1932

Abstract

Generalization, defined as applying limited experiences to novel situations, represents a cornerstone of human intelligence. Our review traces the evolution and continuity of psychological theories of generalization, from its origins in concept learning (categorizing stimuli) and function learning (learning continuous input-output relationships) to domains such as reinforcement learning and latent structure learning. Historically, there have been fierce debates between approaches based on rule-based mechanisms, which rely on explicit hypotheses about environmental structure, and approaches based on similarity-based mechanisms, which leverage comparisons to prior instances. Each approach has unique advantages: Rules support rapid knowledge transfer, while similarity is computationally simple and flexible. Today, these debates have culminated in the development of hybrid models grounded in Bayesian principles, effectively marrying the precision of rules with the flexibility of similarity. The ongoing success of hybrid models not only bridges past dichotomies but also underscores the importance of integrating both rules and similarity for a comprehensive understanding of human generalization.

Erratum

An erratum has been published for this article:
Erratum: Unifying Principles of Generalization: Past, Present, and Future
Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-021524-110810
2025-01-17
2025-04-29
Loading full text...

Full text loading...

/deliver/fulltext/psych/76/1/annurev-psych-021524-110810.html?itemId=/content/journals/10.1146/annurev-psych-021524-110810&mimeType=html&fmt=ahah

Literature Cited

  1. Allen KR, Smith KA, Tenenbaum JB. 2020.. Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning. . PNAS 117:(47):2930210
    [Crossref] [Google Scholar]
  2. Ashby FG, Alfonso-Reese LA, Turken AU, Waldron EM. 1998.. A neuropsychological theory of multiple systems in category learning. . Psychol. Rev. 105:(3):44281
    [Crossref] [Google Scholar]
  3. Ashby FG, Gott RE. 1988.. Decision rules in the perception and categorization of multidimensional stimuli. . J. Exp. Psychol. Learn. Mem. Cogn. 14:(1):3353
    [Crossref] [Google Scholar]
  4. Ashby FG, Maddox WT. 2005.. Human category learning. . Annu. Rev. Psychol. 56::14978
    [Crossref] [Google Scholar]
  5. Auer P. 2002.. Finite-time analysis of the multiarmed bandit problem. . Mach. Learn. 47::23556
    [Crossref] [Google Scholar]
  6. Austerweil JL, Gershman SJ, Tenenbaum JB, Griffiths TL. 2015.. Structure and flexibility in Bayesian models of cognition. . In Oxford Handbook of Computational and Mathematical Psychology, ed. JR Busemeyer, Z Wang, JT Townsend, A Eidels , pp. 187208. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  7. Bao X, Gjorgieva E, Shanahan LK, Howard JD, Kahnt T, Gottfried JA. 2019.. Grid-like neural representations support olfactory navigation of a two-dimensional odor space. . Neuron 102:(5):106675.e5
    [Crossref] [Google Scholar]
  8. Barron HC, Dolan RJ, Behrens TEJ. 2013.. Online evaluation of novel choices by simultaneous representation of multiple memories. . Nat. Neurosci. 16:(10):149298
    [Crossref] [Google Scholar]
  9. Behrens TEJ, Muller TH, Whittington JCR, Mark S, Baram AB, et al. 2018.. What is a cognitive map? Organizing knowledge for flexible behavior. . Neuron 100:(2):490509
    [Crossref] [Google Scholar]
  10. Blanco NJ, Love BC, Ramscar M, Otto AR, Smayda K, Maddox WT. 2016.. Exploratory decision-making as a function of lifelong experience, not cognitive decline. . J. Exp. Psychol. Gen. 145:(3):28497
    [Crossref] [Google Scholar]
  11. Blanco NJ, Sloutsky VM. 2021.. Systematic exploration and uncertainty dominate young children's choices. . Dev. Sci. 24:(2):e13026
    [Crossref] [Google Scholar]
