1932

Abstract

Humans and other primates have a remarkable ability to perform a wide range of tasks and behaviors, even novel ones, in order to achieve their goals. Further, they are able to shift flexibly among these behaviors as the contexts demand. Cognitive control is the function at the base of this remarkable behavioral generativity and flexibility. The present review provides a survey of current research on cognitive control focusing on two of its primary features within a control systems framework: () the ability to select new behaviors based on context and () the ability to monitor ongoing behavior and adjust accordingly. Throughout, the review places an emphasis on how differences in the content and structure of task representations affect these core features of cognitive control.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-022024-103901
2025-01-17
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/psych/76/1/annurev-psych-022024-103901.html?itemId=/content/journals/10.1146/annurev-psych-022024-103901&mimeType=html&fmt=ahah

Literature Cited

  1. Abdallah M, Zanitti GE, Iovene V, Wassermann D. 2022.. Functional gradients in the human lateral prefrontal cortex revealed by a comprehensive coordinate-based meta-analysis. . eLife 11::e76926
    [Crossref] [Google Scholar]
  2. Albin RL, Young AB, Penney JB. 1995.. The functional anatomy of disorders of the basal ganglia. . Trends Neurosci. 18::6364
    [Crossref] [Google Scholar]
  3. Alexander GE, DeLong MR, Strick PL. 1986.. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. . Annu. Rev. Neurosci. 9::35781
    [Crossref] [Google Scholar]
  4. Alexander WH, Brown JW. 2011.. Medial prefrontal cortex as an action-outcome predictor. . Nat. Neurosci. 14::133844
    [Crossref] [Google Scholar]
  5. Amso D, Haas S, McShane L, Badre D. 2014.. Working memory updating and the development of rule-guided behavior. . Cognition 133::20110
    [Crossref] [Google Scholar]
  6. Amso D, Salhi C, Badre D. 2019.. The relationship between cognitive enrichment and cognitive control: a systematic investigation of environmental influences on development through socioeconomic status. . Dev. Psychobiol. 61::15978
    [Crossref] [Google Scholar]
  7. Aron AR, Herz DM, Brown P, Forstmann BU, Zaghloul K. 2016.. Frontosubthalamic circuits for control of action and cognition. . J. Neurosci. 36::1148995
    [Crossref] [Google Scholar]
  8. Azuar C, Reyes P, Slachevsky A, Volle E, Kinkingnehun S, et al. 2014.. Testing the model of caudo-rostral organization of cognitive control in the human with frontal lesions. . NeuroImage 84::105360
    [Crossref] [Google Scholar]
  9. Badre D. 2020a.. Brain networks for cognitive control: four unresolved questions. . In Intrusive Thinking Across Neuropsychiatric Disorders: From Molecules to Free Will, ed. PW Kalivas, MP Paulus , pp. 2038. Cambridge, MA:: MIT Press
    [Google Scholar]
  10. Badre D. 2020b.. On Task: How Your Brain Gets Things Done. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  11. Badre D. 2024.. What is the nature of the hierarchical organization of lateral prefrontal cortex. . In The Frontal Cortex: Organization, Networks, and Function, ed. MT Banich, SN Haber, TW Robbins , 10930. Cambridge, MA:: MIT Press
    [Google Scholar]
  12. Badre D, Bhandari A, Keglovits H, Kikumoto A. 2021.. The dimensionality of neural representations for control. . Curr. Opin. Behav. Sci. 38::2028
    [Crossref] [Google Scholar]
  13. Badre D, D'Esposito M. 2007.. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. . J. Cogn. Neurosci. 19::208299
    [Crossref] [Google Scholar]
  14. Badre D, Frank MJ. 2012.. Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI. . Cereb. Cortex 22::52736
    [Crossref] [Google Scholar]
  15. Badre D, Hoffman J, Cooney JW, D'Esposito M. 2009.. Hierarchical cognitive control deficits following damage to the human frontal lobe. . Nat. Neurosci. 12::51522
    [Crossref] [Google Scholar]
  16. Badre D, Kayser AS, D'Esposito M. 2010.. Frontal cortex and the discovery of abstract action rules. . Neuron 66::31526
    [Crossref] [Google Scholar]
  17. Badre D, Nee DE. 2018.. Frontal cortex and the hierarchical control of behavior. . Trends Cogn. Sci. 22::17088
    [Crossref] [Google Scholar]
  18. Baier B, Karnath HO, Dieterich M, Birklein F, Heinze C, Muller NG. 2010.. Keeping memory clear and stable—the contribution of human basal ganglia and prefrontal cortex to working memory. . J. Neurosci. 30::978892
    [Crossref] [Google Scholar]
  19. Barak O, Tsodyks M. 2014.. Working models of working memory. . Curr. Opin. Neurobiol. 25::2024
    [Crossref] [Google Scholar]
  20. Basu I, Yousefi A, Crocker B, Zelmann R, Paulk AC, et al. 2023.. Closed-loop enhancement and neural decoding of cognitive control in humans. . Nat. Biomed. Eng. 7::57688
