1932

Abstract

Circadian rhythms are inherent to living organisms from single cells to humans and operate on a genetically determined cycle of approximately 24 hours. These endogenous rhythms are aligned with the external light/dark cycle of the Earth's rotation and offer the advantage of anticipating environmental changes. Circadian rhythms act directly on human cognition and indirectly through their fundamental influence on sleep/wake cycles. The strength of the circadian regulation of performance depends on the accumulated sleep debt and the cognitive domain, and it has been suggested to involve the activation of ascending arousal systems and their interaction with attention and other cognitive processes. In addition, attention-related cortical responses show extensive circadian rhythms, the phases of which vary across brain regions. This review discusses the impact of the circadian system on sleep/wake regulation and cognitive performance. It further addresses the health implications of circadian disruption, particularly in relation to mental and neurological disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-022824-043825
2025-01-17
2025-02-14
Loading full text...

Full text loading...

/deliver/fulltext/psych/76/1/annurev-psych-022824-043825.html?itemId=/content/journals/10.1146/annurev-psych-022824-043825&mimeType=html&fmt=ahah

Literature Cited

  1. Achermann P, Dijk DJ, Brunner DP, Borbely AA. 1993.. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. . Brain Res. Bull. 31:(1–2):97113
    [Crossref] [Google Scholar]
  2. Aeschbach D, Cajochen C, Landolt H, Borbely AA. 1996.. Homeostatic sleep regulation in habitual short sleepers and long sleepers. . Am. J. Physiol. 270:( 1 Pt. 2 ):R4153
    [Google Scholar]
  3. Alachkar A, Lee J, Asthana K, Vakil Monfared R, Chen J, et al. 2022.. The hidden link between circadian entropy and mental health disorders. . Transl. Psychiatry 12:(1):281
    [Crossref] [Google Scholar]
  4. Albrecht U. 2012.. Timing to perfection: the biology of central and peripheral circadian clocks. . Neuron 74:(2):24660
    [Crossref] [Google Scholar]
  5. Albrecht U. 2023.. The circadian system and mood related behavior in mice. . Adv. Protein Chem. Struct. Biol. 137::26991
    [Crossref] [Google Scholar]
  6. Arble DM, Bass J, Behn CD, Butler MP, Challet E, et al. 2015.. Impact of sleep and circadian disruption on energy balance and diabetes: a summary of workshop discussions. . Sleep 38:(12):184960
    [Crossref] [Google Scholar]
  7. Archer SN, Schmidt C, Vandewalle G, Dijk D-J. 2018.. Phenotyping of PER3 variants reveals widespread effects on circadian preference, sleep regulation, and health. . Sleep Med. Rev. 40::10926
    [Crossref] [Google Scholar]
  8. Aston-Jones G. 2005.. Brain structures and receptors involved in alertness. . Sleep Med. 6:(Suppl. 1):S37
    [Crossref] [Google Scholar]
  9. Aston-Jones G, Chen S, Zhu Y, Oshinsky ML. 2001.. A neural circuit for circadian regulation of arousal. . Nat. Neurosci. 4:(7):73238
    [Crossref] [Google Scholar]
  10. Ballesta A, Innominato PF, Dallmann R, Rand DA, Levi FA. 2017.. Systems chronotherapeutics. . Pharmacol. Rev. 69:(2):16199
    [Crossref] [Google Scholar]
  11. Baud MO, Kleen JK, Mirro EA, Andrechak JC, King-Stephens D, et al. 2018.. Multi-day rhythms modulate seizure risk in epilepsy. . Nat. Commun. 9:(1):88
    [Crossref] [Google Scholar]
