1932

Abstract

The incentive-sensitization theory (IST) of addiction was first published in 1993, proposing that () brain mesolimbic dopamine systems mediate incentive motivation (“wanting”) for addictive drugs and other rewards, but not their hedonic impact (liking) when consumed; and () some individuals are vulnerable to drug-induced long-lasting sensitization of mesolimbic systems, which selectively amplifies their “wanting” for drugs without increasing their liking of the same drugs. Here we describe the origins of IST and evaluate its status 30 years on. We compare IST to other theories of addiction, including opponent-process theories, habit theories of addiction, and prefrontal cortical dysfunction theories of impaired impulse control. We also address critiques of IST that have been raised over the years, such as whether craving is important in addiction and whether addiction can ever be characterized as compulsive. Finally, we discuss several contemporary phenomena, including the potential role of incentive sensitization in behavioral addictions, the emergence of addiction-like dopamine dysregulation syndrome in medicated Parkinson's patients, the role of attentional capture and approach tendencies, and the role of uncertainty in incentive motivation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-011624-024031
2025-01-17
2025-02-16
Loading full text...

Full text loading...

/deliver/fulltext/psych/76/1/annurev-psych-011624-024031.html?itemId=/content/journals/10.1146/annurev-psych-011624-024031&mimeType=html&fmt=ahah

Literature Cited

  1. Agarwal K, Manza P, Leggio L, Livinski AA, Volkow ND, Joseph PV. 2021.. Sensory cue reactivity: sensitization in alcohol use disorder and obesity. . Neurosci. Biobehav. Rev. 124::32657
    [Crossref] [Google Scholar]
  2. Ahmed SH, Koob GF. 1998.. Transition from moderate to excessive drug intake: change in hedonic set point. . Science 282::298300
    [Crossref] [Google Scholar]
  3. Allain F, Minogianis EA, Roberts DC, Samaha AN. 2015.. How fast and how often: The pharmacokinetics of drug use are decisive in addiction. . Neurosci. Biobehav. Rev. 56::16679
    [Crossref] [Google Scholar]
  4. Alonso IP, O'Connor BM, Bryant KG, Mandalaywala RK, Espana RA. 2022.. Incubation of cocaine craving coincides with changes in dopamine terminal neurotransmission. . Addctn. Neurosci. 3::100029
    [Google Scholar]
  5. Anagnostaras SG, Schallert T, Robinson TE. 2002.. Memory processes governing amphetamine-induced psychomotor sensitization. . Neuropsychopharmacology 26::70315
    [Crossref] [Google Scholar]
  6. Annis HM, Graham JM. 1995.. Profile types on the inventory of drinking situations: implications for relapse prevention counseling. . Psychol. Addctn. Behav. 9::17682
    [Crossref] [Google Scholar]
  7. Anselme P, Robinson MJF. 2020.. From sign-tracking to attentional bias: implications for gambling and substance use disorders. . Prog. Neuropsychopharmacol. Biol. Psychiatry 99::109861
    [Crossref] [Google Scholar]
  8. Anselme P, Robinson MJF, Berridge KC. 2013.. Reward uncertainty enhances incentive salience attribution as sign-tracking. . Behav. Brain Res. 238::5361
    [Crossref] [Google Scholar]
  9. Ashok AH, Mizuno Y, Volkow ND, Howes OD. 2017.. Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: a systematic review and meta-analysis. . JAMA Psychiatry 74::51119
    [Crossref] [Google Scholar]
  10. Bach P, Vollstädt-Klein S, Kirsch M, Hoffmann S, Jorde A, et al. 2015.. Increased mesolimbic cue-reactivity in carriers of the mu-opioid-receptor gene OPRM1 A118G polymorphism predicts drinking outcome: a functional imaging study in alcohol dependent subjects. . Eur. Neuropsychopharmacol. 25::112835
    [Crossref] [Google Scholar]
  11. Badiani A, Belin D, Epstein D, Calu D, Shaham Y. 2011.. Opiate versus psychostimulant addiction: The differences do matter. . Nat. Rev. Neurosci. 12::685700
    [Crossref] [Google Scholar]
  12. Baicy K, London ED, Monterosso J, Wong ML, Delibasi T, et al. 2007.. Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. . PNAS 104::1827679
    [Crossref] [Google Scholar]
  13. Bartoletti M, Gaiardi M, Gubellini G, Bacchi A, Babbini M. 1983.. Long-term sensitization to the excitatory effects of morphine. a motility study in post-dependent rats. . Neuropharmacology 22::119396
    [Crossref] [Google Scholar]
  14. Baumgartner HM, Granillo M, Schulkin J, Berridge KC. 2022.. Corticotropin releasing factor (CRF) systems: promoting cocaine pursuit without distress via incentive motivation. . PLOS ONE 17::e0267345
    [Crossref] [Google Scholar]
  15. Bechara A. 2005.. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. . Nat. Neurosci. 8::145863
    [Crossref] [Google Scholar]
  16. Bechara A, Berridge KC, Bickel WK, Morón JA, Williams SB, Stein JS. 2019.. A neurobehavioral approach to addiction: implications for the opioid epidemic and the psychology of addiction. . Psychol. Sci. Public Interest 20::96127
    [Crossref] [Google Scholar]
  17. Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ. 2009.. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. . Behav. Brain Res. 199::89102
    [Crossref] [Google Scholar]
  18. Berridge KC. 2000.. Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. . Neurosci. Biobehav. Rev. 24::17398
    [Crossref] [Google Scholar]
  19. Berridge KC. 2021.. Comment on Vandaele and Ahmed: rethinking habits in addiction. . Neuropsychopharmacology 46::68788
    [Crossref] [Google Scholar]
  20. Berridge KC. 2022.. Is addiction a brain disease? The incentive-sensitization view. . In Evaluating the Brain Disease Model of Addiction, ed. N Heather, M Field, AC Moss, S Satel , pp. 7486. New York:: Routledge
    [Google Scholar]
  21. Berridge KC. 2023.. Separating desire from prediction of outcome value. . Trends Cogn. Sci. 27::93246
    [Crossref] [Google Scholar]
  22. Berridge KC, Robinson TE. 1998.. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?. Brain Res. Rev. 28::30969
    [Crossref] [Google Scholar]
  23. Berridge KC, Robinson TE. 2016.. Liking, wanting, and the incentive-sensitization theory of addiction. . Am. Psychol. 71::67079
    [Crossref] [Google Scholar]
  24. Berridge KC, Valenstein ES. 1991.. What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus?. Behav. Neurosci. 105::314
    [Crossref] [Google Scholar]
  25. Berridge KC, Venier IL, Robinson TE. 1989.. Taste reactivity analysis of 6-hydroxydopamine-induced aphagia: implications for arousal and anhedonia hypotheses of dopamine function. . Behav. Neurosci. 103::3645
    [Crossref] [Google Scholar]
  26. Blackburn JR, Phillips AG, Fibiger HC. 1987.. Dopamine and preparatory behavior: I. Effects of pimozide. . Behav. Neurosci. 101::35260
