1932

Abstract

The current review presents an integrated tripartite framework for understanding attentional control, emphasizing the interaction and competition among top-down, bottom-up, and selection-history influences. It focuses on attentional capture, which refers to conditions in which salient objects or events receive attentional priority even when they are inconsistent with the goals, tasks, and intentions of the observer. The review describes which components of the tripartite framework are in play when distraction by salient objects is prevented and the conditions in which there is no control over the occurrence of attentional capture. It then concludes that attentional capture can be controlled in a proactive way mainly by implicit statistical learning mechanisms associated with selection history. Current and lingering controversies regarding the control of attentional capture are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-011624-025340
2025-01-17
2025-06-18
Loading full text...

Full text loading...

/deliver/fulltext/psych/76/1/annurev-psych-011624-025340.html?itemId=/content/journals/10.1146/annurev-psych-011624-025340&mimeType=html&fmt=ahah

Literature Cited

  1. Adam KC, Patel T, Rangan N, Serences JT. 2021.. Classic visual search effects in an additional singleton task: an open dataset. . J. Cogn. 4:(1):34
    [Crossref] [Google Scholar]
  2. Awh E, Belopolsky AV, Theeuwes J. 2012.. Top-down versus bottom-up attentional control: a failed theoretical dichotomy. . Trends Cogn. Sci. 16:(8):43743
    [Crossref] [Google Scholar]
  3. Bacon WF, Egeth HE. 1994.. Overriding stimulus-driven attentional capture. . Percept. Psychophys. 55:(5):48596
    [Crossref] [Google Scholar]
  4. Becker SI, Folk CL, Remington RW. 2010.. The role of relational information in contingent capture. . J. Exp. Psychol. Hum. Percept. Perform. 36:(6):146076
    [Crossref] [Google Scholar]
  5. Belopolsky AV, Schreij D, Theeuwes J. 2010.. What is top-down about contingent capture?. Atten. Percept. Psychophys. 72:(2):32641
    [Crossref] [Google Scholar]
  6. Belopolsky AV, Zwaan L, Theeuwes J, Kramer AF. 2007.. The size of an attentional window modulates attentional capture by color singletons. . Psychon. Bull. Rev. 14::93438
    [Crossref] [Google Scholar]
  7. Bichot NP, Schall JD. 2002.. Priming in macaque frontal cortex during popout visual search: feature-based facilitation and location-based inhibition of return. . J. Neurosci. 22:(11):467585
    [Crossref] [Google Scholar]
  8. Broadbent DE. 1958.. Perception and Communication. Oxford, UK:: Pergamon Press
    [Google Scholar]
  9. Bundesen C. 1990.. A theory of visual attention. . Psychol. Rev. 97:(4):52347
    [Crossref] [Google Scholar]
  10. Buschman TJ, Miller EK. 2007.. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. . Science 315:(5820):186062
    [Crossref] [Google Scholar]
  11. Carrasco M. 2011.. Visual attention: the past 25 years. . Vis. Res. 51:(13):1484525
    [Crossref] [Google Scholar]
  12. Chang S, Egeth HE. 2019.. Enhancement and suppression flexibly guide attention. . Psychol. Sci. 30:(12):172432
    [Crossref] [Google Scholar]
  13. Chang S, Egeth HE. 2021.. Can salient stimuli really be suppressed?. Atten. Percept. Psychophys. 83:(1):26069
    [Crossref] [Google Scholar]
  14. Chun MM, Jiang Y. 1998.. Contextual cueing: Implicit learning and memory of visual context guides spatial attention. . Cogn. Psychol. 36:(1):2871
    [Crossref] [Google Scholar]
  15. Connor CE, Egeth HE, Yantis S. 2004.. Visual attention: bottom-up versus top-down. . Curr. Biol. 14:(19):R85052
    [Crossref] [Google Scholar]
  16. Corbetta M, Shulman GL. 2002.. Control of goal-directed and stimulus-driven attention in the brain. . Nat. Rev. Neurosci. 3:(3):20115
    [Crossref] [Google Scholar]