  12. Belle MD. 2015.. Circadian tick-talking across the neuroendocrine system and suprachiasmatic nuclei circuits: the enigmatic communication between the molecular and electrical membrane clocks. . J. Neuroendocr. 27:(7):56776
    [Crossref] [Google Scholar]
  13. Blatter K, Cajochen C. 2007.. Circadian rhythms in cognitive performance: methodological constraints, protocols, theoretical underpinnings. . Physiol. Behav. 90:(2–3):196208
    [Crossref] [Google Scholar]
  14. Blatter K, Opwis K, Munch M, Wirz-Justice A, Cajochen C. 2005.. Sleep loss-related decrements in planning performance in healthy elderly depend on task difficulty. . J. Sleep Res. 14:(4):40917
    [Crossref] [Google Scholar]
  15. Borbély AA. 1982.. A two process model of sleep regulation. . Hum. Neurobiol. 1:(3):195204
    [Google Scholar]
  16. Borbély AA, Acherman P. 2005.. Sleep homeostasis and models of sleep regulation. . In Principles and Practices of Sleep Medicine, ed. MH Kryger, T Roth, WC Dement , pp. 40518. St. Louis, MO:: Elsevier Saunders
    [Google Scholar]
  17. Bromundt V, Koster M, Georgiev-Kill A, Opwis K, Wirz-Justice A, et al. 2011.. Sleep-wake cycles and cognitive functioning in schizophrenia. . Br. J. Psychiatry 198:(4):26976
    [Crossref] [Google Scholar]
  18. Buijs RM, Kalsbeek A. 2001.. Hypothalamic integration of central and peripheral clocks. . Nat. Rev. Neurosci. 2:(7):52126
    [Crossref] [Google Scholar]
  19. Burke TM, Scheer FAJL, Ronda JM, Czeisler CA, Wright KP Jr. 2015.. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions. . J. Sleep Res. 24:(4):36471
    [Crossref] [Google Scholar]
  20. Burki T. 2017.. Nobel Prize awarded for discoveries in circadian rhythm. . Lancet 390:(10104):e25
    [Crossref] [Google Scholar]
  21. Buttgereit F, Smolen JS, Coogan AN, Cajochen C. 2015.. Clocking in: chronobiology in rheumatoid arthritis. . Nat. Rev. Rheumatol. 11:(6):34956
    [Crossref] [Google Scholar]
  22. Cajochen C. 2007.. Alerting effects of light. . Sleep Med. Rev. 11:(6):45364
    [Crossref] [Google Scholar]
  23. Cajochen C, Chellappa S, Schmidt C. 2010.. What keeps us awake? The role of clocks and hourglasses, light, and melatonin. . Int. Rev. Neurobiol. 93::5790
    [Crossref] [Google Scholar]
  24. Cajochen C, Khalsa SB, Wyatt JK, Czeisler CA, Dijk DJ. 1999.. EEG and ocular correlates of circadian melatonin phase and human performance decrements during sleep loss. . Am. J. Physiol. 277:(3 Pt. 2):R64049
    [Google Scholar]
  25. Cajochen C, Knoblauch V, Wirz-Justice A, Krauchi K, Graw P, Wallach D. 2004.. Circadian modulation of sequence learning under high and low sleep pressure conditions. . Behav. Brain Res. 151:(1–2):16776
    [Crossref] [Google Scholar]
  26. Campbell I, Sharifpour R, Vandewalle G. 2023.. Light as a modulator of non-image-forming brain functions—positive and negative impacts of increasing light availability. . Clocks Sleep 5:(1):11640
    [Crossref] [Google Scholar]
  27. Carskadon MA, Dement WC. 1975.. Sleep studies on a 90-minute day. . Electroencephalogr. Clin. Neurophysiol. 39:(2):14555
    [Crossref] [Google Scholar]
  28. Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J. 2003.. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. . J. Neurosci. 23:(33):10691702
    [Crossref] [Google Scholar]