    [Crossref] [Google Scholar]
  27. Blum K, Cull JG, Braverman ER, Comings DE. 1996.. Reward deficiency syndrome. . Am. Sci. 84::13245
    [Google Scholar]
  28. Boffo M, Smits R, Salmon JP, Cowie ME, de Jong D, et al. 2018.. Luck, come here! Automatic approach tendencies toward gambling cues in moderate- to high-risk gamblers. . Addiction 113::28998
    [Crossref] [Google Scholar]
  29. Boileau I, Dagher A, Leyton M, Gunn RN, Baker GB, et al. 2006.. Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men. . Arch. Gen. Psychiatry 63::138695
    [Crossref] [Google Scholar]
  30. Boileau I, Payer D, Chugani B, Lobo DS, Houle S, et al. 2014.. In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [11C]-(+)-PHNO. . Mol. Psychiatry 19::130513
    [Crossref] [Google Scholar]
  31. Bollen Z, Masson N, Salvaggio S, D'Hondt F, Maurage P. 2020.. Craving is everything: an eye-tracking exploration of attentional bias in binge drinking. . J. Psychopharmacol. 34::63647
    [Crossref] [Google Scholar]
  32. Bollen Z, Pabst A, Masson N, Wiers RW, Field M, Maurage P. 2024.. Craving modulates attentional bias towards alcohol in severe alcohol use disorder: an eye-tracking study. . Addiction 119::10212
    [Crossref] [Google Scholar]
  33. Brauer LH, De Wit H. 1997.. High dose pimozide does not block amphetamine-induced euphoria in normal volunteers. . Pharmacol. Biochem. Behav. 56::26572
    [Crossref] [Google Scholar]
  34. Callesen MB, Scheel-Kruger J, Kringelbach ML, Moller A. 2013.. A systematic review of impulse control disorders in Parkinson's disease. . J. Parkinson's Dis. 3::10538
    [Crossref] [Google Scholar]
  35. Carr CC, Ferrario CR, Robinson TE. 2020.. Intermittent access cocaine self-administration produces psychomotor sensitization: effects of withdrawal, sex and cross-sensitization. . Psychopharmacology 237::1795812
    [Crossref] [Google Scholar]
  36. Casey KF, Benkelfat C, Cherkasova MV, Baker GB, Dagher A, Leyton M. 2014.. Reduced dopamine response to amphetamine in subjects at ultra-high risk for addiction. . Biol. Psychiatry 76::2330
    [Crossref] [Google Scholar]
  37. Childress AR, Ehrman RN, Wang Z, Li Y, Sciortino N, et al. 2008.. Prelude to passion: limbic activation by “unseen” drug and sexual cues. . PLOS ONE 3::e1506
    [Crossref] [Google Scholar]
  38. Colaizzi JM, Flagel SB, Gearhardt AN, Borowitz MA, Kuplicki R, et al. 2023.. The propensity to sign-track is associated with externalizing behavior and distinct patterns of reward-related brain activation in youth. . Sci. Rep. 13::4402
    [Crossref] [Google Scholar]
  39. Compton WM, Wargo EM, Volkow ND. 2022.. Neuropsychiatric model of addiction simplified. . Psychiatr. Clin. N. Am. 45::32134
    [Crossref] [Google Scholar]
  40. Corbit LH, Janak PH. 2007.. Inactivation of the lateral but not medial dorsal striatum eliminates the excitatory impact of Pavlovian stimuli on instrumental responding. . J. Neurosci. 27::1397781
    [Crossref] [Google Scholar]
  41. Corre J, van Zessen R, Loureiro M, Patriarchi T, Tian L, et al. 2018.. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. . eLife 7::e39945
    [Crossref] [Google Scholar]
  42. Corvol J-C, Artaud F, Cormier-Dequaire F, Rascol O, Durif F, et al. 2018.. Longitudinal analysis of impulse control disorders in Parkinson disease. . Neurology 91::e189201
    [Crossref] [Google Scholar]
  43. Cox SML, Benkelfat C, Dagher A, Delaney JS, Durand F, et al. 2009.. Striatal dopamine responses to intranasal cocaine self-administration in humans. . Biol. Psychiatry 65::84650
    [Crossref] [Google Scholar]
  44. Dalia AD, Norman MK, Tabet MR, Schlueter KT, Tsibulsky VL, Norman AB. 1998.. Transient amelioration of the sensitization of cocaine-induced behaviors in rats by the induction of tolerance. . Brain Res. 797::2934
    [Crossref] [Google Scholar]
  45. D'Amour-Horvat V, Cox SML, Dagher A, Kolivakis T, Jaworska N, Leyton M. 2022.. Cocaine cue-induced mesocorticolimbic activation in cocaine users: effects of personality traits, lifetime drug use, and acute stimulant ingestion. . Addctn. Biol. 27::e13094
    [Crossref] [Google Scholar]
  46. Dar R, Rosen-Korakin N, Shapira O, Gottlieb Y, Frenk H. 2010.. The craving to smoke in flight attendants: relations with smoking deprivation, anticipation of smoking, and actual smoking. . J. Abnorm. Psychol. 119::24853
    [Crossref] [Google Scholar]
  47. Darcey VL, Guo J, Chi M, Chung ST, Courville AB, et al. 2023.. Striatal dopamine tone is positively associated with body mass index in humans as determined by PET using dual dopamine type-2 receptor antagonist tracers. . medRxiv 2023.09.27.23296169
  48. de la Torre-Martinez R, Ketzef M, Silberberg G. 2023.. Ongoing movement controls sensory integration in the dorsolateral striatum. . Nat. Commun. 14::1004
    [Crossref] [Google Scholar]
  49. De Tommaso M, Turatto M. 2022.. Testing reward-cue attentional salience: attainment and dynamic changes. . Br. J. Psychol. 113::396411
    [Crossref] [Google Scholar]
  50. Devoto F, Zapparoli L, Bonandrini R, Berlingeri M, Ferrulli A, et al. 2018.. Hungry brains: a meta-analytical review of brain activation imaging studies on food perception and appetite in obese individuals. . Neurosci. Biobehav. Rev. 94::27185
    [Crossref] [Google Scholar]
  51. DiFeliceantonio AG, Berridge KC. 2016.. Dorsolateral neostriatum contribution to incentive salience: Opioid or dopamine stimulation makes one reward cue more motivationally attractive than another. . Eur. J. Neurosci. 43::120318
    [Crossref] [Google Scholar]
  52. Drew DS, Muhammed K, Baig F, Kelly M, Saleh Y, et al. 2020.. Dopamine and reward hypersensitivity in Parkinson's disease with impulse control disorder. . Brain 143::250218
    [Crossref] [Google Scholar]
  53. Elton A, Faulkner ML, Robinson DL, Boettiger CA. 2021.. Acute depletion of dopamine precursors in the human brain: effects on functional connectivity and alcohol attentional bias. . Neuropsychopharmacology 46::142131
    [Crossref] [Google Scholar]
  54. Engel L, Wolff AR, Blake M, Collins VL, Sinha S, Saunders BT. 2024.. Dopamine neurons drive spatiotemporally heterogeneous striatal dopamine signals during learning. . Curr. Biol. 34:3086101
    [Google Scholar]
  55. Epstein DH, Heilig M, Shaham Y. 2018.. Science-based actions can help address the opioid crisis. . Trends Pharmacol. Sci. 39::91116
    [Crossref] [Google Scholar]
  56. Evans AH, Lawrence AD, Cresswell SA, Katzenschlager R, Lees AJ. 2010.. Compulsive use of dopaminergic drug therapy in Parkinson's disease: reward and anti-reward. . Mov. Disord. 25::86776
    [Crossref] [Google Scholar]
  57. Evans AH, Pavese N, Lawrence AD, Tai YF, Appel S, et al. 2006.. Compulsive drug use linked to sensitized ventral striatal dopamine transmission. . Ann. Neurol. 59::85258