    [Crossref] [Google Scholar]
  21. Betzel RF, Gu S, Medaglia JD, Pasqualetti F, Bassett DS. 2016.. Optimally controlling the human connectome: the role of network topology. . Sci. Rep. 6::30770
    [Crossref] [Google Scholar]
  22. Bhandari A, Badre D. 2018.. Learning and transfer of working memory gating policies. . Cognition 172::89100
    [Crossref] [Google Scholar]
  23. Bhandari A, Keglovits H, Chicklis E, Badre D. 2024.. Task structure tailors the geometry of neural representations in human lateral prefrontal cortex. . bioRxiv 2024.03.06.583429
  24. Bissett PG, Jones HM, Poldrack RA, Logan GD. 2021.. Severe violations of independence in response inhibition tasks. . Sci. Adv. 7::eabf4355
    [Crossref] [Google Scholar]
  25. Blair C, Razza RP. 2007.. Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. . Child Dev. 78::64763
    [Crossref] [Google Scholar]
  26. Blais C, Bunge S. 2010.. Behavioral and neural evidence for item-specific performance monitoring. . J. Cogn. Neurosci. 22::275867
    [Crossref] [Google Scholar]
  27. Blais C, Robidoux S, Risko EF, Besner D. 2007.. Item-specific adaptation and the conflict-monitoring hypothesis: a computational model. . Psychol. Rev. 114::107686
    [Crossref] [Google Scholar]
  28. Botvinick MM. 2007.. Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. . Cogn. Affect. Behav. Neurosci. 7::35666
    [Crossref] [Google Scholar]
  29. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. 2001.. Conflict monitoring and cognitive control. . Psychol. Rev. 108::62452
    [Crossref] [Google Scholar]
  30. Botvinick MM, Cohen JD, Carter CS. 2004.. Conflict monitoring and anterior cingulate cortex: an update. . Trends Cogn. Sci. 8::53946
    [Crossref] [Google Scholar]
  31. Braem S, Verguts T, Roggeman C, Notebaert W. 2012.. Reward modulates adaptations to conflict. . Cognition 125::32432
    [Crossref] [Google Scholar]
  32. Braver TS. 2012.. The variable nature of cognitive control: a dual mechanisms framework. . Trends Cogn. Sci. 16::10613
    [Crossref] [Google Scholar]
  33. Braver TS, Cohen JD. 1999.. Dopamine, cognitive control, and schizophrenia: the gating model. . Prog. Brain Res. 121::32749
    [Crossref] [Google Scholar]
  34. Broadbent DE. 1977.. Levels, hierarchies, and the locus of control. . Q. J. Exp. Psychol. 29::181201
    [Crossref] [Google Scholar]
  35. Bugg JM, Chanani S. 2011.. List-wide control is not entirely elusive: evidence from picture-word Stroop. . Psychon. Bull. Rev. 18::93036
    [Crossref] [Google Scholar]
  36. Bugg JM, Crump MJ. 2012.. In support of a distinction between voluntary and stimulus-driven control: a review of the literature on proportion congruent effects. . Front. Psychol. 3::367
    [Crossref] [Google Scholar]
  37. Bugg JM, Hutchison KA. 2013.. Converging evidence for control of color-word Stroop interference at the item level. . J. Exp. Psychol. Hum. Percept. Perform. 39::43349
    [Crossref] [Google Scholar]
  38. Burgess PW, Alderman N, Forbes C, Costello A, Coates LM, et al. 2006.. The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. . J. Int. Neuropsychol. Soc. 12::194209
    [Crossref] [Google Scholar]
  39. Bush G, Shin LM, Holmes J, Rosen BR, Vogt BA. 2003.. The Multi-Source Interference Task: validation study with fMRI in individual subjects. . Mol. Psychiatry 8::6070
    [Crossref] [Google Scholar]
  40. Cavanagh JF, Masters SE, Bath K, Frank MJ. 2014.. Conflict acts as an implicit cost in reinforcement learning. . Nat. Commun. 5::5394
    [Crossref] [Google Scholar]
  41. Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J, et al. 2011.. Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. . Nat. Neurosci. 14::146267
    [Crossref] [Google Scholar]
  42. Chatham CH, Badre D. 2015.. Multiple gates on working memory. . Curr. Opin. Behav. Sci. 1::2331
    [Crossref] [Google Scholar]
  43. Chatham CH, Frank MJ, Badre D. 2014.. Corticostriatal output gating during selection from working memory. . Neuron 81::93042
    [Crossref] [Google Scholar]
  44. Chen W, de Hemptinne C, Miller AM, Leibbrand M, Little SJ, et al. 2020.. Prefrontal-subthalamic hyperdirect pathway modulates movement inhibition in humans. . Neuron 106::57988.e3
    [Crossref] [Google Scholar]
  45. Chiu YC, Egner T. 2017.. Cueing cognitive flexibility: item-specific learning of switch readiness. . J. Exp. Psychol. Hum. Percept. Perform. 43::195060
    [Crossref] [Google Scholar]
  46. Choi EY, Yeo BT, Buckner RL. 2012.. The organization of the human striatum estimated by intrinsic functional connectivity. . J. Neurophysiol. 108::224263
    [Crossref] [Google Scholar]
  47. Cohen JD, Dunbar K, McClelland JL. 1990.. On the control of automatic processes: a parallel distributed processing account of the Stroop effect. . Psychol. Rev. 97::33261
    [Crossref] [Google Scholar]