  29. Cohen DA, Wang W, Klerman EB, Rajaratnam SMW. 2010.. Ramelteon prior to a short evening nap impairs neurobehavioral performance for up to 12 hours after awakening. . J. Clin. Sleep Med. 6:(6):56571
    [Crossref] [Google Scholar]
  30. Cohen RA, Albers HE. 1991.. Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: a case study. . Neurology 41:(5):72629
    [Crossref] [Google Scholar]
  31. Crnko S, Du Pre BC, Sluijter JPG, Van Laake LW. 2019.. Circadian rhythms and the molecular clock in cardiovascular biology and disease. . Nat. Rev. Cardiol. 16:(7):43747
    [Crossref] [Google Scholar]
  32. Cullell N, Carcel-Marquez J, Gallego-Fabrega C, Muino E, Llucia-Carol L, et al. 2021.. Sleep/wake cycle alterations as a cause of neurodegenerative diseases: a Mendelian randomization study. . Neurobiol. Aging 106::320.e1e12
    [Crossref] [Google Scholar]
  33. Czeisler CA, Zimmerman JC, Ronda JM, Moore-Ede MC, Weitzman ED. 1980.. Timing of REM sleep is coupled to the circadian rhythm of body temperature in man. . Sleep 2:(3):32946
    [Crossref] [Google Scholar]
  34. Daan S, Beersma DGM, Borbély AA. 1984.. Timing of human sleep: recovery process gated by a circadian pacemaker. . Am. J. Physiol. 246::R16178
    [Google Scholar]
  35. Deboer T, Vansteensel MJ, Detari L, Meijer JH. 2003.. Sleep states alter activity of suprachiasmatic nucleus neurons. . Nat. Neurosci. 6:(10):108690
    [Crossref] [Google Scholar]
  36. DelRosso LM, Hoque R, James S, Gonzalez-Toledo E, Chesson AL Jr. 2014.. Sleep-wake pattern following gunshot suprachiasmatic damage. . J. Clin. Sleep Med. 10:(4):44345
    [Crossref] [Google Scholar]
  37. Deurveilher S, Semba K. 2005.. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. . Neuroscience 130:(1):16583
    [Crossref] [Google Scholar]
  38. Dijk DJ, Czeisler CA. 1994.. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. . Neurosci. Lett. 166:(1):6368
    [Crossref] [Google Scholar]
  39. Dijk DJ, Czeisler CA. 1995.. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves and sleep spindle activity in humans. . J. Neurosci. 15::352638
    [Crossref] [Google Scholar]
  40. Dijk DJ, Duffy JF, Czeisler CA. 1992.. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. . J. Sleep Res. 1:(2):11217
    [Crossref] [Google Scholar]
  41. Dijk DJ, Shanahan TL, Duffy JF, Ronda JM, Czeisler CA. 1997.. Variation of electroencephalographic activity during non-rapid eye movement and rapid eye movement sleep with phase of circadian melatonin rhythm in humans. . J. Physiol. 505:(Pt. 3):85158
    [Crossref] [Google Scholar]
  42. Dijk DJ, von Schantz M. 2005.. Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators. . J. Biol. Rhythm 20:(4):27990
    [Crossref] [Google Scholar]
  43. Dong Q. 2011.. Seasonal changes and seasonal regimen in Hippocrates. . J. Cambridge Stud. 6:(4):12844
    [Google Scholar]
  44. Duffy JF, Dijk DJ, Hall EF, Czeisler CA. 1999.. Relationship of endogenous circadian melatonin and temperature rhythms to self-reported preference for morning or evening activity in young and older people. . J. Investig. Med. 47:(3):14150
    [Google Scholar]
  45. Duffy JF, Rimmer DW, Czeisler CA. 2001.. Association of intrinsic circadian period with morningness-eveningness, usual wake time, and circadian phase. . Behav. Neurosci. 115:(4):89599
    [Crossref] [Google Scholar]
  46. Ebbinghaus H. 1913 (1885).. Memory: A Contribution to Experimental Psychology. New York:: Teach. Coll. Columbia Univ.