    [Crossref] [Google Scholar]
  58. Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW. 2008.. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. . Philos. Trans. R. Soc. B 363::312535
    [Crossref] [Google Scholar]
  59. Everitt BJ, Giuliano C, Belin D. 2018.. Addictive behaviour in experimental animals: prospects for translation. . Philos. Trans. R. Soc. B 373::20170027
    [Crossref] [Google Scholar]
  60. Everitt BJ, Robbins TW. 2016.. Drug addiction: updating actions to habits to compulsions ten years on. . Annu. Rev. Psychol. 67::2350
    [Crossref] [Google Scholar]
  61. Ferrario CR, Gorny G, Crombag HS, Li Y, Kolb B, Robinson TE. 2005.. Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use. . Biol. Psychiatry 58::75159
    [Crossref] [Google Scholar]
  62. Fibiger HC, Phillips AG. 1986.. Reward, motivation, cognition: psychobiology of mesotelencephalic systems. . In Handbook of Physiology:The Nervous System, ed. FE Bloom , pp. 64775. Bethesda, MD:: Am. Physiol. Soc.
    [Google Scholar]
  63. Field M, Cox WM. 2008.. Attentional bias in addictive behaviors: a review of its development, causes, and consequences. . Drug Alcohol Depend. 97::120
    [Crossref] [Google Scholar]
  64. File D, Bőthe B, File B, Demetrovics Z. 2022.. The role of impulsivity and reward deficiency in “liking” and “wanting” of potentially problematic behaviors and substance uses. . Front. Psychiatry 13::820836
    [Crossref] [Google Scholar]
  65. Fiorillo CD, Tobler PN, Schultz W. 2003.. Discrete coding of reward probability and uncertainty by dopamine neurons. . Science 299::1898902
    [Crossref] [Google Scholar]
  66. Fischman MW, Foltin RW. 1992.. Self-administration of cocaine by humans: a laboratory perspective. . In Cocaine: Scientific and Social Dimensions, ed. GR Bock, J Whelan , pp. 16580. Chichester, UK:: Wiley
    [Google Scholar]
  67. Flagel SB, Cameron CM, Pickup KN, Watson SJ, Akil H, Robinson TE. 2011.. A food predictive cue must be attributed with incentive salience for it to induce c-fos mRNA expression in cortico-striatal-thalamic brain regions. . Neuroscience 196::8096
    [Crossref] [Google Scholar]
  68. Fouyssac M, Pena-Oliver Y, Puaud M, Lim NTY, Giuliano C, et al. 2022.. Negative urgency exacerbates relapse to cocaine seeking after abstinence. . Biol. Psychiatry 91::105160
    [Crossref] [Google Scholar]
  69. Fraser KM, Pribut HJ, Janak PH, Keiflin R. 2023.. From prediction to action: dissociable roles of ventral tegmental area and substantia nigra dopamine neurons in instrumental reinforcement. . J. Neurosci. 43::3895908
    [Crossref] [Google Scholar]
  70. Frijda NH. 1987.. Emotion, cognitive structure, and action tendency. . Cogn. Emot. 1::11543
    [Crossref] [Google Scholar]
  71. Garofalo S, di Pellegrino G. 2015.. Individual differences in the influence of task-irrelevant Pavlovian cues on human behavior. . Front. Behav. Neurosci. 9::163
    [Crossref] [Google Scholar]
  72. Gearhardt AN, Yokum S, Orr PT, Stice E, Corbin WR, Brownell KD. 2011.. Neural correlates of food addiction. . Arch. Gen. Psychiatry 68::80816
    [Crossref] [Google Scholar]
  73. George O, Koob GF. 2017.. Individual differences in the neuropsychopathology of addiction. . Dialogues Clin. Neurosci. 19::21729
    [Crossref] [Google Scholar]
  74. Giuliano C, Belin D, Everitt BJ. 2019.. Compulsive alcohol seeking results from a failure to disengage dorsolateral striatal control over behavior. . J. Neurosci. 39::174454
    [Google Scholar]
  75. Glickman SE, Schiff BB. 1967.. A biological theory of reinforcement. . Psychol. Rev. 74::81109
    [Crossref] [Google Scholar]
  76. Gola M, Wordecha M, Sescousse G, Lew-Starowicz M, Kossowski B, et al. 2017.. Can pornography be addictive? An FMRI study of men seeking treatment for problematic pornography use. . Neuropsychopharmacology 42::202131
    [Crossref] [Google Scholar]
  77. Goldstein RZ, Craig AD, Bechara A, Garavan H, Childress AR, et al. 2009.. The neurocircuitry of impaired insight in drug addiction. . Trends Cogn. Sci. 13::37280
    [Crossref] [Google Scholar]
  78. Goldstein RZ, Volkow ND. 2011.. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. . Nat. Rev. Neurosci. 12::65269
    [Crossref] [Google Scholar]
  79. Gonzalez-Marin MDC, Coune F, Naassila M. 2020.. Vulnerability to ethanol sensitization predicts higher intake and motivation to self-administer ethanol: proof of the incentive salience sensitization theory?. Addctn. Biol. 25::e12833
    [Crossref] [Google Scholar]
  80. Grigutsch LA, Lewe G, Rothermund K, Koranyi N. 2019.. Implicit “wanting” without implicit “liking”: a test of incentive-sensitization-theory in the context of smoking addiction using the wanting-implicit-association-test (W-IAT). . J. Behav. Ther. Exp. Psychiatry 64::914
    [Crossref] [Google Scholar]
  81. Grill HJ, Norgren R. 1978.. The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. . Brain Res. 143::26379
    [Crossref] [Google Scholar]
  82. Grimm JW, Hope BT, Wise RA, Shaham Y. 2001.. Neuroadaptation: incubation of cocaine craving after withdrawal. . Nature 412::14142
    [Crossref] [Google Scholar]
  83. Guillory AM, Herrera SH, Baker LK, Bubula N, Forneris J, et al. 2022.. Conditioned inhibition of amphetamine sensitization. . Neurobiol. Learn. Mem. 192::107636
    [Crossref] [Google Scholar]
  84. Guthrie ER. 1935.. The Psychology of Learning. New York:: Harper
    [Google Scholar]
  85. Heather N. 2017.. Is the concept of compulsion useful in the explanation or description of addictive behaviour and experience?. Addctn. Behav. Rep. 6::1538
    [Google Scholar]
  86. Hickey C, Chelazzi L, Theeuwes J. 2010a.. Incentive salience in human visual attention. . J. Vis. 10::31
    [Crossref] [Google Scholar]
  87. Hickey C, Chelazzi L, Theeuwes J. 2010b.. Reward guides vision when it's your thing: trait reward-seeking in reward-mediated visual priming. . PLOS ONE 5::e14087
    [Crossref] [Google Scholar]
  88. Hogarth L. 2020.. Addiction is driven by excessive goal-directed drug choice under negative affect: translational critique of habit and compulsion theory. . Neuropsychopharmacology 45::72035
    [Crossref] [Google Scholar]
  89. Huang Y, Ceceli AO, Kronberg G, King S, Malaker P, et al. 2024.. Association of cortico-striatal engagement during cue reactivity, reappraisal, and savoring of drug and non-drug stimuli with craving in heroin addiction. . Am. J. Psychiatry 182::15365
    [Crossref] [Google Scholar]
  90. Ichikawa J. 1988.. Changes in behavior and central monoaminergic systems in the rat after repeated methamphetamine pretreatment: presynaptic regulatory mechanism. . Yakubutsu Seishin Kodo 8::389403
    [Google Scholar]
