1932

Abstract

Subjective value is a core concept in neuroeconomics, serving as the basis for decision making. Despite the extensive literature on the neural encoding of subjective reward value in humans, the neural representation of punishment value remains relatively understudied. This review synthesizes current knowledge on the neural representation of reward value, including methodologies, involved brain regions, and the concept of a common currency representation of diverse reward types in decision-making and learning processes. We then critically examine existing research on the neural representation of punishment value, highlighting conceptual and methodological challenges in human studies and insights gained from animal research. Finally, we explore how individual differences in reward and punishment processing may be linked to various mental illnesses, with a focus on stress-related psychopathologies. This review advocates for the integration of both rewards and punishments within value-based decision-making and learning frameworks, leveraging insights from cross-species studies and utilizing ecological gamified paradigms to reflect real-life scenarios.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-022324-042614
2025-01-17
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/psych/76/1/annurev-psych-022324-042614.html?itemId=/content/journals/10.1146/annurev-psych-022324-042614&mimeType=html&fmt=ahah

Literature Cited

  1. Allen K, Brändle F, Botvinick M, Fan JE, Gershman SJ, et al. 2024.. Using games to understand the mind. . Nat. Hum. Behav. 8::103543
    [Crossref] [Google Scholar]
  2. Alsawaier RS. 2018.. The effect of gamification on motivation and engagement. . Int. J. Inform. Learn. Technol. 35:(1):5679
    [Crossref] [Google Scholar]
  3. Ang Y-S, Gelda SE, Pizzagalli DA. 2023.. Cognitive effort-based decision-making in major depressive disorder. . Psychol. Med. 53:(9):422835
    [Crossref] [Google Scholar]
  4. Aquino TG, Minxha J, Dunne S, Ross IB, Mamelak AN, et al. 2020.. Value-related neuronal responses in the human amygdala during observational learning. . J. Neurosci. 40:(24):476172
    [Crossref] [Google Scholar]
  5. Bartra O, McGuire JT, Kable JW. 2013.. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. . NeuroImage 76::41227
    [Crossref] [Google Scholar]
  6. Bavard S, Palminteri S. 2023.. The functional form of value normalization in human reinforcement learning. . eLife 12::e83891
    [Crossref] [Google Scholar]
  7. Baxter MG, Murray EA. 2002.. The amygdala and reward. . Nat. Rev. Neurosci. 3::56373
    [Crossref] [Google Scholar]
  8. Bechara A, Damasio AR, Damasio H, Anderson SW. 1994.. Insensitivity to future consequences following damage to human prefrontal cortex. . Cognition 50::715
    [Crossref] [Google Scholar]
  9. Becker C, Schmälzle R, Flaisch T, Renner B, Schupp HT. 2015.. Thirst and the state-dependent representation of incentive stimulus value in human motive circuitry. . Soc. Cogn. Affect. Neurosci. 10:(12):172229
    [Crossref] [Google Scholar]
  10. Becker G, Degroot MH, Marschak J. 1964.. Measuring utility by a single-response sequential method. . Behav. Sci. 9:(3):22632
    [Crossref] [Google Scholar]
  11. Behrens TEJ, Muller TH, Whittington JCR, Mark S, Baram AB, et al. 2018.. What is a cognitive map? Organizing knowledge for flexible behavior. . Neuron 100::490509
    [Crossref] [Google Scholar]
  12. Bentham J. 1789.. An Introduction to the Principles of Morals and Legislation. London: T. Payne & Son
    [Google Scholar]
  13. Ben-Zion Z, Fine NB, Keynan NJ, Admon R, Green N, et al. 2018.. Cognitive flexibility predicts PTSD symptoms: observational and interventional studies. . Front. Psychiatry 9::477
    [Crossref] [Google Scholar]
  14. Ben-Zion Z, Korem N, Fine N, Katz S, Siddhanta M, et al. 2024.. Structural neuroimaging of hippocampus and amygdala subregions in post-traumatic stress disorder (PTSD): a scoping review. . Biol. Psychiatry Global Open Sci. 4:(1):12034
    [Crossref] [Google Scholar]
  15. Ben-Zion Z, Korem N, Spiller T, Duek O, Keynan NJ, et al. 2022a.. Longitudinal volumetric evaluation of hippocampus and amygdala subregions in recent trauma survivors. . Mol. Psychiatry 28::65767
    [Crossref] [Google Scholar]
  16. Ben-Zion Z, Shany O, Admon R, Keynan NJ, Avisdris N, et al. 2022b.. Neural responsivity to reward versus punishment shortly after trauma predicts long-term development of posttraumatic stress symptoms. . Biol. Psychiatry Cogn. Neurosci. Neuroimaging 7:(2):15061
    [Google Scholar]
  17. Bernoulli D. 1954. ( 1738.). Exposition of a new theory on the measurement of risk. . Econometrica 22::2336
    [Crossref] [Google Scholar]
  18. Berridge KC. 2019.. Affective valence in the brain: modules or modes?. Nat. Rev. Neurosci. 20:(4):22534
    [Crossref] [Google Scholar]
  19. Beyeler A, Namburi P, Glober GF, Simonnet C, Calhoon GG, et al. 2016.. Divergent routing of positive and negative information from the amygdala during memory retrieval. . Neuron 90:(2):34861
    [Crossref] [Google Scholar]
  20. Botvinik-Nezer R, Holzmeister F, Camerer CF, Dreber A, Huber J, et al. 2020.. Variability in the analysis of a single neuroimaging dataset by many teams. . Nature 582::8488
    [Crossref] [Google Scholar]
  21. Bromberg-Martin ES, Feng Y-Y, Ogasawara T, White JK, Zhang K, Monosov IE. 2024.. A neural mechanism for conserved value computations integrating information and rewards. . Nat. Neurosci. 27::15975
    [Crossref] [Google Scholar]
  22. Bromberg-Martin ES, Matsumoto M, Hikosaka O. 2010.. Dopamine in motivational control: rewarding, aversive, and alerting. . Neuron 68:(5):81534
    [Crossref] [Google Scholar]
  23. Burgos-Robles A, Kimchi EY, Izadmehr EM, Porzenheim MJ, Ramos-Guasp WA, et al. 2017.. Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment. . Nat. Neurosci. 20::82435
    [Crossref] [Google Scholar]
  24. Calder AJ, Lawrence AD, Young AW. 2001.. Neuropsychology of fear and loathing. . Nat. Rev. Neurosci. 2:(5):35263
    [Crossref] [Google Scholar]
  25. Card JP, Rinaman L. 2002.. Hypothalamus. . In Encyclopedia of the Human Brain, ed. VS Ramachandran , pp. 52535. Cambridge, MA:: Academic
    [Google Scholar]
  26. Carlitz L. 1954.. q-Bernoulli and Eulerian numbers. . Trans. Am. Math. Soc. 76:(2):33250
    [Google Scholar]
  27. Čeko M, Kragel PA, Woo C-W, López-Solà M, Wager TD. 2022.. Common and stimulus-type-specific brain representations of negative affect. . Nat. Neurosci. 25::76070
    [Crossref] [Google Scholar]
  28. Chang SWC, Fagan NA, Toda K, Utevsky AV, Pearson JM, Platt ML. 2015.. Neural mechanisms of social decision-making in the primate amygdala. . PNAS 112:(52):1601217