    [Google Scholar]
  47. Edgar DM, Dement WC, Fuller CA. 1993.. Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. . J. Neurosci. 13:(3):106579
    [Crossref] [Google Scholar]
  48. Folkard S, Knauth P, Monk TH. 1976.. The effect of memory load on the circadian variation in performance efficiency under a rapidly rotating shift system. . Ergonomics 19:(4):47988
    [Crossref] [Google Scholar]
  49. Folkard S, Totterdell P. 1994.. “ Time since sleep” and “body clock” components of alertness and cognition. . Acta Psychiatr. Belg. 94:(2):7374
    [Google Scholar]
  50. Francois M, Delgado IC, Lafond A, Lewis EM, Kuromaru M, et al. 2023.. Amygdala AVPR1A mediates susceptibility to chronic social isolation in females. . bioRxiv 2023.02.15.528679
    [Google Scholar]
  51. Frank MG, Cantera R. 2014.. Sleep, clocks, and synaptic plasticity. . Trends Neurosci. 37:(9):491501
    [Crossref] [Google Scholar]
  52. Franken P, Dijk D-J. 2024.. Sleep and circadian rhythmicity as entangled processes serving homeostasis. . Nat. Rev. Neurosci. 25:(1):4359
    [Crossref] [Google Scholar]
  53. Frey DJ, Badia P, Wright KP Jr. 2004.. Inter- and intra-individual variability in performance near the circadian nadir during sleep deprivation. . J. Sleep Res. 13:(4):30515
    [Crossref] [Google Scholar]
  54. Garbazza C, Cirignotta F, D'Agostino A, Cicolin A, Hackethal S, et al. 2022.. Sustained remission from perinatal depression after bright light therapy: a pilot randomised, placebo-controlled trial. . Acta Psychiatr. Scand. 146:(4):35056
    [Crossref] [Google Scholar]
  55. Gitelman DR. 2003.. Attention and its disorders. . Br. Med. Bull. 65::2134
    [Crossref] [Google Scholar]
  56. Grady S, Aeschbach D, Wright KPJ, Czeisler CA. 2010.. Effect of modafinil on impairments in neurobehavioral performance and learning associated with extended wakefulness and circadian misalignment. . Neuropsychopharmacology 35:(9):191020
    [Crossref] [Google Scholar]
  57. Groeger JA, Viola AU, Lo JC, von Schantz M, Archer SN, Dijk DJ. 2008.. Early morning executive functioning during sleep deprivation is compromised by a PERIOD3 polymorphism. . Sleep 31:(8):115967
    [Google Scholar]
  58. Harrington ME, Rusak B. 1989.. Photic responses of geniculo-hypothalamic tract neurons in the Syrian hamster. . Vis. Neurosci. 2:(4):36775
    [Crossref] [Google Scholar]
  59. Hastings MH, Maywood ES, Brancaccio M. 2019.. The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. . Biology 8:(1):13
    [Crossref] [Google Scholar]
  60. Horowitz TS, Cade BE, Wolfe JM, Czeisler CA. 2003.. Searching night and day: a dissociation of effects of circadian phase and time awake on visual selective attention and vigilance. . Psychol. Sci. 14:(6):54957
    [Crossref] [Google Scholar]
  61. Huang HT, Huang TW, Hong CT. 2021.. Bright light therapy for Parkinson disease: a literature review and meta-analysis of randomized controlled trials. . Biology 10:(11):1205
    [Crossref] [Google Scholar]
  62. Huber R, Ghilardi MF, Massimini M, Tononi G. 2004.. Local sleep and learning. . Nature 430:(6995):7881
    [Crossref] [Google Scholar]
  63. Hull JT, Wright KP Jr., Czeisler CA. 2003.. The influence of subjective alertness and motivation on human performance independent of circadian and homeostatic regulation. . J. Biol. Rhythm. 18:(4):32938