  17. Cosman JD, Lowe KA, Zinke W, Woodman GF, Schall JD. 2018.. Prefrontal control of visual distraction. . Curr. Biol. 28:(3):41420.e3
    [Crossref] [Google Scholar]
  18. de Fockert JW, Theeuwes J. 2012.. Role of frontal cortex in attentional capture by singleton distractors. . Brain Cogn. 80:(3):36773
    [Crossref] [Google Scholar]
  19. Desimone R. 1996.. Neural mechanisms for visual memory and their role in attention. . PNAS 93:(24):1349499
    [Crossref] [Google Scholar]
  20. Desimone R, Duncan J. 1995.. Neural mechanisms of selective visual attention. . Annu. Rev. Neurosci. 18::193222
    [Crossref] [Google Scholar]
  21. Duncan D, Theeuwes J. 2024.. Secondary capture: Salience information persistently drives attentional selection. . J. Exp. Psychol. Hum. Percept. Perform. 50:(9):94251
    [Crossref] [Google Scholar]
  22. Duncan J, Humphreys GW. 1989.. Visual search and stimulus similarity. . Psychol. Rev. 96:(3):43358
    [Crossref] [Google Scholar]
  23. Egeth H. 2018.. Comment on Theeuwes's characterization of visual selection. . J. Cogn. 1:(1):26
    [Crossref] [Google Scholar]
  24. Egeth HE, Virzi RA, Garbart H. 1984.. Searching for conjunctively defined targets. . J. Exp. Psychol. Hum. Percept. Perform. 10:(1):3239
    [Crossref] [Google Scholar]
  25. Egeth HE, Yantis S. 1997.. Visual attention: control, representation, and time course. . Annu. Rev. Psychol. 48::26997
    [Crossref] [Google Scholar]
  26. Eriksen CW, St. James JD. 1986.. Visual attention within and around the field of focal attention: a zoom lens model. . Percept. Psychophys. 40:(4):22540
    [Crossref] [Google Scholar]
  27. Failing M, Feldmann-Wüstefeld T, Wang B, Olivers C, Theeuwes J. 2019a.. Statistical regularities induce spatial as well as feature-specific suppression. . J. Exp. Psychol. Hum. Percept. Perform. 45:(10):1291303
    [Crossref] [Google Scholar]
  28. Failing M, Theeuwes J. 2018.. Selection history: how reward modulates selectivity of visual attention. . Psychon. Bull. Rev. 25:(2):51438
    [Crossref] [Google Scholar]
  29. Failing M, Wang B, Theeuwes J. 2019b.. Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. . Atten. Percept. Psychophys. 81:(5):140514
    [Crossref] [Google Scholar]
  30. Fecteau JH, Munoz DP. 2006.. Salience, relevance, and firing: a priority map for target selection. . Trends Cogn. Sci. 10:(8):38290
    [Crossref] [Google Scholar]
  31. Feldmann-Wüstefeld T, Vogel EK. 2019.. Neural evidence for the contribution of active suppression during working memory filtering. . Cereb. Cortex 29:(2):52943
    [Crossref] [Google Scholar]
  32. Ferrante O, Patacca A, Di Caro V, Della Libera C, Santandrea E, Chelazzi L. 2018.. Altering spatial priority maps via statistical learning of target selection and distractor filtering. . Cortex 102::6795
    [Crossref] [Google Scholar]
  33. Ferrante O, Zhigalov A, Hickey C, Jensen O. 2023.. Statistical learning of distractor suppression downregulates prestimulus neural excitability in early visual cortex. . J. Neurosci. 43:(12):219098
    [Crossref] [Google Scholar]
  34. Folk CL, Anderson BA. 2010.. Target-uncertainty effects in attentional capture: color-singleton set or multiple attentional control settings?. Psychon. Bull. Rev. 17::42126
    [Crossref] [Google Scholar]
  35. Folk CL, Remington R. 1998.. Selectivity in distraction by irrelevant featural singletons: evidence for two forms of attentional capture. . J. Exp. Psychol. Hum. Percept. Perform. 24:(3):84758
    [Crossref] [Google Scholar]
  36. Folk CL, Remington RW, Johnston JC. 1992.. Involuntary covert orienting is contingent on attentional control settings. . J. Exp. Psychol. Hum. Percept. Perform. 18:(4):103044
    [Crossref] [Google Scholar]