  12. Bonawitz E, Denison S, Gopnik A, Griffiths TL. 2014.. Win-stay, lose-sample: a simple sequential algorithm for approximating Bayesian inference. . Cogn. Psychol. 74::3565
    [Crossref] [Google Scholar]
  13. Botvinick M, Ritter S, Wang JX, Kurth-Nelson Z, Blundell C, Hassabis D. 2019.. Reinforcement learning, fast and slow. . Trends Cogn. Sci. 23:(5):40822
    [Crossref] [Google Scholar]
  14. Bowman CR, Iwashita T, Zeithamova D. 2020.. Tracking prototype and exemplar representations in the brain across learning. . eLife 9::e59360
    [Crossref] [Google Scholar]
  15. Brehmer B. 1974.. Hypotheses about relations between scaled variables in the learning of probabilistic inference tasks. . Organ. Behav. Hum. Perform. 11:(1):127
    [Crossref] [Google Scholar]
  16. Brehmer B. 1976.. Learning complex rules in probabilistic inference tasks. . Scand. J. Psychol. 17:(1):30912
    [Crossref] [Google Scholar]
  17. Breit S, Sakaki M, Murayama K, Wu CM. 2022.. In search of lost memories: modeling forgetful generalization. . In Proceedings of the 15th Biannual Conference of the German Society for Cognitive Science. Freiburg, Ger:.: Albert-Ludwigs-Universität
    [Google Scholar]
  18. Bruner JS, Goodnow JJ, Austin GA. 1956.. A Study of Thinking. New York:: John Wiley & Sons
    [Google Scholar]
  19. Buchsbaum D, Bridgers S, Skolnick Weisberg D, Gopnik A. 2012.. The power of possibility: causal learning, counterfactual reasoning, and pretend play. . Philos. Trans. R. Soc. B 367:(1599):220212
    [Crossref] [Google Scholar]
  20. Busemeyer JR, Byun E, Delosh EL, McDaniel MA. 1997.. Learning functional relations based on experience with input-output pairs by humans and artificial neural networks. . In Knowledge, Concepts and Categories, ed. K Lamberts, D Shanks , pp. 40837. Cambridge, MA:: MIT Press
    [Google Scholar]
  21. Carroll JD. 1963.. Functional learning: the learning of continuous functional mappings relating stimulus and response continua. . ETS Res. Bull. Ser. 1963:(2):i144
    [Google Scholar]
  22. Chater N, Vitányi PMB. 2003.. The generalized universal law of generalization. . J. Math. Psychol. 47:(3):34669
    [Crossref] [Google Scholar]
  23. Chollet F. 2019.. On the measure of intelligence. . arXiv:1911.01547 [cs.AI]
  24. Cogliati Dezza I, Cleeremans A, Alexander W. 2019.. Should we control? The interplay between cognitive control and information integration in the resolution of the exploration-exploitation dilemma. . J. Exp. Psychol. Gen. 148:(6):97793
    [Crossref] [Google Scholar]
  25. Constantinescu AO, O'Reilly JX, Behrens TEJ. 2016.. Organizing conceptual knowledge in humans with a gridlike code. . Science 352:(6292):146468
    [Crossref] [Google Scholar]
  26. Csibra G, Gergely G. 2009.. Natural pedagogy. . Trends Cogn. Sci. 13:(4):14853
    [Crossref] [Google Scholar]
  27. Cushman F. 2020.. Rationalization is rational. . Behav. Brain Sci. 43::e28
    [Crossref] [Google Scholar]
  28. Cybenko G. 1989.. Approximation by superpositions of a sigmoidal function. . Math. Control Sign. Syst. 2:(4):30314
    [Crossref] [Google Scholar]
  29. Dasgupta I, Grant E, Griffiths T. 2022.. Distinguishing rule and exemplar-based generalization in learning systems. . In Proceedings of the 39th International Conference on Machine Learning, ed. K Chaudhuri, S Jegelka, L Song, C Szepesvari, G Niu, S Sabato , pp. 481630. Cambridge, MA:: PMLR
    [Google Scholar]
  30. Dasgupta I, Schulz E, Goodman ND, Gershman SJ. 2018.. Remembrance of inferences past: amortization in human hypothesis generation. . Cognition 178::6781
    [Crossref] [Google Scholar]
  31. Dasgupta I, Schulz E, Tenenbaum JB, Gershman SJ. 2020.. A theory of learning to infer. . Psychol. Rev. 127:(3):41241
    [Crossref] [Google Scholar]