  48. Cole MW, Etzel JA, Zacks JM, Schneider W, Braver TS. 2011.. Rapid transfer of abstract rules to novel contexts in human lateral prefrontal cortex. . Front. Hum. Neurosci. 5::142
    [Crossref] [Google Scholar]
  49. Cole MW, Ito T, Braver TS. 2016.. The behavioral relevance of task information in human prefrontal cortex. . Cereb. Cortex 26::2497505
    [Crossref] [Google Scholar]
  50. Collins AGE, Frank MJ. 2013.. Cognitive control over learning: creating, clustering, and generalizing task-set structure. . Psychol. Rev. 120::190229
    [Crossref] [Google Scholar]
  51. Collins AGE, Frank MJ. 2016.. Neural signature of hierarchically structured expectations predicts clustering and transfer of rule sets in reinforcement learning. . Cognition 152::16069
    [Crossref] [Google Scholar]
  52. Conde-Sousa E, Aguiar P. 2013.. A working memory model for serial order that stores information in the intrinsic excitability properties of neurons. . J. Comput. Neurosci. 35::18799
    [Crossref] [Google Scholar]
  53. Cools R, Frank MJ, Gibbs SE, Miyakawa A, Jagust W, D'Esposito M. 2009.. Striatal dopamine predicts outcome-specific reversal learning and its sensitivity to dopaminergic drug administration. . J. Neurosci. 29::153843
    [Crossref] [Google Scholar]
  54. Cools R, Lewis SJ, Clark L, Barker RA, Robbins TW. 2007.. L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson's disease. . Neuropsychopharmacology 32::18089
    [Crossref] [Google Scholar]
  55. Corlazzoli G, Desender K, Gevers W. 2023.. Feeling and deciding: Subjective experiences rather than objective factors drive the decision to invest cognitive control. . Cognition 240::105587
    [Crossref] [Google Scholar]
  56. Danielmeier C, Eichele T, Forstmann BU, Tittgemeyer M, Ullsperger M. 2011.. Posterior medial frontal cortex activity predicts post-error adaptations in task-related visual and motor areas. . J. Neurosci. 31::178089
    [Crossref] [Google Scholar]
  57. Dawson DR, Anderson ND, Burgess P, Cooper E, Krpan KM, Stuss DT. 2009.. Further development of the Multiple Errands Test: standardized scoring, reliability, and ecological validity for the Baycrest version. . Arch. Phys. Med. Rehabil. 90::S4151
    [Crossref] [Google Scholar]
  58. Desimone R, Duncan J. 1995.. Neural mechanisms of selective visual attention. . Annu. Rev. Neurosci. 18::193222
    [Crossref] [Google Scholar]
  59. Devinsky O, D'Esposito M. 2004.. Executive function and the frontal lobes. . In Neurology of Cognitive and Behavioral Disorders, ed. O Devinky, M D'Esposito , pp. 30229. New York:: Oxford Univ. Press
    [Google Scholar]
  60. Diesburg DA, Wessel JR. 2021.. The pause-then-cancel model of human action-stopping: theoretical considerations and empirical evidence. . Neurosci. Biobehav. Rev. 129::1734
    [Crossref] [Google Scholar]
  61. Dignath D, Johannsen L, Hommel B, Kiesel A. 2019.. Reconciling cognitive-control and episodic-retrieval accounts of sequential conflict modulation: binding of control-states into event-files. . J. Exp. Psychol. Hum. Percept. Perform. 45::126570
    [Crossref] [Google Scholar]
  62. Dipoppa M, Gutkin BS. 2013.. Flexible frequency control of cortical oscillations enables computations required for working memory. . PNAS 110::1282833
    [Crossref] [Google Scholar]
  63. Duncan J. 2013.. The structure of cognition: attentional episodes in mind and brain. . Neuron 80::3550
    [Crossref] [Google Scholar]
  64. Eckstein MK, Collins AGE. 2020.. Computational evidence for hierarchically structured reinforcement learning in humans. . PNAS 117::2938189
    [Crossref] [Google Scholar]
  65. Edin F, Klingberg T, Johansson P, McNab F, Tegner J, Compte A. 2009.. Mechanism for top-down control of working memory capacity. . PNAS 106::68027
    [Crossref] [Google Scholar]
  66. Egner T. 2007.. Congruency sequence effects and cognitive control. . Cogn. Affect. Behav. Neurosci. 7::38090
    [Crossref] [Google Scholar]
  67. Egner T. 2023.. Principles of cognitive control over task focus and task switching. . Nat. Rev. Psychol. 2::70214
    [Crossref] [Google Scholar]
  68. Eichenbaum A, Scimeca JM, D'Esposito M. 2020.. Dissociable neural systems support the learning and transfer of hierarchical control structure. . J. Neurosci. 40::662437
    [Crossref] [Google Scholar]
  69. Emeric EE, Brown JW, Leslie M, Pouget P, Stuphorn V, Schall JD. 2008.. Performance monitoring local field potentials in the medial frontal cortex of primates: anterior cingulate cortex. . J. Neurophysiol. 99::75972
    [Crossref] [Google Scholar]
  70. Emeric EE, Leslie M, Pouget P, Schall JD. 2010.. Performance monitoring local field potentials in the medial frontal cortex of primates: supplementary eye field. . J. Neurophysiol. 104::152337
    [Crossref] [Google Scholar]