  37. Found A, Müller HJ. 1996.. Searching for unknown feature targets on more than one dimension: investigating a “dimension-weighting” account. . Percept. Psychophys. 58:(1):88101
    [Crossref] [Google Scholar]
  38. Frost R, Armstrong BC, Siegelman N, Christiansen MH. 2015.. Domain generality versus modality specificity: the paradox of statistical learning. . Trends Cogn. Sci. 19:(3):11725
    [Crossref] [Google Scholar]
  39. Gao Y, Theeuwes J. 2020a.. Independent effects of statistical learning and top-down attention. . Atten. Percept. Psychophys. 82::3895906
    [Crossref] [Google Scholar]
  40. Gao Y, Theeuwes J. 2020b.. Learning to suppress a distractor is not affected by working memory load. . Psychon. Bull. Rev. 27::96104
    [Crossref] [Google Scholar]
  41. Gao Y, Theeuwes J. 2022.. Learning to suppress a location does not depend on knowing which location. . Atten. Percept. Psychophys. 84:(4):108797
    [Crossref] [Google Scholar]
  42. Gaspelin N, Gaspar JM, Luck SJ. 2019.. Oculomotor inhibition of salient distractors: Voluntary inhibition cannot override selection history. . Vis. Cogn. 27:(3–4):22746
    [Crossref] [Google Scholar]
  43. Gaspelin N, Leonard CJ, Luck SJ. 2015.. Direct evidence for active suppression of salient-but-irrelevant sensory inputs. . Psychol. Sci. 26:(11):174050
    [Crossref] [Google Scholar]
  44. Gaspelin N, Leonard CJ, Luck SJ. 2017.. Suppression of overt attentional capture by salient-but-irrelevant color singletons. . Atten. Percept. Psychophys. 79:(1):4562
    [Crossref] [Google Scholar]
  45. Gaspelin N, Luck SJ. 2018a.. Combined electrophysiological and behavioral evidence for the suppression of salient distractors. . J. Cogn. Neurosci. 30:(9):126580
    [Crossref] [Google Scholar]
  46. Gaspelin N, Luck SJ. 2018b.. The role of inhibition in avoiding distraction by salient stimuli. . Trends Cogn. Sci. 22:(1):7992
    [Crossref] [Google Scholar]
  47. Gaspelin N, Luck SJ. 2018c.. “ Top-down” does not mean “voluntary. .” J. Cogn. 1:(1):25
    [Crossref] [Google Scholar]
  48. Geng JJ. 2014.. Attentional mechanisms of distractor suppression. . Curr. Dir. Psychol. Sci. 23:(2):14753
    [Crossref] [Google Scholar]
  49. Geng JJ, Behrmann M. 2005.. Spatial probability as an attentional cue in visual search. . Percept. Psychophys. 67:(7):125268
    [Crossref] [Google Scholar]
  50. Godijn R, Theeuwes J. 2002.. Programming of endogenous and exogenous saccades: evidence for a competitive integration model. . J. Exp. Psychol. Hum. Percept. Perform. 28:(5):103954
    [Crossref] [Google Scholar]
  51. Goschy H, Bakos S, Müller HJ, Zehetleitner M. 2014.. Probability cueing of distractor locations: both intertrial facilitation and statistical learning mediate interference reduction. . Front. Psychol. 5::1195
    [Crossref] [Google Scholar]
  52. Harris AM, Becker SI, Remington RW. 2015.. Capture by colour: evidence for dimension-specific singleton capture. . Atten. Percept. Psychophys. 77::230521
    [Crossref] [Google Scholar]
  53. Hickey C, McDonald JJ, Theeuwes J. 2006.. Electrophysiological evidence of the capture of visual attention. . J. Cogn. Neurosci. 18:(4):60413
    [Crossref] [Google Scholar]
  54. Hickey C, Van Zoest W, Theeuwes J. 2010.. The time course of exogenous and endogenous control of covert attention. . Exp. Brain Res. 201::78996
    [Crossref] [Google Scholar]
  55. Hopfinger JB, Buonocore MH, Mangun GR. 2000.. The neural mechanisms of top-down attentional control. . Nat. Neurosci. 3:(3):28491
    [Crossref] [Google Scholar]
  56. Huang C, Donk M, Theeuwes J. 2022.. Proactive enhancement and suppression elicited by statistical regularities in visual search. . J. Exp. Psychol. Hum. Percept. Perform. 48:(5):44357
    [Crossref] [Google Scholar]
  57. Huang C, Vilotijević A, Theeuwes J, Donk M. 2021.. Proactive distractor suppression elicited by statistical regularities in visual search. . Psychon. Bull. Rev. 28::91827