  32. Dayan P. 1993.. Improving generalization for temporal difference learning: the successor representation. Work. Pap. , Salk Inst., San Diego, CA:
    [Google Scholar]
  33. Dehaene S, Al Roumi F, Lakretz Y, Planton S, Sablé-Meyer M. 2022.. Symbols and mental programs: a hypothesis about human singularity. . Trends Cogn. Sci. 26:(9):75166
    [Crossref] [Google Scholar]
  34. Deleu T, Góis A, Emezue C, Rankawat M, Lacoste-Julien S, et al. 2022.. Bayesian structure learning with generative flow networks. . In Uncertainty in Artificial Intelligence, pp. 51828. Cambridge, MA:: PMLR
    [Google Scholar]
  35. DeLosh EL, Busemeyer JR, McDaniel MA. 1997.. Extrapolation: the sine qua non for abstraction in function learning. . J. Exp. Psychol. Learn. Mem. Cogn. 23:(4):96886
    [Crossref] [Google Scholar]
  36. Denison S, Bonawitz E, Gopnik A, Griffiths TL. 2013.. Rational variability in children's causal inferences: the sampling hypothesis. . Cognition 126:(2):285300
    [Crossref] [Google Scholar]
  37. Doolittle WF, Bapteste E. 2007.. Pattern pluralism and the tree of life hypothesis. . PNAS 104:(7):204349
    [Crossref] [Google Scholar]
  38. Doucet A, Johansen AM, Others. 2011.. A tutorial on particle filtering and smoothing: fifteen years later. . In The Oxford Handbook of Nonlinear Filtering, ed. D Crisan, B Rozovskii , pp. 656704. New York:: Oxford Univ. Press
    [Google Scholar]
  39. Duvenaud D, Lloyd JR, Grosse R, Tenenbaum JB, Ghahramani Z. 2013.. Structure discovery in nonparametric regression through compositional kernel search. . PMLR 28:(3):116674
    [Google Scholar]
  40. Ekman G. 1954.. Dimensions of color vision. . J. Psychol. 38:(2):46774
    [Crossref] [Google Scholar]
  41. Ellis K, Wong L, Nye M, Sable-Meyer M, Cary L, et al. 2023.. Dreamcoder: growing generalizable, interpretable knowledge with wake–sleep Bayesian program learning. . Philos. Trans. R. Soc. A 381:(2251):20220050
    [Crossref] [Google Scholar]
  42. Epstein RA, Patai EZ, Julian JB, Spiers HJ. 2017.. The cognitive map in humans: spatial navigation and beyond. . Nat. Neurosci. 20:(11):150413
    [Crossref] [Google Scholar]
  43. Erickson MA, Kruschke JK. 1998.. Rules and exemplars in category learning. . J. Exp. Psychol. Gen. 127:(2):10740
    [Crossref] [Google Scholar]
  44. Fodor JA. 1975.. The Language of Thought. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  45. Fränken JP, Theodoropoulos NC, Bramley NR. 2022.. Algorithms of adaptation in inductive inference. . Cogn. Psychol. 137::101506
    [Crossref] [Google Scholar]
  46. Garvert MM, Dolan RJ, Behrens TEJ. 2017.. A map of abstract relational knowledge in the human hippocampal–entorhinal cortex. . eLife 6::e17086
    [Crossref] [Google Scholar]
  47. Garvert MM, Saanum T, Schulz E, Schuck NW, Doeller CF. 2023.. Hippocampal spatio-predictive cognitive maps adaptively guide reward generalization. . Nat. Neurosci. 26:(4):61526
    [Crossref] [Google Scholar]
  48. Geirhos R, Medina Temme CR, Rauber J, Schütt HH, Bethge M, Wichmann FA. 2018.. Generalisation in humans and deep neural networks. . Adv. Neural Inf. Process. Syst. 31:. https://papers.nips.cc/paperiles/paper/2018/file/0937fb5864ed06ffb59ae5f9b5ed67a9-Paper.pdf
    [Google Scholar]
  49. Gershman SJ. 2018.. Deconstructing the human algorithms for exploration. . Cognition 173::3442
    [Crossref] [Google Scholar]
  50. Gershman SJ, Daw ND. 2017.. Reinforcement learning and episodic memory in humans and animals: an integrative framework. . Annu. Rev. Psychol. 68::10128
    [Crossref] [Google Scholar]
  51. Gershman SJ, Malmaud J, Tenenbaum JB. 2017.. Structured representations of utility in combinatorial domains. . Decision 4:(2):6786
    [Crossref] [Google Scholar]