  71. Eppinger B, Goschke T, Musslick S. 2021.. Meta-control: from psychology to computational neuroscience. . Cogn. Affect. Behav. Neurosci. 21::44752
    [Crossref] [Google Scholar]
  72. Eriksen BA, Eriksen CW. 1974.. Effects of noise letters upon identification of a target letter in a nonsearch task. . Percept. Psychophys. 16::14349
    [Crossref] [Google Scholar]
  73. Esterman M, Poole V, Liu G, DeGutis J. 2017.. Modulating reward induces differential neurocognitive approaches to sustained attention. . Cereb. Cortex 27::402232
    [Google Scholar]
  74. Fischer AG, Nigbur R, Klein TA, Danielmeier C, Ullsperger M. 2018.. Cortical beta power reflects decision dynamics and uncovers multiple facets of post-error adaptation. . Nat. Commun. 9::5038
    [Crossref] [Google Scholar]
  75. Flesch T, Juechems K, Dumbalska T, Saxe A, Summerfield C. 2022.. Orthogonal representations for robust context-dependent task performance in brains and neural networks. . Neuron 110::125870.e11
    [Crossref] [Google Scholar]
  76. Frank MJ, Badre D. 2012.. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: computational analysis. . Cereb. Cortex 22::50926
    [Crossref] [Google Scholar]
  77. Frank MJ, Gagne C, Nyhus E, Masters S, Wiecki TV, et al. 2015.. fMRI and EEG predictors of dynamic decision parameters during human reinforcement learning. . J. Neurosci. 35::48594
    [Crossref] [Google Scholar]
  78. Frank MJ, Loughry B, O'Reilly RC. 2001.. Interactions between frontal cortex and basal ganglia in working memory: a computational model. . Cogn. Affect. Behav. Neurosci. 1::13760
    [Crossref] [Google Scholar]
  79. Frank MJ, O'Reilly RC. 2006.. A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. . Behav. Neurosci. 120::497517
    [Crossref] [Google Scholar]
  80. Franklin NT, Frank MJ. 2020.. Generalizing to generalize: Humans flexibly switch between compositional and conjunctive structures during reinforcement learning. . PLOS Comput. Biol. 16::e1007720
    [Crossref] [Google Scholar]
  81. Frober K, Dreisbach G. 2021.. How sequentially changing reward prospect modulates meta-control: Increasing reward prospect promotes cognitive flexibility. . Cogn. Affect. Behav. Neurosci. 21::53448
    [Crossref] [Google Scholar]
  82. Fromer R, Lin H, Dean Wolf CK, Inzlicht M, Shenhav A. 2021.. Expectations of reward and efficacy guide cognitive control allocation. . Nat. Commun. 12::1030
    [Crossref] [Google Scholar]
  83. Fu Z, Beam D, Chung JM, Reed CM, Mamelak AN, et al. 2022.. The geometry of domain-general performance monitoring in the human medial frontal cortex. . Science 376::eabm9922
    [Crossref] [Google Scholar]
  84. Fu Z, Sajad A, Errington SP, Schall JD, Rutishauser U. 2023.. Neurophysiological mechanisms of error monitoring in human and non-human primates. . Nat. Rev. Neurosci. 24::15372
    [Crossref] [Google Scholar]
  85. Fu Z, Wu DJ, Ross I, Chung JM, Mamelak AN, et al. 2019.. Single-neuron correlates of error monitoring and post-error adjustments in human medial frontal cortex. . Neuron 101::16577.e5
    [Crossref] [Google Scholar]
  86. Fusi S, Miller EK, Rigotti M. 2016.. Why neurons mix: high dimensionality for higher cognition. . Curr. Opin. Neurobiol. 37::6674
    [Crossref] [Google Scholar]
  87. Fuster JM. 2004.. Upper processing stages of the perception-action cycle. . Trends Cogn. Sci. 8::14345
    [Crossref] [Google Scholar]
  88. Gehring WJ, Coles MGH, Meyer DE, Donchin E. 1990.. The error-related negativity: an event-related brain potential accompanying errors. . Psychophysiology 27::S34
    [Crossref] [Google Scholar]
  89. Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E. 1993.. A neural system for error detection and compensation. . Psychol. Sci. 4::38590
    [Crossref] [Google Scholar]
  90. Gilbert SJ, Boldt A, Sachdeva C, Scarampi C, Tsai PC. 2023.. Outsourcing memory to external tools: a review of “intention offloading. .” Psychon. Bull. Rev. 30::6076
    [Crossref] [Google Scholar]
  91. Gouveia PA, Brucki SM, Malheiros SM, Bueno OF. 2007.. Disorders in planning and strategy application in frontal lobe lesion patients. . Brain Cogn. 63::24046
    [Crossref] [Google Scholar]
  92. Gratton G, Coles MG, Donchin E. 1992.. Optimizing the use of information: strategic control of activation of responses. . J. Exp. Psychol. Gen. 121::480506
    [Crossref] [Google Scholar]
  93. Graybiel AM. 2008.. Habits, rituals, and the evaluative brain. . Annu. Rev. Neurosci. 31::35987
    [Crossref] [Google Scholar]
  94. Haber SN, Tang W, Choi EY, Yendiki A, Liu H, et al. 2020.. Circuits, networks, and neuropsychiatric disease: transitioning from anatomy to imaging. . Biol. Psychiatry 87::31827
    [Crossref] [Google Scholar]
  95. Hazeltine E, Lightman E, Schwarb H, Schumacher EH. 2011.. The boundaries of sequential modulations: evidence for set-level control. . J. Exp. Psychol. Hum. Percept. Perform. 37::1898914