    [Crossref] [Google Scholar]
  64. Johnson MP, Duffy JF, Dijk DJ, Ronda JM, Dyal CM, Czeisler CA. 1992.. Short-term memory, alertness and performance: a reappraisal of their relationship to body temperature. . J. Sleep Res. 1:(1):2429
    [Crossref] [Google Scholar]
  65. Kalsbeek A, Yi CX, Cailotto C, la Fleur SE, Fliers E, Buijs RM. 2011.. Mammalian clock output mechanisms. . Essays Biochem. 49:(1):13751
    [Google Scholar]
  66. Karoly PJ, Rao VR, Gregg NM, Worrell GA, Bernard C, et al. 2021.. Cycles in epilepsy. . Nat. Rev. Neurol. 17:(5):26784
    [Crossref] [Google Scholar]
  67. Khalsa SB, Jewett ME, Cajochen C, Czeisler CA. 2003.. A phase response curve to single bright light pulses in human subjects. . J. Physiol. 549:(3):94552
    [Crossref] [Google Scholar]
  68. Khan S, Nobili L, Khatami R, Loddenkemper T, Cajochen C, et al. 2018.. Circadian rhythm and epilepsy. . Lancet Neurol. 17:(12):1098108
    [Crossref] [Google Scholar]
  69. Killgore WDS. 2010.. Effects of sleep deprivation on cognition. . Prog. Brain Res. 185::10529
    [Crossref] [Google Scholar]
  70. Kleitman N, Titelbaum S, Feiveson P. 1938.. The effect of body temperature on reaction time. . Am. J. Physiol. 121::495501
    [Crossref] [Google Scholar]
  71. Krueger JM, Nguyen JT, Dykstra-Aiello CJ, Taishi P. 2019.. Local sleep. . Sleep Med. Rev. 43::1421
    [Crossref] [Google Scholar]
  72. Kyriacou CP, Hastings MH. 2010.. Circadian clocks: genes, sleep, and cognition. . Trends Cogn. Sci. 14:(6):25967
    [Crossref] [Google Scholar]
  73. Lavie P. 1986.. Ultrashort sleep-waking schedule. III. “Gates” and “forbidden zones” for sleep. . Electroencephalogr. Clin. Neurophysiol. 63:(5):41425
    [Crossref] [Google Scholar]
  74. Lavie P. 2001.. Sleep-wake as a biological rhythm. . Annu. Rev. Psychol. 52::277303
    [Crossref] [Google Scholar]
  75. Lazar AS, Lazar ZI, Dijk D-J. 2015.. Circadian regulation of slow waves in human sleep: topographical aspects. . NeuroImage 116::12334
    [Crossref] [Google Scholar]
  76. Lew CH, Petersen C, Neylan TC, Grinberg LT. 2021.. Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer's disease. . Sleep Med. Rev. 60::101541
    [Crossref] [Google Scholar]
  77. Li P, Gao L, Gaba A, Yu L, Cui L, et al. 2020.. Circadian disturbances in Alzheimer's disease progression: a prospective observational cohort study of community-based older adults. . Lancet Heal. Longev. 1:(3):e96105
    [Crossref] [Google Scholar]
  78. Lim J, Dinges DF. 2010.. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables. . Psychol. Bull. 136:(3):37589
    [Crossref] [Google Scholar]
  79. Lo JC, Groeger JA, Santhi N, Arbon EL, Lazar AS, et al. 2012.. Effects of partial and acute total sleep deprivation on performance across cognitive domains, individuals and circadian phase. . PLOS ONE 7:(9):e45987
    [Crossref] [Google Scholar]
  80. Ly JQM, Gaggioni G, Chellappa SL, Papachilleos S, Brzozowski A, et al. 2016.. Circadian regulation of human cortical excitability. . Nat. Commun. 7::11828
    [Crossref] [Google Scholar]
  81. Ma N, Dinges DF, Basner M, Rao H. 2015.. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies. . Sleep 38:(2):23340
    [Crossref] [Google Scholar]