  52. Giron AP, Ciranka S, Schulz E, van den Bos W, Ruggeri A, et al. 2023.. Developmental changes in exploration resemble stochastic optimization. . Nat. Hum. Behav. 7::195567
    [Crossref] [Google Scholar]
  53. Goodman N. 1972.. Seven strictures on similarity. . In Problems and Projects. Indianapolis, IN:: Bobbs-Merrill
    [Google Scholar]
  54. Goodman ND, Tenenbaum JB, Feldman J, Griffiths TL. 2008.. A rational analysis of rule-based concept learning. . Cogn. Sci. 32:(1):10854
    [Crossref] [Google Scholar]
  55. Gopnik A. 2020.. Childhood as a solution to explore–exploit tensions. . Philos. Trans. R. Soc. B 375:(1803):20190502
    [Crossref] [Google Scholar]
  56. Gopnik A, Griffiths TL, Lucas CG. 2015.. When younger learners can be better (or at least more open-minded) than older ones. . Curr. Dir. Psychol. Sci. 24:(2):8792
    [Crossref] [Google Scholar]
  57. Gopnik A, O'Grady S, Lucas CG, Griffiths TL, Wente A, et al. 2017.. Changes in cognitive flexibility and hypothesis search across human life history from childhood to adolescence to adulthood. . PNAS 114:(30):789299
    [Crossref] [Google Scholar]
  58. Griffiths TL, Tenenbaum JB. 2005.. Structure and strength in causal induction. . Cogn. Psychol. 51:(4):33484
    [Crossref] [Google Scholar]
  59. Griffiths TL, Tenenbaum JB. 2009.. Theory-based causal induction. . Psychol. Rev. 116:(4):661716
    [Crossref] [Google Scholar]
  60. Hahn U, Chater N. 1998.. Similarity and rules: distinct? Exhaustive? Empirically distinguishable?. Cognition 65:(2–3):197230
    [Crossref] [Google Scholar]
  61. Hahn U, Ramscar M. 2001.. Similarity and Categorization. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  62. Henrich J. 2016.. The Secret of Our Success: How Culture Is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  63. Heyes C. 2018.. Cognitive Gadgets: The Cultural Evolution of Thinking. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  64. Ho MK, MacGlashan J, Littman ML, Cushman F. 2017.. Social is special: a normative framework for teaching with and learning from evaluative feedback. . Cognition 167::91106
    [Crossref] [Google Scholar]
  65. Huys QJ, Lally N, Faulkner P, Eshel N, Seifritz E, et al. 2015.. Interplay of approximate planning strategies. . PNAS 112:(10):3098103
    [Crossref] [Google Scholar]
  66. Jäkel F, Schölkopf B, Wichmann FA. 2008.. Similarity, kernels, and the triangle inequality. . J. Math. Psychol. 52:(5):297303
    [Crossref] [Google Scholar]
  67. James W. 1890.. The Principles of Psychology. New York:: Henry Holt & Co.
    [Google Scholar]
  68. Jara-Ettinger J. 2019.. Theory of mind as inverse reinforcement learning. . Curr. Opin. Behav. Sci. 29::10510
    [Crossref] [Google Scholar]
  69. Kalish ML, Griffiths TL, Lewandowsky S. 2007.. Iterated learning: Intergenerational knowledge transmission reveals inductive biases. . Psychon. Bull. Rev. 14:(2):28894
    [Crossref] [Google Scholar]
  70. Kalish ML, Lewandowsky S, Kruschke JK. 2004.. Population of linear experts: knowledge partitioning and function learning. . Psychol. Rev. 111:(4):107299
    [Crossref] [Google Scholar]
  71. Kemp C, Tenenbaum JB. 2008.. The discovery of structural form. . PNAS 105:(31):1068792
    [Crossref] [Google Scholar]
  72. Kemp C, Tenenbaum JB. 2009.. Structured statistical models of inductive reasoning. . Psychol. Rev. 116:(1):2058
    [Crossref] [Google Scholar]
  73. Keramati M, Smittenaar P, Dolan RJ, Dayan P. 2016.. Adaptive integration of habits into depth-limited planning defines a habitual-goal–directed spectrum. . PNAS 113:(45):1286873
    [Crossref] [Google Scholar]
  74. Kondor RI, Lafferty J. 2002.. Diffusion kernels on graphs and other discrete input spaces. . In Proceedings of the 19th International Conference on Machine Learning, ed. C Sammut, AG Hoffmann , pp. 3121322. San Francisco:: Morgan Kaufmann
    [Google Scholar]