    [Crossref] [Google Scholar]
  58. Hunt AR, von Mühlenen A, Kingstone A. 2007.. The time course of attentional and oculomotor capture reveals a common cause. . J. Exp. Psychol. Hum. Percept. Perform. 33:(2):27184
    [Crossref] [Google Scholar]
  59. Itti L, Koch C. 2000.. A saliency-based search mechanism for overt and covert shifts of visual attention. . Vis. Res. 40:(10–12):1489506
    [Crossref] [Google Scholar]
  60. Itti L, Koch C. 2001.. Computational modelling of visual attention. . Nat. Rev. Neurosci. 2:(3):194203
    [Crossref] [Google Scholar]
  61. Jannati A, Gaspar JM, McDonald JJ. 2013.. Tracking target and distractor processing in fixed-feature visual search: evidence from human electrophysiology. . J. Exp. Psychol. Hum. Percept. Perform. 39:(6):171330
    [Crossref] [Google Scholar]
  62. Jensen O, Mazaheri A. 2010.. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. . Front. Hum. Neurosci. 4::186
    [Crossref] [Google Scholar]
  63. Jiang YV, Swallow KM, Rosenbaum GM, Herzig C. 2013.. Rapid acquisition but slow extinction of an attentional bias in space. . J. Exp. Psychol. Hum. Percept. Perform. 39:(1):8799
    [Crossref] [Google Scholar]
  64. Jonides J. 1981.. Voluntary versus automatic control over the mind's eye's movements. . In Attention and Performance IX, ed. JB Long, AD Baddeley , pp. 187203. Hillsdale, NJ:: Erlbaum
    [Google Scholar]
  65. Kaptein NA, Theeuwes J, Van der Heijden A. 1995.. Search for a conjunctively defined target can be selectively limited to a color-defined subset of elements. . J. Exp. Psychol. Hum. Percept. Perform. 21:(5):105369
    [Crossref] [Google Scholar]
  66. Kim M-S, Cave KR. 1995.. Spatial attention in visual search for features and feature conjunctions. . Psychol. Sci. 6:(6):37680
    [Crossref] [Google Scholar]
  67. Klink PC, Teeuwen RR, Lorteije JA, Roelfsema PR. 2023.. Inversion of pop-out for a distracting feature dimension in monkey visual cortex. . PNAS 120:(9):e2210839120
    [Crossref] [Google Scholar]
  68. Koch C, Ullman S. 1985.. Shifts in selective visual attention: towards the underlying neural circuitry. . Hum. Neurobiol. 4:(4):21927
    [Google Scholar]
  69. Leber AB. 2010.. Neural predictors of within-subject fluctuations in attentional control. . J. Neurosci. 30:(34):1145865
    [Crossref] [Google Scholar]
  70. Li Z. 2002.. A saliency map in primary visual cortex. . Trends Cogn. Sci. 6:(1):916
    [Crossref] [Google Scholar]
  71. Liesefeld HR, Lamy D, Gaspelin N, Geng J, Kerzel D, et al. 2024.. Terms of debate: consensus definitions to guide the scientific discourse on visual distraction. . Atten. Percept. Psychophys. https://doi.org/10.3758/s13414-023-02820-3
    [Google Scholar]
  72. Liesefeld HR, Liesefeld AM, Müller HJ. 2021.. Attentional capture: an ameliorable side-effect of searching for salient targets. . Vis. Cogn. 29:(9):6003
    [Crossref] [Google Scholar]
  73. Liesefeld HR, Müller HJ. 2020.. A theoretical attempt to revive the serial/parallel-search dichotomy. . Atten. Percept. Psychophys. 82::22845
    [Crossref] [Google Scholar]
  74. Lin R, Meng X, Chen F, et al. 2024.. Neural evidence for attentional capture by salient distractors. . Nat. Hum. Behav. 8::93244
    [Crossref] [Google Scholar]
  75. Luck SJ, Gaspelin N, Folk CL, Remington RW, Theeuwes J. 2021.. Progress toward resolving the attentional capture debate. . Vis. Cogn. 29:(1):121
    [Crossref] [Google Scholar]
  76. Ludwig CJ, Gilchrist ID. 2002.. Stimulus-driven and goal-driven control over visual selection. . J. Exp. Psychol. Hum. Percept. Perform. 28:(4):90212
    [Crossref] [Google Scholar]
  77. Maljkovic V, Nakayama K. 1994.. Priming of pop-out: I. Role of features. . Mem. Cogn. 22:(6):65772