  82. Magner LN, Kim O. 2017.. A History of Medicine. Boca Raton, FL:: CRC Press. , 3rd ed..
    [Google Scholar]
  83. Mahoney HL, Schmidt TM. 2024.. The cognitive impact of light: illuminating ipRGC circuit mechanisms. . Nat. Rev. Neurosci. 25:(3):15975
    [Crossref] [Google Scholar]
  84. Maire M, Reichert CF, Gabel V, Viola AU, Phillips C, et al. 2015.. Fighting sleep at night: brain correlates and vulnerability to sleep loss. . Ann. Neurol. 78:(2):23547
    [Crossref] [Google Scholar]
  85. Maire M, Reichert CF, Gabel V, Viola AU, Phillips C, et al. 2018.. Human brain patterns underlying vigilant attention: impact of sleep debt, circadian phase and attentional engagement. . Sci. Rep. 8:(1):970
    [Crossref] [Google Scholar]
  86. McCarthy MJ, Gottlieb JF, Gonzalez R, McClung CA, Alloy LB, et al. 2022.. Neurobiological and behavioral mechanisms of circadian rhythm disruption in bipolar disorder: a critical multi-disciplinary literature review and agenda for future research from the ISBD task force on chronobiology. . Bipolar Disord. 24:(3):23263
    [Crossref] [Google Scholar]
  87. Meyer C, Muto V, Jaspar M, Kussé C, Lambot E, et al. 2016.. Seasonality in human cognitive brain responses. . PNAS 113:(11):306671
    [Crossref] [Google Scholar]
  88. Meyer N, Harvey AG, Lockley SW, Dijk DJ. 2022.. Circadian rhythms and disorders of the timing of sleep. . Lancet 400:(10357):106178
    [Crossref] [Google Scholar]
  89. Meyer N, Lok R, Schmidt C, Kyle SD, McClung CA, et al. 2024.. The sleep-circadian interface: a window into mental disorders. . PNAS 121:(9):e2214756121
    [Crossref] [Google Scholar]
  90. Meyer N, Matt J. 2022.. Sleep, circadian rhythms and mental health: advances, gaps, challenges and opportunities. Rep. Summ., Wellcome Trust, London:
    [Google Scholar]
  91. Mistlberger RE. 2005.. Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. . Brain Res. Rev. 49:(3):42954
    [Crossref] [Google Scholar]
  92. Mistlberger RE, Skene DJ. 2005.. Nonphotic entrainment in humans?. J. Biol. Rhythm. 20:(4):33952
    [Crossref] [Google Scholar]
  93. Mongrain V, Carrier J, Dumont M. 2006.. Difference in sleep regulation between morning and evening circadian types as indexed by antero-posterior analyses of the sleep EEG. . Eur. J. Neurosci. 23:(2):497504
    [Crossref] [Google Scholar]
  94. Moore RY. 2013.. The suprachiasmatic nucleus and the circadian timing system. . Prog. Mol. Biol. Transl. Sci. 119::128
    [Crossref] [Google Scholar]
  95. Morin LP. 2013.. Neuroanatomy of the extended circadian rhythm system. . Exp. Neurol. 243::420
    [Crossref] [Google Scholar]
  96. Muto V, Jaspar M, Meyer C, Kusse C, Chellappa SL, et al. 2016.. Local modulation of human brain responses by circadian rhythmicity and sleep debt. . Science 353:(6300):68790
    [Crossref] [Google Scholar]
  97. Ono D, Weaver DR, Hastings MH, Honma KI, Honma S, Silver R. 2024.. The suprachiasmatic nucleus at 50: looking back, then looking forward. . J. Biol. Rhythm. 39:(2):13565
    [Crossref] [Google Scholar]
  98. Pavlova MK, Shea SA, Scheer FA, Bromfield EB. 2009.. Is there a circadian variation of epileptiform abnormalities in idiopathic generalized epilepsy?. Epilepsy Behav. 16:(3):46167
    [Crossref] [Google Scholar]
  99. Pittendrigh CS. 1993.. Temporal organization: reflections of a Darwinian clock-watcher. . Annu. Rev. Physiol. 55::1654
    [Crossref] [Google Scholar]
  100. Portas CM, Rees G, Howseman AM, Josephs O, Turner R, Frith CD. 1998.. A specific role for the thalamus in mediating the interaction of attention and arousal in humans. . J. Neurosci. 18:(21):897989
    [Crossref] [Google Scholar]