    [Crossref] [Google Scholar]
  29. Chen C, Takahashi T, Nakagawa S, Inoue T, Kusumi I. 2015.. Reinforcement learning in depression: a review of computational research. . Neurosci. Biobehav. Rev. 55::24767
    [Crossref] [Google Scholar]
  30. Chib VS, Rangel A, Shimojo S, O'Doherty JP. 2009.. Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. . J. Neurosci. 29:(39):1231520
    [Crossref] [Google Scholar]
  31. Chong TT-J, Apps M, Giehl K, Sillence A, Grima LL, Husain M. 2017.. Neurocomputational mechanisms underlying subjective valuation of effort costs. . PLOS Biol. 15:(2):e1002598
    [Crossref] [Google Scholar]
  32. Clithero JA, Rangel A. 2014.. Informatic parcellation of the network involved in the computation of subjective value. . Soc. Cogn. Affect. Neurosci. 9:(9):1289302
    [Crossref] [Google Scholar]
  33. Corlett PR, Mollick JA, Kober H. 2022.. Meta-analysis of human prediction error for incentives, perception, cognition, and action. . Neuropsychopharmacology 47::133949
    [Crossref] [Google Scholar]
  34. Costa VD, Dal Monte O, Lucas DR, Murray EA, Averbeck BB. 2016.. Amygdala and ventral striatum make distinct contributions to reinforcement learning. . Neuron 92:(2):50517
    [Crossref] [Google Scholar]
  35. Cuthbert BN, Insel TR. 2013.. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. . BMC Medicine 11:(1):126
    [Crossref] [Google Scholar]
  36. Dayan P. 2012.. Twenty-five lessons from computational neuromodulation. . Neuron 76:(1):24056
    [Crossref] [Google Scholar]
  37. de Jong JW, Afjei SA, Pollak Dorocic I, Peck JR, Liu C, et al. 2019.. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. . Neuron 101:(1):13351.e7
    [Crossref] [Google Scholar]
  38. De Martino B, Kumaran D, Holt B, Dolan RJ. 2009.. The neurobiology of reference-dependent value computation. . J. Neurosci. 29:(12):383342
    [Crossref] [Google Scholar]
  39. Delgado MR, Li J, Schiller D, Phelps EA. 2008.. The role of the striatum in aversive learning and aversive prediction errors. . Philos. Trans. R. Soc. B 363:( 1511.):3787800
    [Crossref] [Google Scholar]
  40. Delgado MR, Nystrom LE, Fissell C, Noll DC, Fiez JA. 2000.. Tracking the hemodynamic responses to reward and punishment in the striatum. . J. Neurophysiol. 84:(6):307277
    [Crossref] [Google Scholar]
  41. Dorris MC, Glimcher PW. 2004.. Activity in posterior parietal cortex is correlated with the relative subjective desirability of action. . Neuron 44:(2):36578
    [Crossref] [Google Scholar]
  42. Duvarci S, Pare D. 2014.. Amygdala microcircuits controlling learned fear. . Neuron 82:(5):96680
    [Crossref] [Google Scholar]
  43. Eckstrand KL, Forbes EE, Bertocci MA, Chase HW, Greenberg T, et al. 2021.. Trauma affects prospective relationships between reward-related ventral striatal and amygdala activation and 1-year future hypo/mania trajectories. . Biol. Psychiatry 89:(9):86877
    [Crossref] [Google Scholar]
  44. Elliott R, Agnew Z, Deakin JFW. 2010.. Hedonic and informational functions of the human orbitofrontal cortex. . Cereb. Cortex 20:(1):198204
    [Crossref] [Google Scholar]
  45. Elman I, Lowen S, Frederick BB, Chi W, Becerra L, Pitman RK. 2009.. Functional neuroimaging of reward circuitry responsivity to monetary gains and losses in posttraumatic stress disorder. . Biol. Psychiatry 66:(12):108390
    [Crossref] [Google Scholar]
  46. Enel P, Perkins AQ, Rich EL. 2021.. Heterogeneous value coding in orbitofrontal populations. . Behav. Neurosci. 135:(2):24554
    [Crossref] [Google Scholar]
  47. Eshel N, Roiser JP. 2010.. Reward and punishment processing in depression. . Biol. Psychiatry 68:(2):11824
    [Crossref] [Google Scholar]
  48. Falk E, Scholz C. 2018.. Persuasion, influence, and value: perspectives from communication and social neuroscience. . Annu. Rev. Psychol. 69::32956
    [Crossref] [Google Scholar]
  49. Fellows LK, Farah MJ. 2007.. The role of ventromedial prefrontal cortex in decision making: judgment under uncertainty or judgment per se?. Cereb. Cortex 17::266974
    [Crossref] [Google Scholar]
  50. Felmingham K, Williams LM, Kemp AH, Liddell B, Falconer E, et al. 2010.. Neural responses to masked fear faces: sex differences and trauma exposure in posttraumatic stress disorder. . J. Abnorm. Psychol. 119:(1):24147
    [Crossref] [Google Scholar]
  51. Fiorillo CD. 2013.. Two dimensions of value: Dopamine neurons represent reward but not aversiveness. . Science 341:(6145):54649
    [Crossref] [Google Scholar]
  52. FitzGerald THB, Seymour B, Dolan RJ. 2009.. The role of human orbitofrontal cortex in value comparison for incommensurable objects. . J. Neurosci. 29:(26):838895
    [Crossref] [Google Scholar]
  53. Fooken J. 2017.. Heart rate variability indicates emotional value during pro-social economic laboratory decisions with large external validity. . Sci. Rep. 7::44471
    [Crossref] [Google Scholar]
  54. Fooken J, Schaffner M. 2016.. The role of psychological and physiological factors in decision making under risk and in a dilemma. . Front. Behav. Neurosci. 10::2
    [Crossref] [Google Scholar]
  55. Foster BL, Koslov SR, Aponik-Gremillion L, Monko ME, Hayden BY, Heilbronner SR. 2023.. A tripartite view of the posterior cingulate cortex. . Nat. Rev. Neurosci. 24::17389
    [Crossref] [Google Scholar]
  56. Friston K. 2023.. Computational psychiatry: from synapses to sentience. . Mol. Psychiatry 28::25668
    [Crossref] [Google Scholar]
  57. Friston KJ, Stephan KE, Montague R, Dolan RJ. 2014.. Computational psychiatry: the brain as a phantastic organ. . Lancet Psychiatry 1:(2):14858
    [Crossref] [Google Scholar]
  58. Fuchs E, Flügge G. 2011.. Chronic stress and depression. . In The Handbook of Stress: Neuropsychological Effects on the Brain, ed. CD Conrad , pp. 46375. Hoboken, NJ:: Wiley
    [Google Scholar]
  59. Fujiwara J, Tobler PN, Taira M, Iijima T, Tsutsui K-I. 2009.. Segregated and integrated coding of reward and punishment in the cingulate cortex. . J. Neurophysiol. 101:(6):328493
    [Crossref] [Google Scholar]
  60. Fullana MA, Harrison BJ, Soriano-Mas C, Vervliet B, Cardoner N, et al. 2016.. Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies. . Mol. Psychiatry 21::5008
    [Crossref] [Google Scholar]
  61. Garrison J, Erdeniz B, Done J. 2013.. Prediction error in reinforcement learning: a meta-analysis of neuroimaging studies. . Neurosci. Biobehav. Rev. 37:(7):1297310
    [Crossref] [Google Scholar]
  62. Gillan CM, Kosinski M, Whelan R, Phelps EA, Daw ND. 2016.. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. . eLife 5::e11305