  91. James W. 1890.. Principles of Psychology. New York:: H. Holt & Co.
    [Google Scholar]
  92. Jangard S, Jayaram-Lindstrom N, Isacsson NH, Matheson GJ, Plaven-Sigray P, et al. 2023.. Striatal dopamine D2 receptor availability as a predictor of subsequent alcohol use in social drinkers. . Addiction 118::105361
    [Crossref] [Google Scholar]
  93. Jentsch JD, Taylor JR. 1999.. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. . Psychopharmacology 146::37390
    [Crossref] [Google Scholar]
  94. Johnson S, North R. 1992.. Opioids excite dopamine neurons by hyperpolarization of local interneurons. . J. Neurosci. 12::48388
    [Crossref] [Google Scholar]
  95. Kalivas PW, Stewart J. 1991.. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. . Brain Res. Rev. 16::22344
    [Crossref] [Google Scholar]
  96. Kapur S. 2003.. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. . Am. J. Psychiatry 160::1323
    [Crossref] [Google Scholar]
  97. Kawa AB, Allain F, Robinson TE, Samaha A-N. 2019.. The transition to cocaine addiction: the importance of pharmacokinetics for preclinical models. . Psychopharmacology 236::114557
    [Crossref] [Google Scholar]
  98. Keys A, Brožek J, Henschel A, Mickelsen O, Taylor HL, et al. 1950.. The Biology of Human Starvation. Minneapolis:: Univ. Minn. Press
    [Google Scholar]
  99. Kim H, Nanavaty N, Ahmed H, Mathur VA, Anderson BA. 2021.. Motivational salience guides attention to valuable and threatening stimuli: evidence from behavior and functional magnetic resonance imaging. . J. Cogn. Neurosci. 33::244060
    [Crossref] [Google Scholar]
  100. King AC, Vena A, Hasin DS, deWit H, O'Connor SJ, Cao D. 2021.. Subjective responses to alcohol in the development and maintenance of alcohol use disorder. . Am. J. Psychiatry 178::56071
    [Crossref] [Google Scholar]
  101. King AC, Vena A, Howe MM, Feather A, Cao D. 2022.. Haven't lost the positive feeling: a dose-response, oral alcohol challenge study in drinkers with alcohol use disorder. . Neuropsychopharmacology 47::1892900
    [Crossref] [Google Scholar]
  102. Kirschner M, Rabinowitz A, Singer N, Dagher A. 2020.. From apathy to addiction: insights from neurology and psychiatry. . Prog. Neuropsychopharmacol. Biol. Psychiatry 101::109926
    [Crossref] [Google Scholar]
  103. Koban L, Wager TD, Kober H. 2022.. A neuromarker for drug and food craving distinguishes drug users from non-users. . Nat. Neurosci. 26::31625
    [Crossref] [Google Scholar]
  104. Kolta MG, Shreve P, Uretsky NJ. 1985.. Effect of methylphenidate pretreatment on the behavioral and biochemical responses to amphetamine. . Eur. J. Pharmacol. 117::27982
    [Crossref] [Google Scholar]
  105. Koob GF. 2021.. Drug addiction: hyperkatifeia/negative reinforcement as a framework for medications development. . Pharmacol. Rev. 73::163201
    [Crossref] [Google Scholar]
  106. Koob GF, Le Moal M. 1997.. Drug abuse: hedonic homeostatic dysregulation. . Science 278::5258
    [Crossref] [Google Scholar]
  107. Koob GF, Le Moal M. 2001.. Drug addiction, dysregulation of reward, and allostasis. . Neuropsychopharmacology 24::97129
    [Crossref] [Google Scholar]
  108. Koob GF, Powell P, White A. 2020.. Addiction as a coping response: hyperkatifeia, deaths of despair, and COVID-19. . Am. J. Psychiatry 177::103137
    [Crossref] [Google Scholar]
  109. Koob GF, Volkow ND. 2016.. Neurobiology of addiction: a neurocircuitry analysis. . Lancet Psychiatry 3::76073
    [Crossref] [Google Scholar]
  110. Koranyi N, Grigutsch LA, Algermissen J, Rothermund K. 2017.. Dissociating implicit wanting from implicit liking: development and validation of the wanting-implicit-association-test (W-IAT). . J. Behav. Ther. Exp. Psychiatry 54::16569
    [Crossref] [Google Scholar]
  111. Kotyuk E, Urban R, Hende B, Richman M, Magi A, et al. 2022.. Development and validation of the reward deficiency syndrome questionnaire (RDSQ-29). . J. Psychopharmacol. 36::40922
    [Crossref] [Google Scholar]
  112. Kraus SW, Voon V, Potenza MN. 2016.. Should compulsive sexual behavior be considered an addiction?. Addiction 111::2097106
    [Crossref] [Google Scholar]
  113. Lamb RJ, Preston KL, Schindler CW, Meisch RA, Davis F, et al. 1991.. The reinforcing and subjective effects of morphine in post-addicts: a dose-response study. . J. Pharmacol. Exp. Ther. 259::116573
    [Google Scholar]
  114. Larimer ME, Palmer RS, Marlatt GA. 1999.. Relapse prevention: an overview of Marlatt's cognitive-behavioral model. . Alcohol Res. Health 23::15160
    [Google Scholar]
  115. Leeman RF, Robinson CD, Waters AJ, Sofuoglu M. 2014.. A critical review of the literature on attentional bias in cocaine use disorder and suggestions for future research. . Exp. Clin. Psychopharmacol. 22::46983
    [Crossref] [Google Scholar]
  116. Lemos JC, Wanat MJ, Smith JS, Reyes BA, Hollon NG, et al. 2012.. Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive. . Nature 490::4026
    [Crossref] [Google Scholar]
  117. Lett BT. 1989.. Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. . Psychopharmacology 98::35762
    [Crossref] [Google Scholar]
  118. Levy N. 2013.. Addiction is not a brain disease (and it matters). . Front. Psychiatry 4::24
    [Google Scholar]
  119. Lewis M. 2015.. The Biology of Desire. Philadelphia, PA:: Perseus Books
    [Google Scholar]
  120. Leyton M. 2010.. The neurobiology of desire: dopamine and the regulation of mood and motivational states in humans. . In Pleasures of the Brain, ed. ML Kringelbach, KC Berridge , pp. 22243. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  121. Leyton M. 2021.. Ubiquitous dopamine deficit hypotheses in cocaine use disorder lack support: response to Leyton. . Am. J. Psychiatry 178::46970
    [Crossref] [Google Scholar]