  101. Postnova S. 2019.. Sleep modelling across physiological levels. . Clocks Sleep 1:(1):16684
    [Crossref] [Google Scholar]
  102. Reichert CF, Maire M, Gabel V, Viola AU, Götz T, et al. 2017.. Cognitive brain responses during circadian wake-promotion: evidence for sleep-pressure-dependent hypothalamic activations. . Sci. Rep. 7:(1):5620
    [Crossref] [Google Scholar]
  103. Riemersma-van der Lek RF, Swaab DF, Twisk J, Hol EM, Hoogendijk WJ, Van Someren EJ. 2008.. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. . JAMA 299:(22):264255
    [Crossref] [Google Scholar]
  104. Roenneberg T, Daan S, Merrow M. 2003.. The art of entrainment. . J. Biol. Rhythm. 18:(3):18394
    [Crossref] [Google Scholar]
  105. Rosenberg J, Pusch K, Dietrich R, Cajochen C. 2009.. The tick-tock of language: Is language processing sensitive to circadian rhythmicity and elevated sleep pressure?. Chronobiol. Int. 26:(5):97491
    [Crossref] [Google Scholar]
  106. Ruan W, Yuan X, Eltzschig HK. 2021.. Circadian rhythm as a therapeutic target. . Nat. Rev. Drug Discov. 20:(4):287307
    [Crossref] [Google Scholar]
  107. Santhi N, Lazar AS, McCabe PJ, Lo JC, Groeger JA, Dijk D-J. 2016.. Sex differences in the circadian regulation of sleep and waking cognition in humans. . PNAS 113:(19):E273039
    [Crossref] [Google Scholar]
  108. Sato T, Sato S. 2023.. Circadian regulation of metabolism: commitment to health and diseases. . Endocrinology 164:(7):bqad086
    [Crossref] [Google Scholar]
  109. Scammell TE, Arrigoni E, Lipton JO. 2017.. Neural circuitry of wakefulness and sleep. . Neuron 93:(4):74765
    [Crossref] [Google Scholar]
  110. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. 2009.. Adverse metabolic and cardiovascular consequences of circadian misalignment. . PNAS 106:(11):445358
    [Crossref] [Google Scholar]
  111. Schmidt C, Collette F, Cajochen C, Peigneux P. 2007.. A time to think: circadian rhythms in human cognition. . Cogn. Neuropsychol. 24:(7):75589
    [Crossref] [Google Scholar]
  112. Schmidt C, Collette F, Leclercq Y, Sterpenich V, Vandewalle G, et al. 2009.. Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area. . Science 324:(5926):51619
    [Crossref] [Google Scholar]
  113. Schmidt C, Collette F, Reichert CF, Maire M, Vandewalle G, et al. 2015.. Pushing the limits: Chronotype and time of day modulate working memory-dependent cerebral activity. . Front. Neurol. 6::199
    [Crossref] [Google Scholar]
  114. Schmidt C, Peigneux P, Leclercq Y, Sterpenich V, Vandewalle G, et al. 2012.. Circadian preference modulates the neural substrate of conflict processing across the day. . PLOS ONE 7:(1):e29658
    [Crossref] [Google Scholar]
  115. Schmidt TM, Do MT, Dacey D, Lucas R, Hattar S, Matynia A. 2011.. Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. . J. Neurosci. 31:(45):16094101
    [Crossref] [Google Scholar]
  116. Schöllhorn I, Stefani O, Lucas RJ, Spitschan M, Slawik HC, Cajochen C. 2023.. Melanopic irradiance defines the impact of evening display light on sleep latency, melatonin and alertness. . Commun. Biol. 6:(1):228
    [Crossref] [Google Scholar]
  117. Shekleton JA, Rajaratnam SMW, Gooley JJ, Van Reen E, Czeisler CA, Lockley SW. 2013.. Improved neurobehavioral performance during the wake maintenance zone. . J. Clin. Sleep Med. 9:(4):35362
    [Crossref] [Google Scholar]
  118. Shen Y, Lv QK, Xie WY, Gong SY, Zhuang S, et al. 2023.. Circadian disruption and sleep disorders in neurodegeneration. . Transl. Neurodegener. 12:(1):8
    [Crossref] [Google Scholar]
  119. Silva EJ, Wang W, Ronda JM, Wyatt JK, Duffy JF. 2010.. Circadian and wake-dependent influences on subjective sleepiness, cognitive throughput, and reaction time performance in older and young adults. . Sleep 33:(4):48190