    [Crossref] [Google Scholar]
  78. Moher J, Egeth HE. 2012.. The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. . Atten. Percept. Psychophys. 74:(8):1590605
    [Crossref] [Google Scholar]
  79. Mulckhuyse M, Van der Stigchel S, Theeuwes J. 2009.. Early and late modulation of saccade deviations by target distractor similarity. . J. Neurophysiol. 102:(3):145158
    [Crossref] [Google Scholar]
  80. Müller HJ, Heller D, Ziegler J. 1995.. Visual search for singleton feature targets within and across feature dimensions. . Percept. Psychophys. 57:(1):117
    [Crossref] [Google Scholar]
  81. Müller HJ, Rabbitt PM. 1989.. Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. . J. Exp. Psychol. Hum. Percept. Perform. 15:(2):31530
    [Crossref] [Google Scholar]
  82. Müller HJ, Reimann B, Krummenacher J. 2003.. Visual search for singleton feature targets across dimensions: stimulus- and expectancy-driven effects in dimensional weighting. . J. Exp. Psychol. Hum. Percept. Perform. 29::102135
    [Crossref] [Google Scholar]
  83. Nakayama K, Mackeben M. 1989.. Sustained and transient components of focal visual attention. . Vis. Res. 29:(11):163147
    [Crossref] [Google Scholar]
  84. Neisser U. 1967.. Cognitive Psychology. New York:: Appleton-Century-Crofts
    [Google Scholar]
  85. Neumann O. 1984.. Automatic processing: a review of recent findings and a plea for an old theory. . In Cognition and Motor Processes, ed. W Prinz, AF Sanders , pp. 25590. Berlin:: Springer
    [Google Scholar]
  86. Oxner M, Martinovic J, Forschack N, Lempe R, Gundlach C, Müller M. 2023.. Global enhancement of target color—not proactive suppression—explains attentional deployment during visual search. . J. Exp. Psychol. Gen. 152:(6):170522
    [Crossref] [Google Scholar]
  87. Parkhurst D, Law K, Niebur E. 2002.. Modeling the role of salience in the allocation of overt visual attention. . Vis. Res. 42:(1):10723
    [Crossref] [Google Scholar]
  88. Pashler H, Johnston JC, Ruthruff E. 2001.. Attention and performance. . Annu. Rev. Psychol. 52::62951
    [Crossref] [Google Scholar]
  89. Pinto Y, Olivers CL, Theeuwes J. 2005.. Target uncertainty does not lead to more distraction by singletons: Intertrial priming does. . Percept. Psychophys. 67:(8):135461
    [Crossref] [Google Scholar]
  90. Posner MI. 1978.. Chronometric Explorations of Mind. Mahwah, NJ:: Lawrence Erlbaum
    [Google Scholar]
  91. Posner MI. 1980.. Orienting of attention. . Q. J. Exp. Psychol. 32:(1):325
    [Crossref] [Google Scholar]
  92. Posner MI, Snyder CR, Davidson BJ. 1980.. Attention and the detection of signals. . J. Exp. Psychol. Gen. 109:(2):16074
    [Crossref] [Google Scholar]
  93. Richter D, Van Moorselaar D, Theeuwes J. 2024.. Proactive distractor suppression in early visual cortex. . bioRxiv 2024.04.03.587747. https://doi.org/10.1101/2024.04.03.587747
  94. Sawaki R, Luck SJ. 2010.. Capture versus suppression of attention by salient singletons: electrophysiological evidence for an automatic attend-to-me signal. . Atten. Percept. Psychophys. 72:(6):145570
    [Crossref] [Google Scholar]
  95. Schubö A. 2009.. Salience detection and attentional capture. . Psychol. Res. 73:(2):23343
    [Crossref] [Google Scholar]
  96. Shiffrin RM, Schneider W. 1977.. Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. . Psychol. Rev. 84:(2):12790
    [Crossref] [Google Scholar]
  97. Stilwell BT, Vecera SP. 2019.. Learned and cued distractor rejection for multiple features in visual search. . Atten. Percept. Psychophys. 81:(2):35976
    [Crossref] [Google Scholar]
  98. Theeuwes J. 1991a.. Cross-dimensional perceptual selectivity. . Percept. Psychophys. 50:(2):18493
    [Crossref] [Google Scholar]
  99. Theeuwes J. 1991b.. Exogenous and endogenous control of attention: the effect of visual onsets and offsets. . Percept. Psychophys. 49:(1):8390