    [Crossref] [Google Scholar]
  96. Held LK, Vermeylen L, Dignath D, Notebaert W, Krebs RM, Braem S. 2024.. Reinforcement learning of adaptive control strategies. . Commun. Psychol. 2::8
    [Crossref] [Google Scholar]
  97. Hochreiter S, Schmidhuber J. 1997.. Long short-term memory. . Neural Comput. 9::173580
    [Crossref] [Google Scholar]
  98. Holroyd CB. 2024.. The controllosphere: the neural origin of cognitive effort. . Psychol. Rev. In press. https://psycnet.apa.org/doi/10.1037/rev0000467
    [Google Scholar]
  99. Holroyd CB, Coles MGH. 2002.. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. . Psychol. Rev. 109::679709
    [Crossref] [Google Scholar]
  100. Hommel B. 2019.. Theory of Event Coding (TEC) V2.0: representing and controlling perception and action. . Atten. Percept. Psychophys. 81::213954
    [Crossref] [Google Scholar]
  101. Hommel B, Musseler J, Aschersleben G, Prinz W. 2001.. The Theory of Event Coding (TEC): a framework for perception and action planning. . Behav. Brain Sci. 24::84978; discuss. 878–937
    [Crossref] [Google Scholar]
  102. Hwang K, Shine JM, Cole MW, Sorenson E. 2022.. Thalamocortical contributions to cognitive task activity. . eLife 11::e81282
    [Crossref] [Google Scholar]
  103. Jeon HA, Anwander A, Friederici AD. 2014.. Functional network mirrored in the prefrontal cortex, caudate nucleus, and thalamus: high-resolution functional imaging and structural connectivity. . J. Neurosci. 34::920212
    [Crossref] [Google Scholar]
  104. Jiang J, Heller K, Egner T. 2014.. Bayesian modeling of flexible cognitive control. . Neurosci. Biobehav. Rev. 46:(Pt. 1):3043
    [Crossref] [Google Scholar]
  105. Jung Y, Walther DB. 2021.. Neural representations in the prefrontal cortex are task dependent for scene attributes but not for scene categories. . J. Neurosci. 41::723445
    [Crossref] [Google Scholar]
  106. Kikumoto A, Bhandari A, Shibata K, Badre D. 2024a.. A transient high-dimensional geometry affords stable conjunctive subspaces for efficient action selection. . Nat. Commun. 15:8513
    [Google Scholar]
  107. Kikumoto A, Mayr U. 2020.. Conjunctive representations that integrate stimuli, responses, and rules are critical for action selection. . PNAS 117::106038
    [Crossref] [Google Scholar]
  108. Kikumoto A, Mayr U, Badre D. 2022a.. The role of conjunctive representations in prioritizing and selecting planned actions. . eLife 11::e80153
    [Crossref] [Google Scholar]
  109. Kikumoto A, Sameshima T, Mayr U. 2022b.. The role of conjunctive representations in stopping actions. . Psychol. Sci. 33::32538
    [Crossref] [Google Scholar]
  110. Kikumoto A, Shibata K, Nishio T, Badre D. 2024b.. Practice reshapes the geometry and dynamics of task-tailored representations. . bioRxiv 2024.09.12.612718
    [Google Scholar]
  111. Koechlin E, Ody C, Kouneiher F. 2003.. The architecture of cognitive control in the human prefrontal cortex. . Science 302::118185
    [Crossref] [Google Scholar]
  112. Kool W, Botvinick M. 2013.. The intrinsic cost of cognitive control. . Behav. Brain Sci. 36::69798; discuss. 707–26
    [Crossref] [Google Scholar]
  113. Kornblum S, Hasbroucq T, Osman A. 1990.. Dimensional overlap: cognitive basis for stimulus-response compatibility—a model and taxonomy. . Psychol. Rev. 97::25370
    [Crossref] [Google Scholar]
  114. Kurzban R, Duckworth A, Kable JW, Myers J. 2013.. An opportunity cost model of subjective effort and task performance. . Behav. Brain Sci. 36::66179
    [Crossref] [Google Scholar]
  115. Lacreuse A, Raz N, Schmidtke D, Hopkins WD, Herndon JG. 2020.. Age-related decline in executive function as a hallmark of cognitive ageing in primates: an overview of cognitive and neurobiological studies. . Philos. Trans. R. Soc. B 375::20190618
    [Crossref] [Google Scholar]
  116. Laming D. 1979.. Choice reaction performance following an error. . Acta Psychol. 43::199224
    [Crossref] [Google Scholar]
  117. Lee AM, Tai LH, Zador A, Wilbrecht L. 2015.. Between the primate and “reptilian” brain: Rodent models demonstrate the role of corticostriatal circuits in decision making. . Neuroscience 296::6674
    [Crossref] [Google Scholar]
  118. Lee WT, Hazeltine E, Jiang J. 2022.. Interference and integration in hierarchical task learning. . J. Exp. Psychol. Gen. 151::302844
    [Crossref] [Google Scholar]
  119. Leng X, Yee D, Ritz H, Shenhav A. 2021.. Dissociable influences of reward and punishment on adaptive cognitive control. . PLOS Comput. Biol. 17::e1009737
    [Crossref] [Google Scholar]
  120. Li JJ, Xia L, Dong F, Collins AGE. 2022.. Credit assignment in hierarchical option transfer. . In Proceedings of the 44th Annual Conference of the Cognitive Science Society, ed. J Culbertson, A Perfors, H Rabagliati, V Ramenzoni , pp. 94854. Seattle, WA:: Cogn. Sci. Soc.