    [Crossref] [Google Scholar]
  63. Glimcher PW, Fehr E. 2013.. Neuroeconomics: Decision Making and the Brain. Cambridge, MA:: Academic
    [Google Scholar]
  64. Gluth S, Rieskamp J, Büchel C. 2014.. Neural evidence for adaptive strategy selection in value-based decision-making. . Cereb. Cortex 24:(8):200921
    [Crossref] [Google Scholar]
  65. Grabenhorst F, Báez-Mendoza R, Genest W, Deco G, Schultz W. 2019.. Primate amygdala neurons simulate decision processes of social partners. . Cell 177:(4):98698
    [Crossref] [Google Scholar]
  66. Grace AA, Bunney BS. 1984.. The control of firing pattern in nigral dopamine neurons: single spike firing. . J. Neurosci. 4:(11):286676
    [Crossref] [Google Scholar]
  67. Graham BM, Milad MR. 2011.. The study of fear extinction: implications for anxiety disorders. . Am. J. Psychiatry 168:(12):125565
    [Crossref] [Google Scholar]
  68. Gross J, Woelbert E, Zimmermann J, Okamoto-Barth S, Riedl A, Goebel R. 2014.. Value signals in the prefrontal cortex predict individual preferences across reward categories. . J. Neurosci. 34:(22):758086
    [Crossref] [Google Scholar]
  69. Grueschow M, Polania R, Hare TA, Ruff CC. 2015.. Automatic versus choice-dependent value representations in the human brain. . Neuron 85::87485
    [Crossref] [Google Scholar]
  70. Haber SN, Knutson B. 2010.. The reward circuit: linking primate anatomy and human imaging. . Neuropsychopharmacology 35::426
    [Crossref] [Google Scholar]
  71. Hampton AN, Adolphs R, Tyszka JM, O'Doherty JP. 2007.. Contributions of the amygdala to reward expectancy and choice signals in human prefrontal cortex. . Neuron 55:(4):54555
    [Crossref] [Google Scholar]
  72. Hare TA, Camerer CF, Rangel A. 2009.. Self-control in decision-making involves modulation of the vmPFC valuation system. . Science 324:(5927):64648
    [Crossref] [Google Scholar]
  73. Hare TA, O'Doherty J, Camerer CF, Schultz W, Rangel A. 2008.. Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. . J. Neurosci. 28:(22):562330
    [Crossref] [Google Scholar]
  74. Harris A, Adolphs R, Camerer C, Rangel A. 2011.. Dynamic construction of stimulus values in the ventromedial prefrontal cortex. . PLOS ONE 6:(6):e21074
    [Crossref] [Google Scholar]
  75. Harris S, Bray SR. 2021.. Mental fatigue, anticipated effort, and subjective valuations of exercising predict choice to exercise or not: a mixed-methods study. . Psychol. Sport Exerc. 54::101924
    [Crossref] [Google Scholar]
  76. Hasler G. 2012.. Can the neuroeconomics revolution revolutionize psychiatry?. Neurosci. Biobehav. Rev. 36:(1):6478
    [Crossref] [Google Scholar]
  77. Hassall CD, Williams CC. 2017.. The role of the amygdala in value-based learning. . J. Neurosci. 37:(28):66012
    [Crossref] [Google Scholar]
  78. Hayden BY, Niv Y. 2021.. The case against economic values in the orbitofrontal cortex (or anywhere else in the brain). . Behav. Neurosci. 135:(2):192201
    [Crossref] [Google Scholar]
  79. Hayes JP, Hayes SM, Mikedis AM. 2012a.. Quantitative meta-analysis of neural activity in posttraumatic stress disorder. . Biol. Mood Anxiety Disord. 2::9
    [Crossref] [Google Scholar]
  80. Hayes JP, VanElzakker MB, Shin LM. 2012b.. Emotion and cognition interactions in PTSD: a review of neurocognitive and neuroimaging studies. . Front. Integr. Neurosci. 6::89
    [Crossref] [Google Scholar]
  81. Heeger DJ. 1992.. Normalization of cell responses in cat striate cortex. . Vis. Neurosci. 9:(2):18197
    [Crossref] [Google Scholar]
  82. Hikosaka O. 2010.. The habenula: from stress evasion to value-based decision-making. . Nat. Rev. Neurosci. 11::50313
    [Crossref] [Google Scholar]
  83. Hinojosa CA, George GC, Ben-Zion Z. 2024.. Neuroimaging of posttraumatic stress disorder in adults and youth: progress over the last decade on three leading questions of the field. . Mol. Psychiatry 29::322344
    [Crossref] [Google Scholar]
  84. Hitchcock PF, Fried EI, Frank MJ. 2022.. Computational psychiatry needs time and context. . Annu. Rev. Psychol. 73::24370
    [Crossref] [Google Scholar]
  85. Hogan PS, Galaro JK, Chib VS. 2019.. Roles of ventromedial prefrontal cortex and anterior cingulate in subjective valuation of prospective effort. . Cereb. Cortex 29:(10):427790
    [Crossref] [Google Scholar]
  86. Homan P, Levy I, Feltham E, Gordon C, Hu J, et al. 2019.. Neural computations of threat in the aftermath of combat trauma. . Nat. Neurosci. 22:(3):47076
    [Crossref] [Google Scholar]
  87. Howard JD, Gottfried JA, Tobler PN, Kahnt T. 2015.. Identity-specific coding of future rewards in the human orbitofrontal cortex. . PNAS 112:(16):5195200
    [Crossref] [Google Scholar]
  88. Hsu M, Bhatt M, Adolphs R, Tranel D, Camerer CF. 2005.. Neural systems responding to degrees of uncertainty in human decision-making. . Science 310:(5754):168083
    [Crossref] [Google Scholar]
  89. Hu H, Cui Y, Yang Y. 2020.. Circuits and functions of the lateral habenula in health and in disease. . Nat. Rev. Neurosci. 21::27795
    [Crossref] [Google Scholar]
  90. Hunt LT, Kolling N, Soltani A, Woolrich MW, Rushworth MFS, Behrens TEJ. 2012.. Mechanisms underlying cortical activity during value-guided choice. . Nat. Neurosci. 15:(3):47076
    [Crossref] [Google Scholar]
  91. Hutcherson CA, Montaser-Kouhsari L, Woodward J, Rangel A. 2015.. Emotional and utilitarian appraisals of moral dilemmas are encoded in separate areas and integrated in ventromedial prefrontal cortex. . J. Neurosci. 35:(36):12593605
    [Crossref] [Google Scholar]
  92. Huys QJM, Maia TV, Frank MJ. 2016.. Computational psychiatry as a bridge from neuroscience to clinical applications. . Nat. Neurosci. 19:(3):40413
    [Crossref] [Google Scholar]
  93. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, et al. 2010.. Research Domain Criteria (RDoC): toward a new classification framework for research on mental disorders. . Am. J. Psychiatry 167:(7):74851
    [Crossref] [Google Scholar]
  94. Izuma K, Saito DN, Sadato N. 2008.. Processing of social and monetary rewards in the human striatum. . Neuron 58:(2):28494
    [Crossref] [Google Scholar]
  95. Janak PH, Tye KM. 2015.. From circuits to behaviour in the amygdala. . Nature 517::28492
    [Crossref] [Google Scholar]
  96. Jenison RL, Rangel A, Oya H, Kawasaki H, Howard MA. 2011.. Value encoding in single neurons in the human amygdala during decision making. . J. Neurosci. 31:(1):33138
    [Crossref] [Google Scholar]
  97. Jia R, Ruderman L, Pietrzak RH, Gordon C, Ehrlich D, et al. 2023.. Neural valuation of rewards and punishments in posttraumatic stress disorder: a computational approach. . Transl. Psychiatry 13::101