    [Crossref] [Google Scholar]
  100. Theeuwes J. 1992.. Perceptual selectivity for color and form. . Percept. Psychophys. 51:(6):599606
    [Crossref] [Google Scholar]
  101. Theeuwes J. 1994a.. Endogenous and exogenous control of visual selection. . Perception 23:(4):42940
    [Crossref] [Google Scholar]
  102. Theeuwes J. 1994b.. Stimulus-driven capture and attentional set: selective search for color and visual abrupt onsets. . J. Exp. Psychol. Hum. Percept. Perform. 20:(4):799806
    [Crossref] [Google Scholar]
  103. Theeuwes J. 2004.. Top-down search strategies cannot override attentional capture. . Psychon. Bull. Rev. 11::6570
    [Crossref] [Google Scholar]
  104. Theeuwes J. 2010.. Top-down and bottom-up control of visual selection. . Acta Psychol. 135:(2):7799
    [Crossref] [Google Scholar]
  105. Theeuwes J. 2018.. Visual selection: usually fast and automatic; seldom slow and volitional. . J. Cogn. 1:(1):29
    [Crossref] [Google Scholar]
  106. Theeuwes J. 2019.. Goal-driven, stimulus-driven, and history-driven selection. . Curr. Opin. Psychol. 29::97101
    [Crossref] [Google Scholar]
  107. Theeuwes J. 2023a.. The attentional capture debate: When can we avoid salient distractors and when not?. J. Cogn. 6:(1):35
    [Crossref] [Google Scholar]
  108. Theeuwes J. 2023b.. The attentional window, search difficulty and search modes: a reply to commentaries on Theeuwes 2023. . J. Cogn. 6:(1):40
    [Crossref] [Google Scholar]
  109. Theeuwes J, Atchley P, Kramer AF. 2000.. On the time course of top-down and bottom-up control of visual attention. . In Control of Cognitive Processes: Attention and Performance XVIII, ed. S Monsell, J Driver , pp. 10524. Cambridge, MA:: MIT Press
    [Google Scholar]
  110. Theeuwes J, Bogaerts L, van Moorselaar D. 2022.. What to expect where and when: how statistical learning drives visual selection. . Trends Cogn. Sci. 26:(10):86072
    [Crossref] [Google Scholar]
  111. Theeuwes J, Chen CYD. 2005.. Attentional capture and inhibition (of return): the effect on perceptual sensitivity. . Percept. Psychophys. 67::130512
    [Crossref] [Google Scholar]
  112. Theeuwes J, Godijn R. 2004.. Inhibition-of-return and oculomotor interference. . Vis. Res. 44:(12):148592
    [Crossref] [Google Scholar]
  113. Theeuwes J, Kramer AF, Hahn S, Irwin DE. 1998.. Our eyes do not always go where we want them to go: capture of the eyes by new objects. . Psychol. Sci. 9:(5):37985
    [Crossref] [Google Scholar]
  114. Theeuwes J, Kramer AF, Hahn S, Irwin DE, Zelinsky GJ. 1999.. Influence of attentional capture on oculomotor control. . J. Exp. Psychol. Hum. Percept. Perform. 25:(6):1595608
    [Crossref] [Google Scholar]
  115. Theeuwes J, Kramer AF, Kingstone A. 2004.. Attentional capture modulates perceptual sensitivity. . Psychon. Bull. Rev. 11:(3):55154
    [Crossref] [Google Scholar]
  116. Theeuwes J, Van der Burg E. 2011.. On the limits of top-down control of visual selection. . Atten. Percept. Psychophys. 73::2092103
    [Crossref] [Google Scholar]
  117. Theeuwes J, Van der Burg E. 2013.. Priming makes a stimulus more salient. . J. Vis. 13:(3):21
    [Crossref] [Google Scholar]
  118. Treisman AM, Gelade G. 1980.. A feature-integration theory of attention. . Cogn. Psychol. 12:(1):97136
    [Crossref] [Google Scholar]
  119. Treisman AM, Sato S. 1990.. Conjunction search revisited. . J. Exp. Psychol. Hum. Percept. Perform. 16:(3):45978
    [Crossref] [Google Scholar]
  120. Turk-Browne NB, Jungé JA, Scholl BJ. 2005.. The automaticity of visual statistical learning. . J. Exp. Psychol. Gen. 134:(4):55264
    [Crossref] [Google Scholar]
  121. Van Moorselaar D, Theeuwes J. 2021.. Statistical distractor learning modulates perceptual sensitivity. . J. Vis. 21:(12):3