  75. Kool W, Gershman SJ, Cushman FA. 2018.. Planning complexity registers as a cost in metacontrol. . J. Cogn. Neurosci. 30:(10):1391404
    [Crossref] [Google Scholar]
  76. Kotov R, Krueger RF, Watson D, Cicero DC, Conway CC, et al. 2021.. The hierarchical taxonomy of psychopathology (HiTOP): a quantitative nosology based on consensus of evidence. . Annu. Rev. Clin. Psychol. 17::83108
    [Crossref] [Google Scholar]
  77. Kruschke JK. 1992.. ALCOVE: An exemplar-based connectionist model of category learning. . Psychol. Rev. 99:(1):2244
    [Crossref] [Google Scholar]
  78. Kruskal JB. 1964.. Nonmetric multidimensional scaling: a numerical method. . Psychometrika 29:(2):11529
    [Crossref] [Google Scholar]
  79. Lake BM, Salakhutdinov R, Tenenbaum JB. 2015.. Human-level concept learning through probabilistic program induction. . Science 350:(6266):133238
    [Crossref] [Google Scholar]
  80. Lake BM, Ullman TD, Tenenbaum JB, Gershman SJ. 2017.. Building machines that learn and think like people. . Behav. Brain Sci. 40::e253
    [Crossref] [Google Scholar]
  81. Lau T, Gershman SJ, Cikara M. 2020.. Social structure learning in human anterior insula. . eLife 9::e53162
    [Crossref] [Google Scholar]
  82. Lengyel M, Dayan P. 2007.. Hippocampal contributions to control: the third way. . Adv. Neural Inform. Process. Syst. 20::88996
    [Google Scholar]
  83. Love BC, Medin DL, Gureckis TM. 2004.. SUSTAIN: a network model of category learning. . Psychol. Rev. 111:(2):30932
    [Crossref] [Google Scholar]
  84. Lucas CG, Bridgers S, Griffiths TL, Gopnik A. 2014.. When children are better (or at least more open-minded) learners than adults: developmental differences in learning the forms of causal relationships. . Cognition 131:(2):28499
    [Crossref] [Google Scholar]
  85. Lucas CG, Griffiths TL, Williams JJ, Kalish ML. 2015.. A rational model of function learning. . Psychon. Bull. Rev. 22:(5):1193215
    [Crossref] [Google Scholar]
  86. Lynn CW, Bassett DS. 2020.. How humans learn and represent networks. . PNAS 117:(47):2940715
    [Crossref] [Google Scholar]
  87. Machado MC, Rosenbaum C, Guo X, Liu M, Tesauro G, Campbell M. 2018.. Eigenoption discovery through the deep successor representation. . arXiv:1710.11089 [cs.LG]
  88. Mark S, Moran R, Parr T, Kennerley SW, Behrens TEJ. 2020.. Transferring structural knowledge across cognitive maps in humans and models. . Nat. Commun. 11:(1):4783
    [Crossref] [Google Scholar]
  89. McClelland JL, Rumelhart DE, PDP Res. Group. 1986.. Parallel Distributed Processing, Vol. 2. Cambridge, MA:: MIT Press
    [Google Scholar]
  90. McDaniel MA, Busemeyer JR. 2005.. The conceptual basis of function learning and extrapolation: comparison of rule-based and associative-based models. . Psychon. Bull. Rev. 12:(1):2442
    [Crossref] [Google Scholar]
  91. Meder B, Mayrhofer R, Waldmann MR. 2014.. Structure induction in diagnostic causal reasoning. . Psychol. Rev. 121:(3):277301
    [Crossref] [Google Scholar]
  92. Meder B, Wu CM, Schulz E, Ruggeri A. 2021.. Development of directed and random exploration in children. . Dev. Sci. 24:(4):e13095
    [Crossref] [Google Scholar]
  93. Medin DL, Goldstone RL, Gentner D. 1993.. Respects for similarity. . Psychol. Rev. 100:(2):25478
    [Crossref] [Google Scholar]
  94. Medin DL, Schaffer MM. 1978.. Context theory of classification learning. . Psychol. Rev. 85:(3):20738
    [Crossref] [Google Scholar]
  95. Mehlhorn K, Newell BR, Todd PM, Lee MD, Morgan K, et al. 2015.. Unpacking the exploration–exploitation tradeoff: a synthesis of human and animal literatures. . Decisions 2:(3):191215
    [Crossref] [Google Scholar]
  96. Mercer J. 1909.. Functions of positive and negative type and their connection with the theory of integral equations. . Philos. Trans. R. Soc. A 209::44158