    [Crossref] [Google Scholar]
  98. Juarez B, Zweifel LS. 2022.. Disinhibitory feedback loops for reward and aversion. . Cell Res. 32::11516
    [Crossref] [Google Scholar]
  99. Kable JW, Glimcher PW. 2007.. The neural correlates of subjective value during intertemporal choice. . Nat. Neurosci. 10:(12):162533
    [Crossref] [Google Scholar]
  100. Kable JW, Glimcher PW. 2009.. The neurobiology of decision: consensus and controversy. . Neuron 63:(6):73345
    [Crossref] [Google Scholar]
  101. Kable JW, Glimcher PW. 2010.. An “as soon as possible” effect in human intertemporal decision making: behavioral evidence and neural mechanisms. . J. Neurophysiol. 103:(5):251331
    [Crossref] [Google Scholar]
  102. Kahneman D, Tversky A. 1979.. Prospect theory: an analysis of decision under risk. . Econometrica 47:(2):26391
    [Crossref] [Google Scholar]
  103. Kahnt T, Heinzle J, Park SQ, Haynes J-D. 2010.. The neural code of reward anticipation in human orbitofrontal cortex. . PNAS 107:(13):601015
    [Crossref] [Google Scholar]
  104. Kahnt T, Heinzle J, Park SQ, Haynes J-D. 2011.. Decoding different roles for vmPFC and dlPFC in multi-attribute decision making. . NeuroImage 56:(2):70915
    [Crossref] [Google Scholar]
  105. Kahnt T, Park SQ, Haynes J-D, Tobler PN. 2014.. Disentangling neural representations of value and salience in the human brain. . PNAS 111:(13):50005
    [Crossref] [Google Scholar]
  106. Kim H, Shimojo S, O'Doherty JP. 2006.. Is avoiding an aversive outcome rewarding? Neural substrates of avoidance learning in the human brain. . PLOS Biol. 4:(8):e233
    [Crossref] [Google Scholar]
  107. Kim H, Shimojo S, O'Doherty JP. 2011.. Overlapping responses for the expectation of juice and money rewards in human ventromedial prefrontal cortex. . Cereb. Cortex 21:(4):76976
    [Crossref] [Google Scholar]
  108. Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S. 2016.. Antagonistic negative and positive neurons of the basolateral amygdala. . Nat. Neurosci. 19::163646
    [Crossref] [Google Scholar]
  109. Kim SH, Yoon H, Kim H, Hamann S. 2015.. Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning. . Soc. Cogn. Affect. Neurosci. 10:(9):121927
    [Crossref] [Google Scholar]
  110. Klein-Flügge MC, Kennerley SW, Friston K, Bestmann S. 2016.. Neural signatures of value comparison in human cingulate cortex during decisions requiring an effort-reward trade-off. . J. Neurosci. 36:(39):1000215
    [Crossref] [Google Scholar]
  111. Knudsen EB, Wallis JD. 2022.. Taking stock of value in the orbitofrontal cortex. . Nat. Rev. Neurosci. 23:(7):42838
    [Crossref] [Google Scholar]
  112. Knutson B, Delgado MR, Phillips PEM. 2009.. Representation of subjective value in the striatum. . In Neuroeconomics, ed. PW Glimcher, CF Camerer, E Fehr, RA Poldrack , pp. 389406. Cambridge, MA:: Academic
    [Google Scholar]
  113. Kobayashi S, de Carvalho OP, Schultz W. 2010.. Adaptation of reward sensitivity in orbitofrontal neurons. . J. Neurosci. 30:(2):53444
    [Crossref] [Google Scholar]
  114. Koscik TR, Man V, Jahn A, Lee CH, Cunningham WA. 2020.. Decomposing the neural pathways in a simple, value-based choice. . NeuroImage 214::116764
    [Crossref] [Google Scholar]
  115. Kravitz AV, Tye LD, Kreitzer AC. 2012.. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. . Nat. Neurosci. 15::81618
    [Crossref] [Google Scholar]
  116. Kutlu MG, Zachry JE, Melugin PR, Cajigas SA, Chevee MF, et al. 2021.. Dopamine release in the nucleus accumbens core signals perceived saliency. . Curr. Biol. 31:(21):474861.e8
    [Crossref] [Google Scholar]
  117. Kwak S, Jung MW. 2019.. Distinct roles of striatal direct and indirect pathways in value-based decision making. . eLife 8::e46050
    [Crossref] [Google Scholar]
  118. Lak A, Stauffer WR, Schultz W. 2014.. Dopamine prediction error responses integrate subjective value from different reward dimensions. . PNAS 111:(6):234348
    [Crossref] [Google Scholar]
  119. Lammel S, Ion DI, Roeper J, Malenka RC. 2011.. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. . Neuron 70:(5):85562
    [Crossref] [Google Scholar]
  120. Lammel S, Lim BK, Malenka RC. 2014.. Reward and aversion in a heterogeneous midbrain dopamine system. . Neuropharmacology 76::35159
    [Crossref] [Google Scholar]
  121. Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, et al. 2012.. Input-specific control of reward and aversion in the ventral tegmental area. . Nature 491::21217
    [Crossref] [Google Scholar]
  122. Lau B, Glimcher PW. 2008.. Value representations in the primate striatum during matching behavior. . Neuron 58:(3):45163
    [Crossref] [Google Scholar]
  123. Lebreton M, Jorge S, Michel V, Thirion B, Pessiglione M. 2009.. An automatic valuation system in the human brain: evidence from functional neuroimaging. . Neuron 64::43139
    [Crossref] [Google Scholar]
  124. LeDoux J. 2003.. The emotional brain, fear, and the amygdala. . Cell. Mol. Neurobiol. 23:(4):72738
    [Crossref] [Google Scholar]
  125. Levy D, Glimcher P. 2011.. Comparing apples and oranges: using reward-specific and reward-general subjective value representation in the brain. . J. Neurosci. 31:(41):14693707
    [Crossref] [Google Scholar]
  126. Levy D, Glimcher P. 2012.. The root of all value: a neural common currency for choice. . Curr. Opin. Neurobiol. 22:(6):102738
    [Crossref] [Google Scholar]
  127. Levy D, Thavikulwat AC, Glimcher P. 2013.. State dependent valuation: the effect of deprivation on risk preferences. . PLOS ONE 8:(1):e53978
    [Crossref] [Google Scholar]
  128. Levy I, Lazzaro SC, Rutledge RB, Glimcher PW. 2011.. Choice from non-choice: predicting consumer preferences from blood oxygenation level-dependent signals obtained during passive viewing. . J. Neurosci. 31:(1):11825
    [Crossref] [Google Scholar]
  129. Levy I, Schiller D. 2021.. Neural computations of threat. . Trends Cogn. Sci. 25:(2):15171
    [Crossref] [Google Scholar]
  130. Levy I, Snell J, Nelson AJ, Rustichini A, Glimcher PW. 2010.. Neural representation of subjective value under risk and ambiguity. . J. Neurophysiol. 103:(2):103647
    [Crossref] [Google Scholar]
  131. Li J, Schiller D, Schoenbaum G, Phelps EA, Daw ND. 2011.. Differential roles of human striatum and amygdala in associative learning. . Nat. Neurosci. 14:(10):125052
    [Crossref] [Google Scholar]
  132. Li M, Pan J, Gao Y, Shen Y, Luo F, et al. 2022.. Neurophysiological and subjective analysis of VR emotion induction paradigm. . IEEE Trans. Vis. Comput. Graph. 28:(11):383242
    [Crossref] [Google Scholar]