    [Crossref] [Google Scholar]
  122. Van Moorselaar D, Theeuwes J. 2022.. Spatial suppression due to statistical regularities in a visual detection task. . Atten. Percept. Psychophys. 84:(2):45058
    [Crossref] [Google Scholar]
  123. Van Zoest W, Donk M, Theeuwes J. 2004.. The role of stimulus-driven and goal-driven control in saccadic visual selection. . J. Exp. Psychol. Hum. Percept. Perform. 30:(4):74659
    [Crossref] [Google Scholar]
  124. Vatterott DB, Vecera SP. 2012.. Experience-dependent attentional tuning of distractor rejection. . Psychon. Bull. Rev. 19:(5):87178
    [Crossref] [Google Scholar]
  125. Wang B, Samara I, Theeuwes J. 2019a.. Statistical regularities bias overt attention. . Atten. Percept. Psychophys. 81:(6):181321
    [Crossref] [Google Scholar]
  126. Wang B, Theeuwes J. 2018a.. How to inhibit a distractor location? Statistical learning versus active, top-down suppression. . Atten. Percept. Psychophys. 80::86070
    [Crossref] [Google Scholar]
  127. Wang B, Theeuwes J. 2018b.. Statistical regularities modulate attentional capture. . J. Exp. Psychol. Hum. Percept. Perform. 44:(1):1317
    [Crossref] [Google Scholar]
  128. Wang B, Theeuwes J. 2018c.. Statistical regularities modulate attentional capture independent of search strategy. . Atten. Percept. Psychophys. 80::176374
    [Crossref] [Google Scholar]
  129. Wang B, Theeuwes J. 2020a.. Implicit attentional biases in a changing environment. . Acta Psychol. 206::103064
    [Crossref] [Google Scholar]
  130. Wang B, Theeuwes J. 2020b.. Salience determines attentional orienting in visual selection. . J. Exp. Psychol. Hum. Percept. Perform. 46:(10):105157
    [Crossref] [Google Scholar]
  131. Wang B, van Driel J, Ort E, Theeuwes J. 2019b.. Anticipatory distractor suppression elicited by statistical regularities in visual search. . J. Cogn. Neurosci. 31:(10):153548
    [Crossref] [Google Scholar]
  132. Weaver MD, van Zoest W, Hickey C. 2017.. A temporal dependency account of attentional inhibition in oculomotor control. . NeuroImage 147::88094
    [Crossref] [Google Scholar]
  133. Wolfe JM. 2021.. Guided Search 6.0: An updated model of visual search. . Psychon. Bull. Rev. 28:(4):106092
    [Crossref] [Google Scholar]
  134. Wolfe JM, Butcher SJ, Lee C, Hyle M. 2003.. Changing your mind: on the contributions of top-down and bottom-up guidance in visual search for feature singletons. . J. Exp. Psychol. Hum. Percept. Perform. 29:(2):483502
    [Crossref] [Google Scholar]
  135. Won B-Y, Kosoyan M, Geng JJ. 2019.. Evidence for second-order singleton suppression based on probabilistic expectations. . J. Exp. Psychol. Hum. Percept. Perform. 45:(1):12538
    [Crossref] [Google Scholar]
  136. Wöstmann M, Störmer VS, Obleser J, Addleman DA, Andersen SK, et al. 2022.. Ten simple rules to study distractor suppression. . Progress Neurobiol. 213::102269
    [Crossref] [Google Scholar]
  137. Wyble B, Folk C, Potter MC. 2013.. Contingent attentional capture by conceptually relevant images. . J. Exp. Psychol. Hum. Percept. Perform. 39:(3):86171
    [Crossref] [Google Scholar]
  138. Yantis S, Jonides J. 1990.. Abrupt visual onsets and selective attention: voluntary versus automatic allocation. . J. Exp. Psychol. Hum. Percept. Perform. 16:(1):12134
    [Crossref] [Google Scholar]
  139. Zelinsky GJ, Bisley JW. 2015.. The what, where, and why of priority maps and their interactions with visual working memory. . Ann. N.Y. Acad. Sci. 1339:(1):15464
    [Crossref] [Google Scholar]
  140. Zohary E, Hochstein S. 1989.. How serial is serial processing in vision?. Perception 18:(2):191200
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-psych-011624-025340
Loading
/content/journals/10.1146/annurev-psych-011624-025340
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error