Rubio A, Shrier DA, Kwok WE. et al. 2000. Heschl and superior temporal gyri: low signal intensity of the cortex on T2-weighted MR images of the normal brain. Radiology 214:217–21 [Google Scholar]
  138. Yung A, Poon G, Qiu DQ, Chu J, Lam B. et al. 2007. White matter volume and anisotropy in preterm children: a pilot study of neurocognitive correlates. Pediatr. Res. 61:732–36 [Google Scholar]
/content/journals/10.1146/annurev-psych-010814-015340
Loading
/content/journals/10.1146/annurev-psych-010814-015340
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error