    [Google Scholar]
  97. Miller KJ, Botvinick MM, Brody CD. 2017.. Dorsal hippocampus contributes to model-based planning. . Nat. Neurosci. 20:(9):126976
    [Crossref] [Google Scholar]
  98. Moser EI, Roudi Y, Witter MP, Kentros C, Bonhoeffer T, Moser MB. 2014.. Grid cells and cortical representation. . Nat. Rev. Neurosci. 15:(7):46681
    [Crossref] [Google Scholar]
  99. Moskvichev A, Odouard VV, Mitchell M. 2023.. The ConceptARC benchmark: evaluating understanding and generalization in the arc domain. . arXiv:2305.07141 [cs.LG]
  100. Murphy GL, Medin DL. 1985.. The role of theories in conceptual coherence. . Psychol. Rev. 92:(3):289316
    [Crossref] [Google Scholar]
  101. Neal RM. 1996.. Priors for infinite networks. . In Bayesian Learning for Neural Networks, pp. 2953. New York:: Springer
    [Google Scholar]
  102. Nelson JD. 2005.. Finding useful questions: on Bayesian diagnosticity, probability, impact, and information gain. . Psychol. Rev. 112:(4):97999
    [Crossref] [Google Scholar]
  103. Newell A, Simon HA. 1976.. Computer science as empirical inquiry: symbols and search. . Commun. ACM 19:(3):11326
    [Crossref] [Google Scholar]
  104. Norbury A, Robbins TW, Seymour B. 2018.. Value generalization in human avoidance learning. . eLife 7::e34779
    [Crossref] [Google Scholar]
  105. Nosofsky RM. 1986.. Attention, similarity, and the identification–categorization relationship. . J. Exp. Psychol. Gen. 115:(1):3957
    [Crossref] [Google Scholar]
  106. Nosofsky RM, Palmeri TJ, McKinley SC. 1994.. Rule-plus-exception model of classification learning. . Psychol. Rev. 101:(1):5379
    [Crossref] [Google Scholar]
  107. Pavlov IP. 1927.. Conditional Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  108. Peer M, Brunec IK, Newcombe NS, Epstein RA. 2021.. Structuring knowledge with cognitive maps and cognitive graphs. . Trends Cogn. Sci. 25:(1):3754
    [Crossref] [Google Scholar]
  109. Pettine WW, Raman DV, Redish AD, Murray JD. 2023.. Human generalization of internal representations through prototype learning with goal-directed attention. . Nat. Hum. Behav. 7:(3):44263
    [Crossref] [Google Scholar]
  110. Piantadosi ST, Tenenbaum JB, Goodman ND. 2016.. The logical primitives of thought: empirical foundations for compositional cognitive models. . Psychol. Rev. 123:(4):392424
    [Crossref] [Google Scholar]
  111. Poggio T, Bizzi E. 2004.. Generalization in vision and motor control. . Nature 431:(7010):76874
    [Crossref] [Google Scholar]
  112. Pothos EM. 2005.. The rules versus similarity distinction. . Behav. Brain Sci. 28:(1):114; discuss. 14–49
    [Crossref] [Google Scholar]
  113. Pouncy T, Tsividis P, Gershman SJ. 2021.. What is the model in model-based planning?. Cogn. Sci. 45:(1):e12928
    [Crossref] [Google Scholar]
  114. Radulescu A, Shin YS, Niv Y. 2021.. Human representation learning. . Annu. Rev. Neurosci. 44::25373
    [Crossref] [Google Scholar]
  115. Rasmussen CE, Williams CKI. 2005.. Gaussian Processes for Machine Learning. Cambridge, MA:: MIT Press
    [Google Scholar]
  116. Reber AS, Lewis S. 1977.. Implicit learning: an analysis of the form and structure of a body of tacit knowledge. . Cognition 5:(4):33361
    [Crossref] [Google Scholar]
  117. Rosch EH. 1973.. Natural categories. . Cogn. Psychol. 4:(3):32850
    [Crossref] [Google Scholar]
  118. Rouder JN, Ratcliff R. 2006.. Comparing exemplar- and rule-based theories of categorization. . Curr. Dir. Psychol. Sci. 15:(1):913
    [Crossref] [Google Scholar]
  119. Rubino V, Hamidi M, Dayan P, Wu CM. 2023.. Compositionality under time pressure. . In Proceedings of the 45th Annual Conference of the Cognitive Science Society, ed. M Goldwater, F Anggoro, B Hayes, D Ong , pp. 67885. Seattle, WA:: Cogn. Sci. Soc.