  122. Leyton M. 2022.. Does stimulant drug-induced sensitization occur in primates?. J. Psychiatry Neurosci. 47::E14852
    [Crossref] [Google Scholar]
  123. Leyton M, Aan het Rot M, Booij L, Baker G, Young S, Benkelfat C. 2007.. Mood-elevating effects of d-amphetamine and incentive salience: the effect of acute dopamine precursor depletion. . J. Psychiatry Neurosci. 32::12936
    [Google Scholar]
  124. Leyton M, Casey K, Delaney J, Kolivakis T, Benkelfat C. 2005.. Cocaine craving, euphoria, and self-administration: a preliminary study of the effect of catecholamine precursor depletion. . Behav. Neurosci. 119::161927
    [Crossref] [Google Scholar]
  125. Leyton M, Vezina P. 2012.. On cue: striatal ups and downs in addictions. . Biol. Psychiatry 72::e2122
    [Crossref] [Google Scholar]
  126. Leyton M, Vezina P. 2014.. Dopamine ups and downs in vulnerability to addictions: a neurodevelopmental model. . Trends Pharmacol. Sci. 35::26876
    [Crossref] [Google Scholar]
  127. Limbrick-Oldfield EH, Mick I, Cocks RE, McGonigle J, Sharman SP, et al. 2017.. Neural substrates of cue reactivity and craving in gambling disorder. . Transl. Psychiatry 7::e992
    [Crossref] [Google Scholar]
  128. Linnet J, Mouridsen K, Peterson E, Moller A, Doudet DJ, Gjedde A. 2012.. Striatal dopamine release codes uncertainty in pathological gambling. . Psychiatry Res. 204::5560
    [Crossref] [Google Scholar]
  129. Loane C, Wu K, O'Sullivan SS, Lawrence AD, Woodhead Z, et al. 2015.. Psychogenic and neural visual-cue response in PD dopamine dysregulation syndrome. . Parkinsonism Relat. Disord. 21::133641
    [Crossref] [Google Scholar]
  130. Lüscher C, Robbins TW, Everitt BJ. 2020.. The transition to compulsion in addiction. . Nat. Rev. Neurosci. 21::24763
    [Crossref] [Google Scholar]
  131. MacNiven KH, Jensen ELS, Borg N, Padula CB, Humphreys K, Knutson B. 2018.. Association of neural responses to drug cues with subsequent relapse to stimulant use. . JAMA Netw. Open 1::e186466
    [Crossref] [Google Scholar]
  132. Margolis EB, Hjelmstad GO, Fujita W, Fields HL. 2014.. Direct bidirectional mu-opioid control of midbrain dopamine neurons. . J. Neurosci. 34::1470716
    [Crossref] [Google Scholar]
  133. Marhe R, Waters AJ, van de Wetering BJ, Franken IH. 2013.. Implicit and explicit drug-related cognitions during detoxification treatment are associated with drug relapse: an ecological momentary assessment study. . J. Consult. Clin. Psychol. 81::112
    [Crossref] [Google Scholar]
  134. Marissen MA, Franken IH, Waters AJ, Blanken P, van den Brink W, Hendriks VM. 2006.. Attentional bias predicts heroin relapse following treatment. . Addiction 101::130612
    [Crossref] [Google Scholar]
  135. Martinez S, Brandt L, Comer SD, Levin FR, Jones JD. 2022.. The subjective experience of heroin effects among individuals with chronic opioid use: revisiting reinforcement in an exploratory study. . Addctn. Neurosci. 4::e100034
    [Google Scholar]
  136. Mascia P, Neugebauer NM, Brown J, Bubula N, Nesbitt KM, et al. 2019.. Exposure to conditions of uncertainty promotes the pursuit of amphetamine. . Neuropsychopharmacology 44::27480
    [Crossref] [Google Scholar]
  137. Mascia P, Wang Q, Brown J, Nesbitt KM, Kennedy RT, Vezina P. 2020.. Maladaptive consequences of repeated intermittent exposure to uncertainty. . Prog. Neuropsychopharmacol. Biol. Psychiatry 99::109864
    [Crossref] [Google Scholar]
  138. Merali Z, McIntosh J, Kent P, Michaud D, Anisman H. 1998.. Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala. . J. Neurosci. 18::475866
    [Crossref] [Google Scholar]
  139. Moeller SJ, Parvaz MA, Shumay E, Beebe-Wang N, Konova AB, et al. 2013.. Gene × abstinence effects on drug cue reactivity in addiction: multimodal evidence. . J. Neurosci. 33::1002736
    [Crossref] [Google Scholar]
  140. Mohebi A, Collins VL, Berke JD. 2023.. Accumbens cholinergic interneurons dynamically promote dopamine release and enable motivation. . eLife 12::e85011
    [Crossref] [Google Scholar]
  141. Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PR. 2015.. The dopamine theory of addiction: 40 years of highs and lows. . Nat. Rev. Neurosci. 16::30512
    [Crossref] [Google Scholar]
  142. O'Neal TJ, Bernstein MX, MacDougall DJ, Ferguson SM. 2022.. A conditioned place preference for heroin is signaled by increased dopamine and direct pathway activity and decreased indirect pathway activity in the nucleus accumbens. . J. Neurosci. 42::201124
    [Crossref] [Google Scholar]
  143. O'Sullivan SS, Wu K, Politis M, Lawrence AD, Evans AH, et al. 2011.. Cue-induced striatal dopamine release in Parkinson's disease-associated impulsive-compulsive behaviours. . Brain 134::96978
    [Crossref] [Google Scholar]
  144. Paulson PE, Camp DM, Robinson TE. 1991.. Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. . Psychopharmacology 103::48092
    [Crossref] [Google Scholar]
  145. Pearson D, Watson P, Cheng PX, Le Pelley ME. 2020.. Overt attentional capture by reward-related stimuli overcomes inhibitory suppression. . J. Exp. Psychol. Hum. Percept. Perform. 46::489501
    [Crossref] [Google Scholar]
  146. Peciña S, Berridge KC, Parker LA. 1997.. Pimozide does not shift palatability: separation of anhedonia from sensorimotor suppression by taste reactivity. . Pharmacol. Biochem. Behav. 58::80111
    [Crossref] [Google Scholar]
  147. Peciña S, Schulkin J, Berridge KC. 2006.. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress?. BMC Biol. 4::e8
    [Crossref] [Google Scholar]
  148. Perez-Lloret S, Rey MV, Fabre N, Ory F, Spampinato U, et al. 2012.. Prevalence and pharmacological factors associated with impulse-control disorder symptoms in patients with Parkinson disease. . Clin. Neuropharmacol. 35::26165
    [Crossref] [Google Scholar]