    [Google Scholar]
  121. Liu RG, Frank MJ. 2022.. Hierarchical clustering optimizes the tradeoff between compositionality and expressivity of task structures for flexible reinforcement learning. . Artif. Intell. 312::103770
    [Crossref] [Google Scholar]
  122. Logan GD. 1988.. Toward an instance theory of automatization. . Psychol. Rev. 95::492527
    [Crossref] [Google Scholar]
  123. Logan GD. 2017.. Taking control of cognition: an instance perspective on acts of control. . Am. Psychol. 72::87584
    [Crossref] [Google Scholar]
  124. Logan GD. 2018.. Automatic control: how experts act without thinking. . Psychol. Rev. 125::45385
    [Crossref] [Google Scholar]
  125. Logan GD, Bundesen C. 2004.. Very clever homunculus: compound stimulus strategies for the explicit task-cuing procedure. . Psychon. Bull. Rev. 11::83240
    [Crossref] [Google Scholar]
  126. Logan GD, Cowan WB. 1984.. On the ability to inhibit thought and action: a theory of an act of control. . Psychol. Rev. 91::295327
    [Crossref] [Google Scholar]
  127. Logan GD, Van Zandt T, Verbruggen F, Wagenmakers EJ. 2014.. On the ability to inhibit thought and action: general and special theories of an act of control. . Psychol. Rev. 121::6695
    [Crossref] [Google Scholar]
  128. Luna B. 2009.. Developmental changes in cognitive control through adolescence. . Adv. Child Dev. Behav. 37::23378
    [Crossref] [Google Scholar]
  129. Macleod CM, Dodd MD, Sheard ED, Wilson DE, Bibi U. 2003.. In opposition to inhibition. . In The Psychology of Learning and Motivation, Vol. 43, ed. BH Ross , pp. 163214. New York:: Academic Press
    [Google Scholar]
  130. Maier ME, Yeung N, Steinhauser M. 2011.. Error-related brain activity and adjustments of selective attention following errors. . NeuroImage 56::233947
    [Crossref] [Google Scholar]
  131. Mante V, Sussillo D, Shenoy KV, Newsome WT. 2013.. Context-dependent computation by recurrent dynamics in prefrontal cortex. . Nature 503::7884
    [Crossref] [Google Scholar]
  132. Mayr U, Awh E, Laurey P. 2003.. Conflict adaptation effects in the absence of executive control. . Nat. Neurosci. 6::45052
    [Crossref] [Google Scholar]
  133. Mayr U, Bryck RL. 2005.. Sticky rules: integration between abstract rules and specific actions. . J. Exp. Psychol. Learn. Mem. Cogn. 31::33750
    [Crossref] [Google Scholar]
  134. McGuire JT, Botvinick MM. 2010.. Prefrontal cortex, cognitive control, and the registration of decision costs. . PNAS 107::792226
    [Crossref] [Google Scholar]
  135. McNab F, Klingberg T. 2008.. Prefrontal cortex and basal ganglia control access to working memory. . Nat. Neurosci. 11::1037
    [Crossref] [Google Scholar]
  136. Menghi N, Kacar K, Penny W. 2021.. Multitask learning over shared subspaces. . PLOS Comput. Biol. 17::e1009092
    [Crossref] [Google Scholar]
  137. Meyer DE, Kieras DE. 1997.. A computational theory of executive cognitive processes and multiple-task performance. Part 1: Basic mechanisms. . Psychol. Rev. 104::365
    [Crossref] [Google Scholar]
  138. Miller EK, Cohen JD. 2001.. An integrative theory of prefrontal cortex function. . Annu. Rev. Neurosci. 24::167202
    [Crossref] [Google Scholar]
  139. Mink JW. 1996.. The basal ganglia: focused selection and inhibition of competing motor programs. . Prog. Neurobiol. 50::381425
    [Crossref] [Google Scholar]
  140. Moffitt TE, Arseneault L, Belsky D, Dickson N, Hancox RJ, et al. 2011.. A gradient of childhood self-control predicts health, wealth, and public safety. . PNAS 108::269398
    [Crossref] [Google Scholar]
  141. Monsell S. 2003.. Task switching. . Trends Cogn. Sci. 7::13440
    [Crossref] [Google Scholar]
  142. Mosher CP, Mamelak AN, Malekmohammadi M, Pouratian N, Rutishauser U. 2021.. Distinct roles of dorsal and ventral subthalamic neurons in action selection and cancellation. . Neuron 109::86981.e6
    [Crossref] [Google Scholar]
  143. Moustafa AA, Sherman SJ, Frank MJ. 2008.. A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism. . Neuropsychologia 46::314456
    [Crossref] [Google Scholar]
  144. Munakata Y, Snyder HR, Chatham CH. 2012.. Developing cognitive control: three key transitions. . Curr. Dir. Psychol. Sci. 21::7177
    [Crossref] [Google Scholar]
  145. Murray JD, Jaramillo J, Wang XJ. 2017.. Working memory and decision-making in a frontoparietal circuit model. . J. Neurosci. 37::1216786
    [Crossref] [Google Scholar]
  146. Musslick S, Cohen JD. 2019.. A mechanistic account of constraints on control-dependent processing: shared representation, conflict, and persistence. Paper presented at the 41st Annual Meeting of the Cognitive Science Society, Montreal, Can:., July 26
    [Google Scholar]
  147. Musslick S, Cohen JD. 2021.. Rationalizing constraints on the capacity for cognitive control. . Trends Cogn. Sci. 25::75775
    [Crossref] [Google Scholar]
  148. Nee DE, D'Esposito M. 2016.. The hierarchical organization of the lateral prefrontal cortex. . eLife 5::e12112
    [Crossref] [Google Scholar]
  149. Nee DE, D'Esposito M. 2017.. Causal evidence for lateral prefrontal cortex dynamics supporting cognitive control. . eLife 6::e28040