  133. Lim S-L, O'Doherty JP, Rangel A. 2013.. Stimulus value signals in ventromedial PFC reflect the integration of attribute value signals computed in fusiform gyrus and posterior superior temporal gyrus. . J. Neurosci. 33:(20):872941
    [Crossref] [Google Scholar]
  134. Lin A, Adolphs R, Rangel A. 2012.. Social and monetary reward learning engage overlapping neural substrates. . Soc. Cogn. Affect. Neurosci. 7:(3):27481
    [Crossref] [Google Scholar]
  135. Litt A, Plassmann H, Shiv B, Rangel A. 2011.. Dissociating valuation and saliency signals during decision-making. . Cereb. Cortex 21:(1):95102
    [Crossref] [Google Scholar]
  136. Liu Z, Le Q, Lv Y, Chen X, Cui J, et al. 2022.. A distinct D1-MSN subpopulation down-regulates dopamine to promote negative emotional state. . Cell Res. 32:(2):13956
    [Crossref] [Google Scholar]
  137. Lohrenz T, McCabe K, Camerer CF, Montague PR. 2007.. Neural signature of fictive learning signals in a sequential investment task. . PNAS 104:(22):949398
    [Crossref] [Google Scholar]
  138. Lopez-Gamundi P, Yao Y-W, Chong TT, Heekeren HR, Mas-Herrero E, Marco-Pallarés J. 2021.. The neural basis of effort valuation: a meta-analysis of functional magnetic resonance imaging studies. . Neurosci. Biobehav. Rev. 131::127587
    [Crossref] [Google Scholar]
  139. Lopez-Persem A, Bastin J, Petton M, Abitbol R, Lehongre K, et al. 2020.. Four core properties of the human brain valuation system demonstrated in intracranial signals. . Nat. Neurosci. 23::66475
    [Crossref] [Google Scholar]
  140. Loued-Khenissi L, Pfeuffer A, Einhäuser W, Preuschoff K. 2020.. Anterior insula reflects surprise in value-based decision-making and perception. . NeuroImage 210::116549
    [Crossref] [Google Scholar]
  141. Louie K, Glimcher PW. 2012.. Efficient coding and the neural representation of value. . Ann. N. Y. Acad. Sci. 1251:(1):1332
    [Crossref] [Google Scholar]
  142. Louie K, Khaw MW, Glimcher PW. 2013.. Normalization is a general neural mechanism for context-dependent decision making. . PNAS 110:(15):613944
    [Crossref] [Google Scholar]
  143. Manssuer L, Qiong D, Wei L, Yang R, Zhang C, et al. 2022.. Integrated amygdala, orbitofrontal and hippocampal contributions to reward and loss coding revealed with human intracranial EEG. . J. Neurosci. 42:(13):275671
    [Crossref] [Google Scholar]
  144. Martin-Fernandez M, Menegolla AP, Lopez-Fernandez G, Winke N, Jercog D, et al. 2023.. Prefrontal circuits encode both general danger and specific threat representations. . Nat. Neurosci. 26::214757
    [Crossref] [Google Scholar]
  145. Matsumoto M, Hikosaka O. 2009a.. Representation of negative motivational value in the primate lateral habenula. . Nat. Neurosci. 12::7784
    [Crossref] [Google Scholar]
  146. Matsumoto M, Hikosaka O. 2009b.. Two types of dopamine neuron distinctly convey positive and negative motivational signals. . Nature 459::83741
    [Crossref] [Google Scholar]
  147. McClure SM, Laibson DI, Loewenstein G, Cohen JD. 2004.. Separate neural systems value immediate and delayed monetary rewards. . Science 306:(5695):5037
    [Crossref] [Google Scholar]
  148. McCoy AN, Platt ML. 2005.. Expectations and outcomes: decision-making in the primate brain. . J. Comp. Physiol. A 191::20111
    [Crossref] [Google Scholar]
  149. McNamee D, Rangel A, O'Doherty JP. 2013.. Category-dependent and category-independent goal-value codes in human ventromedial prefrontal cortex. . Nat. Neurosci. 16::47985
    [Crossref] [Google Scholar]
  150. Medina JF, Repa JC, Mauk MD, LeDoux JE. 2002.. Parallels between cerebellum- and amygdala-dependent conditioning. . Nat. Rev. Neurosci. 3:(2):12231
    [Crossref] [Google Scholar]
  151. Menon V, D'Esposito M. 2022.. The role of PFC networks in cognitive control and executive function. . Neuropsychopharmacology 47::90103
    [Crossref] [Google Scholar]
  152. Miller KJ, Shenhav A, Ludvig EA. 2019.. Habits without values. . Psychol. Rev. 126::292311
    [Crossref] [Google Scholar]
  153. Mirenowicz J, Schultz W. 1996.. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. . Nature 379:(6564):44951
    [Crossref] [Google Scholar]
  154. Mobbs D, Adolphs R, Fanselow MS, Barrett LF, LeDoux JE, et al. 2019.. Viewpoints: approaches to defining and investigating fear. . Nat. Neurosci. 22::120516
    [Crossref] [Google Scholar]
  155. Mondoloni S, Mameli M, Congiu M. 2022.. Reward and aversion encoding in the lateral habenula for innate and learned behaviours. . Transl. Psychiatry 12::3
    [Crossref] [Google Scholar]
  156. Monosov IE, Hikosaka O. 2012.. Regionally distinct processing of rewards and punishments by the primate ventromedial prefrontal cortex. . J. Neurosci. 32:(30):1031830
    [Crossref] [Google Scholar]
  157. Montague PR, Berns GS. 2002.. Neural economics and the biological substrates of valuation. . Neuron 36:(2):26584
    [Crossref] [Google Scholar]
  158. Montague PR, Dolan RJ, Friston KJ, Dayan P. 2012.. Computational psychiatry. . Trends Cogn. Sci. 16:(1):7280
    [Crossref] [Google Scholar]
  159. Mormann F, Bausch M, Knieling S, Fried I. 2019.. Neurons in the human left amygdala automatically encode subjective value irrespective of task. . Cereb. Cortex 29:(1):26572
    [Crossref] [Google Scholar]
  160. Morris JS, deBonis M, Dolan RJ. 2002.. Human amygdala responses to fearful eyes. . NeuroImage 17:(1):21422
    [Crossref] [Google Scholar]
  161. Mukherjee D, Filipowicz ALS, Vo K, Satterthwaite TD, Kable JW. 2020.. Reward and punishment reversal-learning in major depressive disorder. . J. Abnorm. Psychol. 129:(8):81023
    [Crossref] [Google Scholar]
  162. Mukherjee D, Kable JW. 2014.. Value-based decision making in mental illness: a meta-analysis. . Clin. Psychol. Sci. 2:(6):76782
    [Crossref] [Google Scholar]
  163. Mukherjee D, van Geen C, Kable J. 2023.. Leveraging decision science to characterize depression. . Curr. Dir. Psychol. Sci. 32:(6):46270
    [Crossref] [Google Scholar]
  164. Murray EA. 2007.. The amygdala, reward and emotion. . Trends Cogn. Sci. 11:(11):48997
    [Crossref] [Google Scholar]
  165. Murray EA, Fellows LK. 2022.. Prefrontal cortex interactions with the amygdala in primates. . Neuropsychopharmacology 47:(1):16379
    [Crossref] [Google Scholar]
  166. Nawijn L, van Zuiden M, Frijling JL, Koch SBJ, Veltman DJ, Olff M. 2015.. Reward functioning in PTSD: a systematic review exploring the mechanisms underlying anhedonia. . Neurosci. Biobehav. Rev. 51::189204
    [Crossref] [Google Scholar]
  167. Newton-Fenner A, Hewitt D, Henderson J, Roberts H, Mari T, et al. 2023.. Economic value in the brain: a meta-analysis of willingness-to-pay using the Becker-DeGroot-Marschak auction. . PLOS ONE 18:(7):e0286969