  149. Phillips AG, Ahn S. 2022.. Anticipation: an essential feature of anhedonia. . Curr. Top. Behav. Neurosci. 58::30523
    [Crossref] [Google Scholar]
  150. Pickard H. 2020.. What we're not talking about when we talk about addiction. . Hastings Cent. Rep. 50::3746
    [Crossref] [Google Scholar]
  151. Pool ER, Munoz Tord D, Delplanque S, Stussi Y, Cereghetti D, et al. 2022.. Differential contributions of ventral striatum subregions to the motivational and hedonic components of the affective processing of reward. . J. Neurosci. 42::271628
    [Crossref] [Google Scholar]
  152. Post RM. 1980.. Intermittent versus continuous stimulation: effect of time interval on the development of sensitization or tolerance. . Life Sci. 26::127582
    [Crossref] [Google Scholar]
  153. Preston KL, Kowalczyk WJ, Phillips KA, Jobes ML, Vahabzadeh M, et al. 2018.. Exacerbated craving in the presence of stress and drug cues in drug-dependent patients. . Neuropsychopharmacology 43::85967
    [Crossref] [Google Scholar]
  154. Preston KL, Vahabzadeh M, Schmittner J, Lin JL, Gorelick DA, Epstein DH. 2009.. Cocaine craving and use during daily life. . Psychopharmacology 207::291301
    [Crossref] [Google Scholar]
  155. Prisciandaro JJ, Joseph JE, Myrick H, McRae-Clark AL, Henderson S, et al. 2014.. The relationship between years of cocaine use and brain activation to cocaine and response inhibition cues. . Addiction 109::206270
    [Crossref] [Google Scholar]
  156. Robbins TW. 2019.. Commentary on Bechara et al.’s “A Neurobehavioral Approach to Addiction: Implications for the Opioid Epidemic and the Psychology of Addiction. .” Psychol. Sci. Public Interest 20::9195
    [Crossref] [Google Scholar]
  157. Robinson MJF, Anselme P. 2019.. How uncertainty sensitizes dopamine neurons and invigorates amphetamine-related behaviors. . Neuropsychopharmacology 44::23738
    [Crossref] [Google Scholar]
  158. Robinson MJF, Anselme P, Fischer AM, Berridge KC. 2014a.. Initial uncertainty in Pavlovian reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive cues. . Behav. Brain Res. 266::11930
    [Crossref] [Google Scholar]
  159. Robinson MJF, Anselme P, Suchomel K, Berridge KC. 2015.. Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues. . Behav. Neurosci. 129::50211
    [Crossref] [Google Scholar]
  160. Robinson MJF, Bonmariage QSA, Samaha A-N. 2023.. Unpredictable, intermittent access to sucrose or water promotes increased reward pursuit in rats. . Behav. Brain Res. 453::e114612
    [Crossref] [Google Scholar]
  161. Robinson MJF, Warlow SM, Berridge KC. 2014b.. Optogenetic excitation of central amygdala amplifies and narrows incentive motivation to pursue one reward above another. . J. Neurosci. 34::1656780
    [Crossref] [Google Scholar]
  162. Robinson TE, Becker JB. 1982.. Behavioral sensitization is accompanied by an enhancement in amphetamine-stimulated dopamine release from striatal tissue in vitro. . Eur. J. Pharmacol. 85::25354
    [Crossref] [Google Scholar]
  163. Robinson TE, Becker JB. 1986.. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. . Brain Res. 396::15798
    [Crossref] [Google Scholar]
  164. Robinson TE, Berridge KC. 1993.. The neural basis of drug craving: an incentive-sensitization theory of addiction. . Brain Res. Rev. 18::24791
    [Crossref] [Google Scholar]
  165. Robinson TE, Berridge KC. 2000.. The psychology and neurobiology of addiction: an incentive- sensitization view. . Addiction 95::S91117
    [Crossref] [Google Scholar]
  166. Robinson TE, Browman KE, Crombag HS, Badiani A. 1998.. Modulation of the induction or expression of psychostimulant sensitization by the circumstances surrounding drug administration. . Neurosci. Biobehav. Rev. 22::34754
    [Crossref] [Google Scholar]
  167. Robinson TE, Flagel SB. 2009.. Dissociating the predictive and incentive motivational properties of reward-related cues through the study of individual differences. . Biol. Psychiatry 65::86973
    [Crossref] [Google Scholar]
  168. Robinson TE, Jurson PA, Bennett JA, Bentgen KM. 1988.. Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)−amphetamine: a microdialysis study in freely moving rats. . Brain Res. 462::21122
    [Crossref] [Google Scholar]
  169. Rosse RB, Fay-McCarthy M, Collins J Jr., Risher-Flowers D, Alim TN, Deutsch SI. 1993.. Transient compulsive foraging behavior associated with crack cocaine use. . Am. J. Psychiatry 150::15556
    [Crossref] [Google Scholar]
  170. Salamone JD, Correa M. 2012.. The mysterious motivational functions of mesolimbic dopamine. . Neuron 76::47085
    [Crossref] [Google Scholar]
  171. Samaha A-N, Khoo SYS, Ferrario CR, Robinson TE. 2021.. Dopamine “ups and downs” in addiction revisited. . Trends Neurosci. 44::51626
    [Crossref] [Google Scholar]
  172. Santiago Rivera OJ, Havens JR, Parker MA, Anthony JC. 2018.. Risk of heroin dependence in newly incident heroin users. . JAMA Psychiatry 75::86364
    [Crossref] [Google Scholar]
  173. Sarter M, Phillips KB. 2018.. The neuroscience of cognitive-motivational styles: sign- and goal-trackers as animal models. . Behav. Neurosci. 132::112
    [Crossref] [Google Scholar]
  174. Saunders BT, Robinson TE. 2012.. The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. . Eur. J. Neurosci. 36::252132
    [Crossref] [Google Scholar]
  175. Sayette MA. 2016.. The role of craving in substance use disorders: theoretical and methodological issues. . Annu. Rev. Clin. Psychol. 12::40733
    [Crossref] [Google Scholar]
  176. Schettino M, Ceccarelli I, Tarvainen M, Martelli M, Orsini C, Ottaviani C. 2022.. From skinner box to daily life: Sign-tracker phenotype co-segregates with impulsivity, compulsivity, and addiction tendencies in humans. . Cogn. Affect. Behav. Neurosci. 22::135869
    [Crossref] [Google Scholar]