    [Crossref] [Google Scholar]
  150. Niv Y, Daw ND, Joel D, Dayan P. 2007.. Tonic dopamine: opportunity costs and the control of response vigor. . Psychopharmacology 191::50720
    [Crossref] [Google Scholar]
  151. Norman DA. 1981.. Categorization of action slips. . Psychol. Rev. 88::115
    [Crossref] [Google Scholar]
  152. Norman DA, Shallice T. 1986.. Attention to action: willed and automatic control of behaviour. . In Consciousness and Self-Regulation: Advances in Research and Theory, Vol. 4, ed. R Davidson, G Schwartz, D Shapiro , pp. 118. New York:: Plenum
    [Google Scholar]
  153. Padmala S, Pessoa L. 2011.. Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. . J. Cogn. Neurosci. 23::341932
    [Crossref] [Google Scholar]
  154. Pashler H. 1994.. Dual-task interference in simple tasks: data and theory. . Psychol. Bull. 116::22044
    [Crossref] [Google Scholar]
  155. Rabbitt PMA. 1966.. Errors and error correction in choice-response tasks. . J. Exp. Psychol. 71::26472
    [Crossref] [Google Scholar]
  156. Rac-Lubashevsky R, Frank MJ. 2021.. Analogous computations in working memory input, output and motor gating: electrophysiological and computational modeling evidence. . PLOS Comp. Biol. 17::e1008971
    [Crossref] [Google Scholar]
  157. Rangel BO, Hazeltine E, Wessel JR. 2023.. Lingering neural representations of past task features adversely affect future behavior. . J. Neurosci. 43::28292
    [Crossref] [Google Scholar]
  158. Ranti C, Chatham CH, Badre D. 2015.. Parallel temporal dynamics in hierarchical cognitive control. . Cognition 142::20529
    [Crossref] [Google Scholar]
  159. Ratcliff R, Frank MJ. 2012.. Reinforcement-based decision making in corticostriatal circuits: mutual constraints by neurocomputational and diffusion models. . Neural Comput. 24::1186229
    [Crossref] [Google Scholar]
  160. Reason JT. 1990.. Human Error. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  161. Reuter-Lorenz PA, Park DC. 2023.. Cognitive aging and the life course: a new look at the scaffolding theory. . Curr. Opin. Psychol. 56::101781
    [Crossref] [Google Scholar]
  162. Reverberi C, Gorgen K, Haynes JD. 2012.. Compositionality of rule representations in human prefrontal cortex. . Cereb. Cortex 22::123746
    [Crossref] [Google Scholar]
  163. Rigotti M, Barak O, Warden MR, Wang XJ, Daw ND, et al. 2013.. The importance of mixed selectivity in complex cognitive tasks. . Nature 497::58590
    [Crossref] [Google Scholar]
  164. Ritz H, Leng X, Shenhav A. 2022.. Cognitive control as a multivariate optimization problem. . J. Cogn. Neurosci. 34::56991
    [Crossref] [Google Scholar]
  165. Robinson MM, Steyvers M. 2023.. Linking computational models of two core tasks of cognitive control. . Psychol. Rev. 130::71101
    [Crossref] [Google Scholar]
  166. Rougier NP, Noelle DC, Braver TS, Cohen JD, O'Reilly RC. 2005.. Prefrontal cortex and flexible cognitive control: rules without symbols. . PNAS 102::733843
    [Crossref] [Google Scholar]
  167. Russin J, O'Reilly RC, Bengio Y. 2020.. Deep learning needs a prefrontal cortex. Paper presented at the International Conference of Learning Representations (ICLR), online, Apr. 26
    [Google Scholar]
  168. Sabah K, Meiran N, Dreisbach G. 2021.. Examining the trainability and transferability of working-memory gating policies. . J. Cogn. Enhanc. 5::33042
    [Crossref] [Google Scholar]
  169. Sajad A, Godlove DC, Schall JD. 2019.. Cortical microcircuitry of performance monitoring. . Nat. Neurosci. 22::26574
    [Crossref] [Google Scholar]
  170. Salvucci DD, Taatgen NA. 2011.. Toward a unified view of cognitive control. . Top. Cogn. Sci. 3::22730
    [Crossref] [Google Scholar]
  171. Santos MD, Mohammadi MH, Yang S, Liang CW, Kao JP, et al. 2012.. Dendritic hold and read: a gated mechanism for short term information storage and retrieval. . PLOS ONE 7::e37542
    [Crossref] [Google Scholar]
  172. Sayali C, Badre D. 2019.. Neural systems of cognitive demand avoidance. . Neuropsychologia 123::4154
    [Crossref] [Google Scholar]
  173. Sayali C, Badre D. 2021.. Neural systems underlying the learning of cognitive effort costs. . Cogn. Affect. Behav. Neurosci. 21::698716
    [Crossref] [Google Scholar]
  174. Sayali C, Rubin-McGregor J, Badre D. 2023.. Policy abstraction as a predictor of cognitive effort avoidance. . J. Exp. Psychol. Gen. 152::344058
    [Crossref] [Google Scholar]
  175. Schumacher EH, Hazeltine E. 2016.. Hierarchical task representation: task files and response selection. . Curr. Dir. Psychol. Sci. 25::44954
    [Crossref] [Google Scholar]
  176. Shenhav A, Botvinick MM, Cohen JD. 2013.. The expected value of control: an integrative theory of anterior cingulate cortex function. . Neuron 79::21740
    [Crossref] [Google Scholar]
  177. Shenhav A, Musslick S, Lieder F, Kool W, Griffiths TL, et al. 2017.. Toward a rational and mechanistic account of mental effort. . Annu. Rev. Neurosci. 40::99124
    [Crossref] [Google Scholar]
  178. Shiffrin RM, Schneider W. 1984.. Automatic and controlled processing revisited. . Psychol. Rev. 91::26976
    [Crossref] [Google Scholar]