    [Crossref] [Google Scholar]
  168. O'Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ. 2004.. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. . Science 304:(5669):45254
    [Crossref] [Google Scholar]
  169. O'Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C. 2001.. Abstract reward and punishment representations in the human orbitofrontal cortex. . Nat. Neurosci. 4::95102
    [Crossref] [Google Scholar]
  170. O'Doherty JP. 2014.. The problem with value. . Neurosci. Biobehav. Rev. 43::25968
    [Crossref] [Google Scholar]
  171. O'Doherty JP, Cockburn J, Pauli WM. 2017.. Learning, reward, and decision making. . Annu. Rev. Psychol. 68::73100
    [Crossref] [Google Scholar]
  172. Öhman A. 2005.. The role of the amygdala in human fear: automatic detection of threat. . Psychoneuroendocrinology 30:(10):95358
    [Crossref] [Google Scholar]
  173. O'Reilly RC. 2010.. The What and How of prefrontal cortical organization. . Trends Neurosci. 33:(8):35561
    [Crossref] [Google Scholar]
  174. Ostlund SB, Balleine BW. 2007.. Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. . J. Neurosci. 27:(18):481925
    [Crossref] [Google Scholar]
  175. Ousdal OT, Specht K, Server A, Andreassen OA, Dolan RJ, Jensen J. 2014.. The human amygdala encodes value and space during decision making. . NeuroImage 101::71219
    [Crossref] [Google Scholar]
  176. Padoa-Schioppa C. 2009.. Range-adapting representation of economic value in the orbitofrontal cortex. . J. Neurosci. 29:(44):1400414
    [Crossref] [Google Scholar]
  177. Padoa-Schioppa C, Assad JA. 2006.. Neurons in the orbitofrontal cortex encode economic value. . Nature 441:(7090):22326
    [Crossref] [Google Scholar]
  178. Palminteri S, Khamassi M, Joffily M, Coricelli G. 2015.. Contextual modulation of value signals in reward and punishment learning. . Nat. Commun. 6::8096
    [Crossref] [Google Scholar]
  179. Park IH, Lee BC, Kim J-J, Kim JI, Koo M-S. 2017.. Effort-based reinforcement processing and functional connectivity underlying amotivation in medicated patients with depression and schizophrenia. . J. Neurosci. 37:(16):437080
    [Crossref] [Google Scholar]
  180. Paton JJ, Belova MA, Morrison SE, Salzman CD. 2006.. The primate amygdala represents the positive and negative value of visual stimuli during learning. . Nature 439::86570
    [Crossref] [Google Scholar]
  181. Paulus MP, Stein MB. 2006.. An insular view of anxiety. . Biol. Psychiatry 60:(4):38387
    [Crossref] [Google Scholar]
  182. Paulus MP, Yu AJ. 2012.. Emotion and decision-making: affect-driven belief systems in anxiety and depression. . Trends Cogn. Sci. 16:(9):47683
    [Crossref] [Google Scholar]
  183. Pessoa L. 2017.. A network model of the emotional brain. . Trends Cogn. Sci. 21:(5):35771
    [Crossref] [Google Scholar]
  184. Peters J, Büchel C. 2009.. Overlapping and distinct neural systems code for subjective value during intertemporal and risky decision making. . J. Neurosci. 29:(50):1572734
    [Crossref] [Google Scholar]
  185. Peters J, Büchel C. 2010.. Neural representations of subjective reward value. . Behav. Brain Res. 213:(2):13541
    [Crossref] [Google Scholar]
  186. Phelps EA, Delgado MR, Nearing KI, LeDoux JE. 2004.. Extinction learning in humans: role of the amygdala and vmPFC. . Neuron 43:(6):897905
    [Crossref] [Google Scholar]
  187. Philiastides MG, Biele G, Heekeren HR. 2010.. A mechanistic account of value computation in the human brain. . PNAS 107:(20):943035
    [Crossref] [Google Scholar]
  188. Piva M, Velnoskey K, Jia R, Nair A, Levy I, Chang SW. 2019.. The dorsomedial prefrontal cortex computes task-invariant relative subjective value for self and other. . eLife 8::e44939
    [Crossref] [Google Scholar]
  189. Plassmann H, O'Doherty J, Rangel A. 2007.. Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. . J. Neurosci. 27:(37):998488
    [Crossref] [Google Scholar]
  190. Plassmann H, O'Doherty J, Shiv B, Rangel A. 2008.. Marketing actions can modulate neural representations of experienced pleasantness. . PNAS 105:(3):105054
    [Crossref] [Google Scholar]
  191. Plassmann H, O'Doherty JP, Rangel A. 2010.. Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making. . J. Neurosci. 30:(32):10799808
    [Crossref] [Google Scholar]
  192. Platt ML, Glimcher PW. 1999.. Neural correlates of decision variables in parietal cortex. . Nature 400::23338
    [Crossref] [Google Scholar]
  193. Polanía R, Krajbich I, Grueschow M, Ruff CC. 2014.. Neural oscillations and synchronization differentially support evidence accumulation in perceptual and value-based decision making. . Neuron 82:(3):70920
    [Crossref] [Google Scholar]
  194. Polley DB, Schiller D. 2022.. The promise of low-tech intervention in a high-tech era: remodeling pathological brain circuits using behavioral reverse engineering. . Neurosci. Biobehav. Rev. 137::104652
    [Crossref] [Google Scholar]
  195. Rangel A, Camerer C, Montague PR. 2008.. A framework for studying the neurobiology of value-based decision making. . Nat. Rev. Neurosci. 9:(7):54556
    [Crossref] [Google Scholar]
  196. Rangel A, Clithero JA. 2012.. Value normalization in decision making: theory and evidence. . Curr. Opin. Neurobiol. 22:(6):97081
    [Crossref] [Google Scholar]
  197. Reynolds JR, O'Reilly RC, Cohen JD, Braver TS. 2012.. The function and organization of lateral prefrontal cortex: a test of competing hypotheses. . PLOS ONE 7:(2):e30284
    [Crossref] [Google Scholar]
  198. Reynolds SM, Berridge KC. 2008.. Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. . Nat. Neurosci. 11::42325
    [Crossref] [Google Scholar]
  199. Robinson OJ, Frank MJ, Sahakian BJ, Cools R. 2010.. Dissociable responses to punishment in distinct striatal regions during reversal learning. . NeuroImage 51:(4):145967
    [Crossref] [Google Scholar]
  200. Robson SE, Repetto L, Gountouna V-E, Nicodemus KK. 2020.. A review of neuroeconomic gameplay in psychiatric disorders. . Mol. Psychiatry 25::6781
    [Crossref] [Google Scholar]
  201. Rudebeck PH, Izquierdo A. 2022.. Foraging with the frontal cortex: a cross-species evaluation of reward-guided behavior. . Neuropsychopharmacology 47::13446
    [Crossref] [Google Scholar]
  202. Rutledge RB, Skandali N, Dayan P, Dolan RJ. 2014.. A computational and neural model of momentary subjective well-being. . PNAS 111:(33):1225257
    [Crossref] [Google Scholar]
  203. Saez I, Gu X. 2023.. Invasive computational psychiatry. . Biol. Psychiatry 93:(8):66170
    [Crossref] [Google Scholar]