  177. Schultz W, Dayan P, Montague PR. 1997.. A neural substrate of prediction and reward. . Science 275::159399
    [Crossref] [Google Scholar]
  178. Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, et al. 2016.. The nucleus accumbens: Mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. . Pharmacol. Rev. 68::81671
    [Crossref] [Google Scholar]
  179. Segal DS, Kuczenski R. 1987.. Individual differences in responsiveness to single and repeated amphetamine administration: behavioral characteristics and neurochemical correlates. . J. Pharmacol. Exp. Ther. 242::91726
    [Google Scholar]
  180. Shalev U, Grimm JW, Shaham Y. 2002.. Neurobiology of relapse to heroin and cocaine seeking: a review. . Pharmacol. Rev. 54::142
    [Crossref] [Google Scholar]
  181. Shi Z, Jagannathan K, Padley JH, Wang AL, Fairchild VP, et al. 2021.. The role of withdrawal in mesocorticolimbic drug cue reactivity in opioid use disorder. . Addctn. Biol. 26::e12977
    [Crossref] [Google Scholar]
  182. Sienkiewicz-Jarosz H, Scinska A, Kuran W, Ryglewicz D, Rogowski A, et al. 2005.. Taste responses in patients with Parkinson's disease. . J. Neurol. Neurosurg. Psychiatry 76::4046
    [Crossref] [Google Scholar]
  183. Sienkiewicz-Jarosz H, Scinska A, Swiecicki L, Lipczynska-Lojkowska W, Kuran W, et al. 2013.. Sweet liking in patients with Parkinson's disease. . J. Neurol. Sci. 329::1722
    [Crossref] [Google Scholar]
  184. Singer BF, Anselme P, Robinson MJF, Vezina P. 2020.. An overview of commonalities in the mechanisms underlying gambling and substance use disorders. . Prog. Neuropsychopharmacol. Biol. Psychiatry 101::109944
    [Crossref] [Google Scholar]
  185. Singer BF, Fadanelli M, Kawa AB, Robinson TE. 2018.. Are cocaine-seeking “habits” necessary for the development of addiction-like behavior in rats?. J. Neurosci. 38::6073
    [Crossref] [Google Scholar]
  186. Singer BF, Scott-Railton J, Vezina P. 2012.. Unpredictable saccharin reinforcement enhances locomotor responding to amphetamine. . Behav. Brain Res. 226::34044
    [Crossref] [Google Scholar]
  187. Siviy SM, Panksepp J. 2011.. In search of the neurobiological substrates for social playfulness in mammalian brains. . Neurosci. Biobehav. Rev. 35::182130
    [Crossref] [Google Scholar]
  188. Smith KS, Graybiel AM. 2016.. Habit formation. . Dialogues Clin. Neurosci. 18::3343
    [Crossref] [Google Scholar]
  189. Solomon RL, Corbit JD. 1974.. An opponent-process theory of motivation. I. Temporal dynamics of affect. . Psychol. Rev. 81::11945
    [Crossref] [Google Scholar]
  190. Spanagel R, Almeida OF, Shippenberg TS. 1993.. Long lasting changes in morphine-induced mesolimbic dopamine release after chronic morphine exposure. . Synapse 14::24345
    [Crossref] [Google Scholar]
  191. Sripada C. 2022.. Impaired control in addiction involves cognitive distortions and unreliable self-control, not compulsive desires and overwhelmed self-control. . Behav. Brain Res. 418::113639
    [Crossref] [Google Scholar]
  192. Steiner JE. 1973.. The gustofacial response: observation on normal and anencephalic newborn infants. . Symp. Oral Sensat. Percept. 4::25478
    [Google Scholar]
  193. Steiner JE, Glaser D, Hawilo ME, Berridge KC. 2001.. Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. . Neurosci. Biobehav. Rev. 25::5374
    [Crossref] [Google Scholar]
  194. Stewart J, de Wit H, Eikelboom R. 1984.. Role of unconditioned and conditioned drug effects in the self- administration of opiates and stimulants. . Psychol. Rev. 91::25168
    [Crossref] [Google Scholar]
  195. Stice E, Yokum S. 2021.. Neural vulnerability factors that predict future weight gain. . Curr. Obes. Rep. 10::43543
    [Crossref] [Google Scholar]
  196. Tiffany ST. 1990.. A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. . Psychol. Rev. 97::14768
    [Crossref] [Google Scholar]
  197. Tolman EC. 1955.. Performance vectors and the unconscious. . Acta Psychol. 11::3140
    [Crossref] [Google Scholar]
  198. Tom RL, Ahuja A, Maniates H, Freeland CM, Robinson MJF. 2019.. Optogenetic activation of the central amygdala generates addiction-like preference for reward. . Eur. J. Neurosci. 50::2086100
    [Crossref] [Google Scholar]
  199. Treit D, Berridge KC. 1990.. A comparison of benzodiazepine, serotonin, and dopamine agents in the taste-reactivity paradigm. . Pharmacol. Biochem. Behav. 37::45156
    [Crossref] [Google Scholar]
  200. Vafaie N, Kober H. 2022.. Association of drug cues and craving with drug use and relapse: a systematic review and meta-analysis. . JAMA Psychiatry 79::64150
    [Crossref] [Google Scholar]
  201. Vandaele Y, Ahmed SH. 2021.. Habit, choice, and addiction. . Neuropsychopharmacology 46::68998
    [Crossref] [Google Scholar]
  202. Vander Weele CM, Porter-Stransky KA, Mabrouk OS, Lovic V, Singer BF, et al. 2014.. Rapid dopamine transmission within the nucleus accumbens: dramatic difference between morphine and oxycodone delivery. . Eur. J. Neurosci. 40::304154
    [Crossref] [Google Scholar]
  203. Vanderschuren LJMJ, Achterberg EJM, Trezza V. 2016.. The neurobiology of social play and its rewarding value in rats. . Neurosci. Biobehav. Rev. 70::86105
    [Crossref] [Google Scholar]
  204. Vanderschuren LJMJ, Pierce RC. 2010.. Sensitization processes in drug addiction. . In Behavioral Neuroscience of Drug Addiction, ed. DW Self, JK Staley Gottschalk , pp. 17995. Berlin:: Springer
    [Google Scholar]
  205. Vezina P, Leyton M. 2009.. Conditioned cues and the expression of stimulant sensitization in animals and humans. . Neuropharmacology 56:(Suppl. 1):16068
    [Crossref] [Google Scholar]
  206. Vicente AM, Galvão-Ferreira P, Tecuapetla F, Costa RM. 2016.. Direct and indirect dorsolateral striatum pathways reinforce different action strategies. . Curr. Biol. 26::R26769