    [Google Scholar]
  120. Rule JS, Tenenbaum JB, Piantadosi ST. 2020.. The child as hacker. . Trends Cogn. Sci. 24:(11):90015
    [Crossref] [Google Scholar]
  121. Russek EM, Momennejad I, Botvinick MM, Gershman SJ, Daw ND. 2017.. Predictive representations can link model-based reinforcement learning to model-free mechanisms. . PLOS Comput. Biol. 13:(9):e1005768
    [Crossref] [Google Scholar]
  122. Sanborn AN, Griffiths TL, Navarro DJ. 2010.. Rational approximations to rational models: alternative algorithms for category learning. . Psychol. Rev. 117:(4):114467
    [Crossref] [Google Scholar]
  123. Schölkopf B, Smola AJ. 2002.. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA:: MIT Press
    [Google Scholar]
  124. Schulz E, Speekenbrink M, Krause A. 2018.. A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions. . J. Math. Psychol. 85::116
    [Crossref] [Google Scholar]
  125. Schulz E, Tenenbaum JB, Duvenaud D, Speekenbrink M, Gershman SJ. 2017.. Compositional inductive biases in function learning. . Cogn. Psychol. 99::4479
    [Crossref] [Google Scholar]
  126. Schulz E, Wu CM, Ruggeri A, Meder B. 2019.. Searching for rewards like a child means less generalization and more directed exploration. . Psychol. Sci. 30:(11):156172
    [Crossref] [Google Scholar]
  127. Shepard RN. 1962.. The analysis of proximities: multidimensional scaling with an unknown distance function II. . Psychometrika 27:(3):21946
    [Crossref] [Google Scholar]
  128. Shepard RN. 1987.. Toward a universal law of generalization for psychological science. . Science 237:(4820):131723
    [Crossref] [Google Scholar]
  129. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, et al. 2016.. Mastering the game of Go with deep neural networks and tree search. . Nature 529:(7587):48489
    [Crossref] [Google Scholar]
  130. Skinner BF. 1938.. The Behavior of Organisms: An Experimental Analysis. New York:: Appleton-Century
    [Google Scholar]
  131. Smith EE, Medin DL. 1981.. Categories and Concepts. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  132. Smith JD, Minda JP. 1998.. Prototypes in the mist: the early epochs of category learning. . J. Exp. Psychol. Learn. Mem. Cogn. 24:(6):141136
    [Crossref] [Google Scholar]
  133. Somerville LH, Sasse SF, Garrad MC, Drysdale AT, Abi Akar N, et al. 2017.. Charting the expansion of strategic exploratory behavior during adolescence. . J. Exp. Psychol. Gen. 146:(2):15564
    [Crossref] [Google Scholar]
  134. Speekenbrink M. 2016.. A tutorial on particle filters. . J. Math. Psychol. 73::14052
    [Crossref] [Google Scholar]
  135. Stachenfeld KL, Botvinick MM, Gershman SJ. 2017.. The hippocampus as a predictive map. . Nat. Neurosci. 20:(11):164353
    [Crossref] [Google Scholar]
  136. Stojić H, Schulz E, Analytis P, Speekenbrink M. 2020.. It's new, but is it good? How generalization and uncertainty guide the exploration of novel options. . J. Exp. Psychol. Gen. 149:(10):1878907
    [Crossref] [Google Scholar]
  137. Sutton RS, Barto AG. 2018.. Reinforcement Learning: An Introduction. Cambridge, MA:: MIT Press. , 2nd ed..
    [Google Scholar]
  138. Tavares RM, Mendelsohn A, Grossman Y, Williams CH, Shapiro M, et al. 2015.. A map for social navigation in the human brain. . Neuron 87:(1):23143
    [Crossref] [Google Scholar]
  139. Taylor JE, Cortese A, Barron HC, Pan X, Sakagami M, Zeithamova D. 2021.. How do we generalize?. Neurons Behav. Data Anal. Theory 1:. https://doi.org/10.51628/001c.27687
    [Google Scholar]
  140. Tenenbaum JB, Griffiths TL. 2001.. Generalization, similarity, and Bayesian inference. . Behav. Brain Sci. 24:(4):62940; discuss. 652–791
    [Crossref] [Google Scholar]
  141. Tesauro G. 1995.. Temporal difference learning and TD-Gammon. . Commun. ACM 38:(3):5868
    [Crossref] [Google Scholar]