  204. Sailer M, Hense JU, Mayr SK, Mandl H. 2017.. How gamification motivates: an experimental study of the effects of specific game design elements on psychological need satisfaction. . Comput. Hum. Behav. 69::37180
    [Crossref] [Google Scholar]
  205. Salamone JD, Correa M. 2024.. The neurobiology of activational aspects of motivation: exertion of effort, effort-based decision making, and the role of dopamine. . Annu. Rev. Psychol. 75::132
    [Crossref] [Google Scholar]
  206. Samuelson PA. 1947.. Foundations of Economic Analysis. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  207. Schiller D, Levy I, Niv Y, LeDoux JE, Phelps EA. 2008.. From fear to safety and back: reversal of fear in the human brain. . J. Neurosci. 28:(45):1151725
    [Crossref] [Google Scholar]
  208. Schuck NW, Cai MB, Wilson RC, Niv Y. 2016.. Human orbitofrontal cortex represents a cognitive map of state space. . Neuron 91::140212
    [Crossref] [Google Scholar]
  209. Schultz W. 1998.. Predictive reward signal of dopamine neurons. . J. Neurophysiol. 80:(1):127
    [Crossref] [Google Scholar]
  210. Schultz W. 2007.. Multiple dopamine functions at different time courses. . Annu. Rev. Neurosci. 30::25988
    [Crossref] [Google Scholar]
  211. Schultz W. 2016.. Dopamine reward prediction error coding. . Dialogues Clin. Neurosci. 18:(1):2332
    [Crossref] [Google Scholar]
  212. Schultz W. 2017.. Reward prediction error. . Curr. Biol. 27:(10):R36971
    [Crossref] [Google Scholar]
  213. Schultz W. 2019.. Recent advances in understanding the role of phasic dopamine activity. . F1000Research 8::1680
    [Crossref] [Google Scholar]
  214. Schultz W, Dayan P, Montague PR. 1997.. A neural substrate of prediction and reward. . Science 275:(5306):159399
    [Crossref] [Google Scholar]
  215. Seaman KL, Brooks N, Karrer TM, Castrellon JJ, Perkins SF, et al. 2018.. Subjective value representations during effort, probability and time discounting across adulthood. . Soc. Cogn. Affect. Neurosci. 13:(5):44959
    [Crossref] [Google Scholar]
  216. Senftleben U, Schoemann M, Schwenke D, Richter S, Dshemuchadse M, Scherbaum S. 2019.. Choice perseveration in value-based decision making: the impact of inter-trial interval and mood. . Acta Psychol. 198::102876
    [Crossref] [Google Scholar]
  217. Sescousse G, Li Y, Dreher J-C. 2015.. A common currency for the computation of motivational values in the human striatum. . Soc. Cogn. Affect. Neurosci. 10:(4):46773
    [Crossref] [Google Scholar]
  218. Shabel SJ, Wang C, Monk B, Aronson S, Malinow R. 2019.. Stress transforms lateral habenula reward responses into punishment signals. . PNAS 116:(25):1248893
    [Crossref] [Google Scholar]
  219. Shenhav A, Karmarkar UR. 2019.. Dissociable components of the reward circuit are involved in appraisal versus choice. . Sci. Rep. 9::1958
    [Crossref] [Google Scholar]
  220. Shields GS, Sazma MA, Yonelinas AP. 2016.. The effects of acute stress on core executive functions: a meta-analysis and comparison with cortisol. . Neurosci. Biobehav. Rev. 68::65168
    [Crossref] [Google Scholar]
  221. Sias AC, Morse AK, Wang S, Greenfield VY, Goodpaster CM, et al. 2021.. A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories. . eLife 10::e68617
    [Crossref] [Google Scholar]
  222. Soares-Cunha C, de Vasconcelos NAP, Coimbra B, Domingues AV, Silva JM, et al. 2020.. Nucleus accumbens medium spiny neurons subtypes signal both reward and aversion. . Mol. Psychiatry 25::324155
    [Crossref] [Google Scholar]
  223. Souther MK, Wolf DH, Kazinka R, Lee S, Ruparel K, et al. 2022.. Decision value signals in the ventromedial prefrontal cortex and motivational and hedonic symptoms across mood and psychotic disorders. . NeuroImage Clin. 36::103227
    [Crossref] [Google Scholar]
  224. Speer ME, Mauricio R. 2017.. Reminiscing about positive memories buffers acute stress responses. . Nat. Hum. Behav. 1::0093
    [Crossref] [Google Scholar]
  225. Stein MB, Paulus MP. 2009.. Imbalance of approach and avoidance: the yin and yang of anxiety disorders. . Biol. Psychiatry 66:(12):107274
    [Crossref] [Google Scholar]
  226. Strait CE, Blanchard TC, Hayden BY. 2014.. Reward value comparison via mutual inhibition in ventromedial prefrontal cortex. . Neuron 82:(6):135766
    [Crossref] [Google Scholar]
  227. Stuber GD, Wise RA. 2016.. Lateral hypothalamic circuits for feeding and reward. . Nat. Neurosci. 19:(2):198205
    [Crossref] [Google Scholar]
  228. Sugrue LP, Corrado GS, Newsome WT. 2004.. Matching behavior and the representation of value in the parietal cortex. . Science 304:(5678):178287
    [Crossref] [Google Scholar]
  229. Surmeier DJ, Ding J, Day M, Wang Z, Shen W. 2007.. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. . Trends Neurosci. 30:(5):22835
    [Crossref] [Google Scholar]
  230. Sutton RS, Barto AG. 2018.. Reinforcement Learning: An Introduction. Cambridge, MA:: MIT Press
    [Google Scholar]
  231. Suzuki S, Cross L, O'Doherty JP. 2017.. Elucidating the underlying components of food valuation in the human orbitofrontal cortex. . Nat. Neurosci. 20::178086
    [Crossref] [Google Scholar]
  232. Symmonds M, Emmanuel JJ, Drew ME, Batterham RL, Dolan RJ. 2010.. Metabolic state alters economic decision making under risk in humans. . PLOS ONE 5:(6):e11090
    [Crossref] [Google Scholar]
  233. Tobler PN, Christopoulos GI, O'Doherty JP, Dolan RJ, Schultz W. 2009.. Risk-dependent reward value signal in human prefrontal cortex. . PNAS 106:(17):718590
    [Crossref] [Google Scholar]
  234. Tom SM, Fox CR, Trepel C, Poldrack RA. 2007.. The neural basis of loss aversion in decision-making under risk. . Science 315:(5811):51518
    [Crossref] [Google Scholar]
  235. Tran T, Hagen AEF, Hollenstein T, Bowie CR. 2021.. Physical- and cognitive-effort-based decision-making in depression: relationships to symptoms and functioning. . Clin. Psychol. Sci. 9:(1):5367
    [Crossref] [Google Scholar]
  236. Treadway MT, Bossaller NA, Shelton RC, Zald DH. 2012.. Effort-based decision-making in major depressive disorder: a translational model of motivational anhedonia. . J. Abnorm. Psychol. 121:(3):55358
    [Crossref] [Google Scholar]
  237. Trusel M, Nuno-Perez A, Lecca S, Harada H, Lalive AL, et al. 2019.. Punishment-predictive cues guide avoidance through potentiation of hypothalamus-to-habenula synapses. . Neuron 102:(1):12027.e4
    [Crossref] [Google Scholar]
  238. Tugade MM, Fredrickson BL. 2004.. Resilient individuals use positive emotions to bounce back from negative emotional experiences. . J. Pers. Soc. Psychol. 86:(2):32033
    [Crossref] [Google Scholar]
  239. Tusche A, Bode S, Haynes J-D. 2010.. Neural responses to unattended products predict later consumer choices. . J. Neurosci. 30::802431