    [Crossref] [Google Scholar]
  207. Volkow ND, Koob GF, McLellan AT. 2016.. Neurobiologic advances from the brain disease model of addiction. . N. Engl. J. Med. 374::36371
    [Crossref] [Google Scholar]
  208. Volkow ND, Wang G, Telang F, Fowler J, Logan J, et al. 2006.. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. . J. Neurosci. 26::658388
    [Crossref] [Google Scholar]
  209. Voon V, Mole TB, Banca P, Porter L, Morris L, et al. 2014.. Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours. . PLOS ONE 9::e102419
    [Crossref] [Google Scholar]
  210. Walsh SL, Stoops WW, Moody DE, Lin SN, Bigelow GE. 2009.. Repeated dosing with oral cocaine in humans: assessment of direct effects, withdrawal, and pharmacokinetics. . Exp. Clin. Psychopharmacol. 17::20516
    [Crossref] [Google Scholar]
  211. Wang GJ, Geliebter A, Volkow ND, Telang FW, Logan J, et al. 2011.. Enhanced striatal dopamine release during food stimulation in binge eating disorder. . Obesity 19::16018
    [Crossref] [Google Scholar]
  212. Warlow SM, Naffziger EE, Berridge KC. 2020.. The central amygdala recruits mesocorticolimbic circuitry for pursuit of reward or pain. . Nat. Commun. 11::2716
    [Crossref] [Google Scholar]
  213. Watson P, Pearson D, Wiers RW, Le Pelley ME. 2019.. Prioritizing pleasure and pain: attentional capture by reward-related and punishment-related stimuli. . Curr. Opin. Behav. Sci. 26::10713
    [Crossref] [Google Scholar]
  214. Weidenauer A, Bauer M, Sauerzopf U, Bartova L, Nics L, et al. 2020.. On the relationship of first-episode psychosis to the amphetamine-sensitized state: a dopamine D2/3 receptor agonist radioligand study. . Transl. Psychiatry 10::2
    [Crossref] [Google Scholar]
  215. Wemm SE, Tennen H, Sinha R, Seo D. 2022.. Daily stress predicts later drinking initiation via craving in heavier social drinkers: a prospective in-field daily diary study. . J. Psychopathol. Clin. Sci. 131::78092
    [Crossref] [Google Scholar]
  216. Wiers RW, van Gaal S, Le Pelley ME. 2021.. Akrasia and addiction: neurophilosophy and psychological mechanisms. . In Social Neuroeconomics: Mechanistic Integration of the Neurosciences and the Social Sciences, ed. J Harbecke, C Herrmann-Pillath , pp. 12147. New York:: Routledge
    [Google Scholar]
  217. Wiers RW, Verschure P. 2021.. Curing the broken brain model of addiction: neurorehabilitation from a systems perspective. . Addctn. Behav. 112::106602
    [Crossref] [Google Scholar]
  218. Winkielman P, Berridge KC, Wilbarger JL. 2005.. Unconscious affective reactions to masked happy versus angry faces influence consumption behavior and judgments of value. . Personal. Soc. Psychol. Bull. 31::12135
    [Crossref] [Google Scholar]
  219. Wise RA. 1985.. The anhedonia hypothesis: mark III. . Behav. Brain Sci. 8::17886
    [Crossref] [Google Scholar]
  220. Wise RA, Bozarth MA. 1987.. A psychomotor stimulant theory of addiction. . Psychol. Rev. 94::46992
    [Crossref] [Google Scholar]
  221. Wise RA, Koob GF. 2014.. The development and maintenance of drug addiction. . Neuropsychopharmacology 39::25462
    [Crossref] [Google Scholar]
  222. Witjas T, Azulay JP, Eusebio A. 2012.. Addiction and Parkinson's disease. . In Drug Abuse and Addiction in Medical Illness, ed. JC Verster, K Brady, M Galanter, P Conrod , pp. 36374. New York:: Springer
    [Google Scholar]
  223. Wolf ME. 2016.. Synaptic mechanisms underlying persistent cocaine craving. . Nat. Rev. Neurosci. 17::35165
    [Crossref] [Google Scholar]
  224. Woo J-M, Lee G-E, Lee J-H. 2023.. Attentional bias for high-calorie food cues by the level of hunger and satiety in individuals with binge eating behaviors. . Front. Neurosci. 17::e1149864
    [Crossref] [Google Scholar]
  225. Wood W, Runger D. 2016.. Psychology of habit. . Annu. Rev. Psychol. 67::289314
    [Crossref] [Google Scholar]
  226. Wu K, Politis M, O'Sullivan SS, Lawrence AD, Warsi S, et al. 2014.. Problematic Internet use in Parkinson's disease. . Parkinsonism Relat. Disord. 20::48287
    [Crossref] [Google Scholar]
  227. Wyvell CL, Berridge KC. 2000.. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. . J. Neurosci. 20::812230
    [Crossref] [Google Scholar]
  228. Yager LM, Pitchers KK, Flagel SB, Robinson TE. 2015.. Individual variation in the motivational and neurobiological effects of an opioid cue. . Neuropsychopharmacology 40::126977
    [Crossref] [Google Scholar]
  229. Yager LM, Robinson TE. 2015.. Individual variation in the motivational properties of a nicotine cue: sign-trackers versus goal-trackers. . Psychopharmacology 232::314960
    [Crossref] [Google Scholar]
  230. Zack M, St George R, Clark L. 2020.. Dopaminergic signaling of uncertainty and the aetiology of gambling addiction. . Prog. Neuropsychopharmacol. Biol. Psychiatry 99::e109853
    [Crossref] [Google Scholar]
  231. Zeeb FD, Li Z, Fisher DC, Zack MH, Fletcher PJ. 2017.. Uncertainty exposure causes behavioural sensitization and increases risky decision-making in male rats: toward modelling gambling disorder. . J. Psychiatry Neurosci. 42::40413
    [Crossref] [Google Scholar]
  232. Zilverstand A, Goldstein RZ. 2020.. Dual models of drug addiction: the impaired response inhibition and salience attribution model. . In Cognition and Addiction: A Researcher's Guide from Mechanisms Towards Interventions, ed. A Verdejo-Garcia , pp. 1723. Cambridge, MA:: Academic Press
    [Google Scholar]
  233. Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ. 2018.. Neuroimaging impaired response inhibition and salience attribution in human drug addiction: a systematic review. . Neuron 98::886903
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-psych-011624-024031
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error