  142. Thorndike EL. 1911.. Animal Intelligence: Experimental Studies. New York:: Macmillan Co.
    [Google Scholar]
  143. Tolman EC. 1948.. Cognitive maps in rats and men. . Psychol. Rev. 55:(4):189208
    [Crossref] [Google Scholar]
  144. Torgerson WS. 1952.. Multidimensional scaling: I. Theory and method. . Psychometrika 17:(4):40119
    [Crossref] [Google Scholar]
  145. Tsividis PA, Loula J, Burga J, Foss N, Campero A, et al. 2021.. Human-Level reinforcement learning through theory-based modeling, exploration, and planning. . arXiv:2107.12544 [cs.AI]
  146. Tversky A. 1977.. Features of similarity. . Psychol. Rev. 84:(4):32752
    [Crossref] [Google Scholar]
  147. Van den Bos W, Cohen MX, Kahnt T, Crone EA. 2012.. Striatum–medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning. . Cereb. Cortex 22:(6):124755
    [Crossref] [Google Scholar]
  148. Whittington JC, McCaffary D, Bakermans JJ, Behrens TE. 2022.. How to build a cognitive map. . Nat. Neurosci. 25:(10):125772
    [Crossref] [Google Scholar]
  149. Whittington JCR, Muller TH, Mark S, Chen G, Barry C, et al. 2020.. The Tolman-Eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation. . Cell 183:(5):124963.e23
    [Crossref] [Google Scholar]
  150. Wilson RC, Geana A, White JM, Ludvig EA, Cohen JD. 2014.. Humans use directed and random exploration to solve the explore-exploit dilemma. . J. Exp. Psychol. Gen. 143:(6):207481
    [Crossref] [Google Scholar]
  151. Wimmer GE, Elliott Wimmer G, Daw ND, Shohamy D. 2012.. Generalization of value in reinforcement learning by humans. . J. Neurosci. 35:(7):1092104
    [Google Scholar]
  152. Wingate D, Diuk C, O'Donnell T, Tenenbaum J, Gershman S. 2013.. Compositional policy priors. Tech. Rep. MIT-CSAIL-TR-2013-007 , Mass. Inst. Technol., Cambridge:
    [Google Scholar]
  153. Wise T, Emery K, Radulescu A. 2024.. Naturalistic reinforcement learning. . Trends Cogn. Sci. 28:(2):14458
    [Crossref] [Google Scholar]
  154. Witt A, Toyokawa W, Lala KN, Gaissmaier W, Wu CM. 2024.. Humans flexibly integrate social information despite interindividual differences in reward. . PNAS 121(39):e2404928121
    [Google Scholar]
  155. Wu CM, Dale R, Hawkins RD. 2024.. Group coordination catalyzes individual and cultural intelligence. . Open Mind 8::103757
    [Crossref] [Google Scholar]
  156. Wu CM, Deffner D, Kahl B, Meder B, Ho MH, Kurvers RH. 2023.. Visual-spatial dynamics drive adaptive social learning in immersive environments. . bioRxiv 2023.06.28.546887
    [Google Scholar]
  157. Wu CM, Schulz E, Garvert MM, Meder B, Schuck NW. 2020.. Similarities and differences in spatial and non-spatial cognitive maps. . PLOS Comput. Biol. 16:(9):e1008149
    [Crossref] [Google Scholar]
  158. Wu CM, Schulz E, Gershman SJ. 2021.. Inference and search on graph-structured spaces. . Comput. Brain Behav. 4:(2):12547
    [Crossref] [Google Scholar]
  159. Wu CM, Schulz E, Pleskac TJ, Speekenbrink M. 2022a.. Time pressure changes how people explore and respond to uncertainty. . Sci. Rep. 12::4122
    [Crossref] [Google Scholar]
  160. Wu CM, Schulz E, Speekenbrink M, Nelson JD, Meder B. 2018.. Generalization guides human exploration in vast decision spaces. . Nat. Hum. Behav. 2:(12):91524
    [Crossref] [Google Scholar]
  161. Wu CM, Vélez N, Cushman FA. 2022b.. Representational exchange in human social learning: balancing efficiency and flexibility. . In The Drive for Knowledge: The Science of Human Information-Seeking, ed. IC Dezza, E Schulz, CM Wu , pp. 16992. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  162. Xu F, Tenenbaum JB. 2007.. Word learning as Bayesian inference. . Psychol. Rev. 114:(2):24572
    [Crossref] [Google Scholar]
  163. Zajkowski WK, Kossut M, Wilson RC. 2017.. A causal role for right frontopolar cortex in directed, but not random, exploration. . eLife 6::e27430
    [Crossref] [Google Scholar]
  164. Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. 2016.. Understanding deep learning requires rethinking generalization. . Commun. ACM 64:(3):10715
    [Crossref] [Google Scholar]
  165. Zhao B, Lucas CG, Bramley NR. 2024.. A model of conceptual bootstrapping in human cognition. . Nat. Hum. Behav. 8::12536
    [Crossref] [Google Scholar]
  166. Zhou H, Bamler R, Wu CM, Tejero-Cantero A. 2024a. Predictive, scalable and interpretable knowledge tracing on structured domains. . arXiv:2403.13179 [cs.LG]
  167. Zhou H, Nagy DG, Wu CM. 2024b.. Harmonizing program induction with rate-distortion theory. . In Proceedings of the 46th Annual Conference of the Cognitive Science Society, pp. 251118. Seattle, WA:: Cogn. Sci. Soc.
    [Google Scholar]
  168. Zhu X, Lafferty J, Ghahramani Z. 2003.. Semi-supervised learning: from Gaussian fields to Gaussian processes. Tech. Rep. CMU-CS-03-175 , Carnegie Mellon Univ., Pittsburgh, PA:
    [Google Scholar]
/content/journals/10.1146/annurev-psych-021524-110810
Loading
/content/journals/10.1146/annurev-psych-021524-110810
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error