    [Crossref] [Google Scholar]
  240. Tye KM. 2018.. Neural circuit motifs in valence processing. . Neuron 100:(2):43652
    [Crossref] [Google Scholar]
  241. Tymula A, Plassmann H. 2016.. Context-dependency in valuation. . Curr. Opin. Neurobiol. 40::5965
    [Crossref] [Google Scholar]
  242. Tzovara A, Korn CW, Bach DR. 2018.. Human Pavlovian fear conditioning conforms to probabilistic learning. . PLOS Comput. Biol. 14:(8):e1006243
    [Crossref] [Google Scholar]
  243. Uddin LQ, Nomi JS, Hebert-Seropian B, Ghaziri J, Boucher O. 2017.. Structure and function of the human insula. . J. Clin. Neurophysiol. 34:(4):3006
    [Crossref] [Google Scholar]
  244. Valentin VV, O'Doherty JP. 2009.. Overlapping prediction errors in dorsal striatum during instrumental learning with juice and money reward in the human brain. . J. Neurophysiol. 102:(6):338491
    [Crossref] [Google Scholar]
  245. van Elzelingen W, Goedhoop J, Warnaar P, Denys D, Arbab T, Willuhn I. 2022.. A unidirectional but not uniform striatal landscape of dopamine signaling for motivational stimuli. . PNAS 119:(21):e2117270119
    [Crossref] [Google Scholar]
  246. Van Leijenhorst L, Zanolie K, Van Meel CS, Westenberg PM, Rombouts SARB, Crone EA. 2010.. What motivates the adolescent? Brain regions mediating reward sensitivity across adolescence. . Cereb. Cortex 20:(1):6169
    [Crossref] [Google Scholar]
  247. Verharen JPH, Adan RAH, Vanderschuren LJMJ. 2019.. Differential contributions of striatal dopamine D1 and D2 receptors to component processes of value-based decision making. . Neuropsychopharmacology 44::2195204
    [Crossref] [Google Scholar]
  248. Verharen JPH, Zhu Y, Lammel S. 2020.. Aversion hot spots in the dopamine system. . Curr. Opin. Neurobiol. 64::4652
    [Crossref] [Google Scholar]
  249. Verschoor A, D'Exelle B, Perez-Viana B. 2016.. Lab and life: Does risky choice behaviour observed in experiments reflect that in the real world?. J. Econ. Behav. Organ. 128::13448
    [Crossref] [Google Scholar]
  250. Von Neumann J, Morgenstern O. 1944.. Theory of Games and Economic Behavior. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  251. Voorn P, Vanderschuren LJMJ, Groenewegen HJ, Robbins TW, Pennartz CMA. 2004.. Putting a spin on the dorsal-ventral divide of the striatum. . Trends Neurosci. 27:(8):46874
    [Crossref] [Google Scholar]
  252. Wallis JD. 2012.. Cross-species studies of orbitofrontal cortex and value-based decision-making. . Nat. Neurosci. 15:(1):1319
    [Crossref] [Google Scholar]
  253. Wang D, Li Y, Feng Q, Guo Q, Zhou J, Luo M. 2017.. Learning shapes the aversion and reward responses of lateral habenula neurons. . eLife 6::e23045
    [Crossref] [Google Scholar]
  254. Wassum KM. 2022.. Amygdala-cortical collaboration in reward learning and decision making. . eLife 11::e80926
    [Crossref] [Google Scholar]
  255. Watabe-Uchida M, Eshel N, Uchida N. 2017.. Neural circuitry of reward prediction error. . Annu. Rev. Neurosci. 40::37394
    [Crossref] [Google Scholar]
  256. Weaver SS, Kroska EB, Ross MC, Sartin-Tarm A, Sellnow KA, et al. 2020.. Sacrificing reward to avoid threat: characterizing PTSD in the context of a trauma-related approach-avoidance conflict task. . J. Abnorm. Psychol. 129:(5):45768
    [Crossref] [Google Scholar]
  257. Westbrook A, Lamichhane B, Braver T. 2019.. The subjective value of cognitive effort is encoded by a domain-general valuation network. . J. Neurosci. 39:(20):393447
    [Crossref] [Google Scholar]
  258. White SF, Geraci M, Lewis E, Leshin J, Teng C, et al. 2017.. Prediction error representation in individuals with generalized anxiety disorder during passive avoidance. . Am. J. Psychiatry 174:(2):11017
    [Crossref] [Google Scholar]
  259. Williams TB, Burke CJ, Nebe S, Preuschoff K, Fehr E, Tobler PN. 2021.. Testing models at the neural level reveals how the brain computes subjective value. . PNAS 118:(43):e2106237118
    [Crossref] [Google Scholar]
  260. Wilson CJ. 2009.. Striatum: internal physiology. . In Encyclopedia of Neuroscience, ed. LR Squire , pp. 56372. Hoboken, NJ:: Academic
    [Google Scholar]
  261. Wilson RC, Takahashi YK, Schoenbaum G, Niv Y. 2014.. Orbitofrontal cortex as a cognitive map of task space. . Neuron 81::26779
    [Crossref] [Google Scholar]
  262. Winkler RL, Murphy AH. 1973.. Experiments in the laboratory and the real world. . Organ. Behav. Hum. Perform. 10:(2):25270
    [Crossref] [Google Scholar]
  263. Woo JH, Aguirre CG, Bari BA, Tsutsui K-I, Grabenhorst F, et al. 2023.. Mechanisms of adjustments to different types of uncertainty in the reward environment across mice and monkeys. . Cogn. Affect. Behav. Neurosci. 23:(3):60019
    [Crossref] [Google Scholar]
  264. Yamada H, Tymula A, Louie K, Glimcher PW. 2013.. Thirst-dependent risk preferences in monkeys identify a primitive form of wealth. . PNAS 110:(39):1578893
    [Crossref] [Google Scholar]
  265. Yang H, de Jong JW, Cerniauskas I, Peck JR, Lim BK, et al. 2021.. Pain modulates dopamine neurons via a spinal-parabrachial-mesencephalic circuit. . Nat. Neurosci. 24::140213
    [Crossref] [Google Scholar]
  266. Yang X, Huang J, Zhu C, Wang Y, Cheung EFC, et al. 2014.. Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. . Psychiatry Res. 220:(3):87482
    [Crossref] [Google Scholar]
  267. Yao Y-W, Song K-R, Schuck NW, Li X, Fang X-Y, et al. 2023.. The dorsomedial prefrontal cortex represents subjective value across effort-based and risky decision-making. . NeuroImage 279::120326
    [Crossref] [Google Scholar]
  268. Yu LQ, Dana J, Kable JW. 2022.. Individuals with ventromedial frontal damage display unstable but transitive preferences during decision making. . Nat. Commun. 13::4758
    [Crossref] [Google Scholar]
  269. Zald DH, Treadway MT. 2017.. Reward processing, neuroeconomics, and psychopathology. . Annu. Rev. Clin. Psychol. 13::47195
    [Crossref] [Google Scholar]
  270. Zhang Z, Fanning J, Ehrlich DB, Chen W, Lee D, Levy I. 2017.. Distributed neural representation of saliency controlled value and category during anticipation of rewards and punishments. . Nat. Commun. 8::1907
    [Crossref] [Google Scholar]
  271. Zhang Z, Mendelsohn A, Manson KF, Schiller D, Levy I. 2015.. Dissociating value representation and inhibition of inappropriate affective response during reversal learning in the ventromedial prefrontal cortex. . eNeuro 2:(6). https://doi.org/10.1523/ENEURO.0072-15.2015
    [Google Scholar]
/content/journals/10.1146/annurev-psych-022324-042614
Loading
/content/journals/10.1146/annurev-psych-022324-042614
Loading

Data & Media loading...

  • Article Type: Review Article