  179. Simon JR, Rudell AP. 1967.. Auditory S-R compatibility: the effect of an irrelevant cue on information processing. . J. Appl. Psychol. 51::3004
    [Crossref] [Google Scholar]
  180. Siqi-Liu A, Egner T. 2020.. Contextual adaptation of cognitive flexibility is driven by task- and item-level learning. . Cogn. Affect. Behav. Neurosci. 20::75782
    [Crossref] [Google Scholar]
  181. Soutschek A, Strobach T, Schubert T. 2014.. Motivational and cognitive determinants of control during conflict processing. . Cogn. Emot. 28::107689
    [Crossref] [Google Scholar]
  182. Stollstorff M, Foss-Feig J, Cook EH Jr., Stein MA, Gaillard WD, Vaidya CJ. 2010.. Neural response to working memory load varies by dopamine transporter genotype in children. . Neuroimage 53::97077
    [Crossref] [Google Scholar]
  183. Strock A, Hinaut X, Rougier NP. 2020.. A robust model of gated working memory. . Neural Comput. 32::15381
    [Crossref] [Google Scholar]
  184. Stroop JR. 1935.. Studies of interference in serial verbal reactions. . J. Exp. Psychol. 18::64362
    [Crossref] [Google Scholar]
  185. Stuss DT, Benson DF. 1987.. The frontal lobes and control of cognition and memory. . In The Frontal Lobes Revisited, ed. E Perecman , pp. 14158. New York:: IRBN Press
    [Google Scholar]
  186. Suh J, Bugg JM. 2021.. The shaping of cognitive control based on the adaptive weighting of expectations and experience. . J. Exp. Psychol. Learn. Mem. Cogn. 47::156384
    [Crossref] [Google Scholar]
  187. Tafazoli S, Bouchacourt FM, Ardalan A, Markov NT, Uchimura M, et al. 2024.. Building compositional tasks with shared neural subspaces. . bioRxiv 2024.01.31.578263
  188. Tai LH, Lee AM, Benavidez N, Bonci A, Wilbrecht L. 2012.. Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. . Nat. Neurosci. 15::128189
    [Crossref] [Google Scholar]
  189. Tomov MS, Schulz E, Gershman SJ. 2021.. Multi-task reinforcement learning in humans. . Nat. Hum. Behav. 5::76473
    [Crossref] [Google Scholar]
  190. Tomov MS, Yagati S, Kumar A, Yang W, Gershman SJ. 2020.. Discovery of hierarchical representations for efficient planning. . PLOS Comput. Biol. 16::e1007594
    [Crossref] [Google Scholar]
  191. Ullsperger M, Bylsma LM, Botvinick MM. 2005.. The conflict adaptation effect: It's not just priming. . Cogn. Affect. Behav. Neurosci. 5::46772
    [Crossref] [Google Scholar]
  192. Unger K, Ackerman L, Chatham CH, Amso D, Badre D. 2016.. Working memory gating mechanisms explain developmental change in rule-guided behavior. . Cognition 155::822
    [Crossref] [Google Scholar]
  193. Vaidya AR, Badre D. 2022.. Abstract task representations for inference and control. . Trends Cogn. Sci. 26::48498
    [Crossref] [Google Scholar]
  194. Verbruggen F, Aron AR, Band GP, Beste C, Bissett PG, et al. 2019.. A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. . eLife 8::e46323
    [Crossref] [Google Scholar]
  195. Verguts T, Notebaert W. 2009.. Adaptation by binding: a learning account of cognitive control. . Trends Cogn. Sci. 13::25257
    [Crossref] [Google Scholar]
  196. Verguts T, Notebaert W, Kunde W, Wuhr P. 2011.. Post-conflict slowing: cognitive adaptation after conflict processing. . Psychon. Bull. Rev. 18::7682
    [Crossref] [Google Scholar]
  197. Verstynen TD, Badre D, Jarbo K, Schneider W. 2012.. Microstructural organizational patterns in the human corticostriatal system. . J. Neurophysiol. 107::298495
    [Crossref] [Google Scholar]
  198. Wang XJ, Tegner J, Constantinidis C, Goldman-Rakic PS. 2004.. Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. . PNAS 101::136873
    [Crossref] [Google Scholar]
  199. Wessel JR. 2020.. β-bursts reveal the trial-to-trial dynamics of movement initiation and cancellation. . J. Neurosci. 40::41123
    [Crossref] [Google Scholar]
  200. Wessel JR, Anderson MC. 2024.. Neural mechanisms of domain-general inhibitory control. . Trends Cogn. Sci. 28::12443
    [Crossref] [Google Scholar]
  201. Wessel JR, Aron AR. 2017.. On the globality of motor suppression: unexpected events and their influence on behavior and cognition. . Neuron 93::25980
    [Crossref] [Google Scholar]
  202. Wessel JR, Diesburg DA, Chalkley NH, Greenlee JDW. 2022.. A causal role for the human subthalamic nucleus in non-selective cortico-motor inhibition. . Curr. Biol. 32::378591.e3
    [Crossref] [Google Scholar]
  203. Xiao Y, Chou CC, Cosgrove GR, Crone NE, Stone S, et al. 2023.. Cross-task specificity and within-task invariance of cognitive control processes. . Cell Rep. 42::111919
    [Crossref] [Google Scholar]
  204. Yanaoka K, Van't Wout F, Saito S, Jarrold C. 2024.. Evidence for positive and negative transfer of abstract task knowledge in adults and school-aged children. . Cognition 242::105650
    [Crossref] [Google Scholar]
  205. Zhu H, Paschalidis IC, Chang A, Stern CE, Hasselmo ME. 2020.. A neural circuit model for a contextual association task inspired by recommender systems. . Hippocampus 30::38495
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-psych-022024-103901
Loading
/content/journals/10.1146/annurev-psych-022024-103901
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error