    [Crossref] [Google Scholar]
  120. Späti J, Aritake S, Meyer AH, Kitamura S, Hida A, et al. 2015.. Modeling circadian and sleep-homeostatic effects on short-term interval timing. . Front. Integr. Neurosci. 9::15
    [Crossref] [Google Scholar]
  121. Späti J, Münch M, Blatter K, Knoblauch V, Jones LA, Cajochen C. 2009.. Impact of age, sleep pressure and circadian phase on time-of-day estimates. . Behav. Brain Res. 201:(1):4852
    [Crossref] [Google Scholar]
  122. Sprecher KE, Ritchie HK, Burke TM, Depner CM, Smits AN, et al. 2019.. Trait-like vulnerability of higher-order cognition and ability to maintain wakefulness during combined sleep restriction and circadian misalignment. . Sleep 42:(8):zsz113
    [Crossref] [Google Scholar]
  123. Starnes AN, Jones JR. 2023.. Inputs and outputs of the mammalian circadian clock. . Biology 12:(4):508
    [Crossref] [Google Scholar]
  124. Strogatz SH, Kronauer RE, Czeisler CA. 1987.. Circadian pacemaker interferes with sleep onset at specific times each day: role in insomnia. . Am. J. Physiol. 253:(1 Pt. 2):R17278
    [Google Scholar]
  125. Sulli G, Lam MTY, Panda S. 2019.. Interplay between circadian clock and cancer: new frontiers for cancer treatment. . Trends Cancer 5:(8):47594
    [Crossref] [Google Scholar]
  126. Tucker AM, Stern Y, Basner RC, Rakitin BC. 2011.. The prefrontal model revisited: double dissociations between young sleep deprived and elderly subjects on cognitive components of performance. . Sleep 34:(8):103950
    [Crossref] [Google Scholar]
  127. Van Dongen HP, Baynard MD, Maislin G, Dinges DF. 2004.. Systematic interindividual differences in neurobehavioral impairment from sleep loss: evidence of trait-like differential vulnerability. . Sleep 27:(3):42333
    [Google Scholar]
  128. Van Egroo M, Koshmanova E, Vandewalle G, Jacobs HIL. 2022.. Importance of the locus coeruleus-norepinephrine system in sleep-wake regulation: implications for aging and Alzheimer's disease. . Sleep Med. Rev. 62::101592
    [Crossref] [Google Scholar]
  129. Van Egroo M, van Someren EJW, Grinberg LT, Bennett DA, Jacobs HIL. 2024.. Associations of 24-hour rest-activity rhythm fragmentation, cognitive decline, and postmortem locus coeruleus hypopigmentation in Alzheimer's disease. . Ann. Neurol. 95:(4):65364
    [Crossref] [Google Scholar]
  130. Vandewalle G, Maquet P, Dijk DJ. 2009.. Light as a modulator of cognitive brain function. . Trends Cogn. Sci. 13:(10):42938
    [Crossref] [Google Scholar]
  131. Videnovic A, Golombek D. 2013.. Circadian and sleep disorders in Parkinson's disease. . Exp. Neurol. 243::4556
    [Crossref] [Google Scholar]
  132. Videnovic A, Klerman EB, Wang W, Marconi A, Kuhta T, Zee PC. 2017.. Timed light therapy for sleep and daytime sleepiness associated with Parkinson disease: a randomized clinical trial. . JAMA Neurol. 74:(4):41118
    [Crossref] [Google Scholar]
  133. Videnovic A, Lazar AS, Barker RA, Overeem S. 2014.. “ The clocks that time us”—circadian rhythms in neurodegenerative disorders. . Nat. Rev. Neurol. 10:(12):68393
    [Crossref] [Google Scholar]
  134. Viola AU, Archer SN, James LM, Groeger JA, Lo JC, et al. 2007.. PER3 polymorphism predicts sleep structure and waking performance. . Curr. Biol. 17:(7):61318
    [Crossref] [Google Scholar]
  135. Walker WH II, Walton JC, DeVries AC, Nelson RJ. 2020.. Circadian rhythm disruption and mental health. . Transl. Psychiatry 10:(1):28
    [Crossref] [Google Scholar]
  136. Wang W, Yuan RK, Mitchell JF, Zitting K-M, St Hilaire MA, et al. 2023.. Desynchronizing the sleep–wake cycle from circadian timing to assess their separate contributions to physiology and behaviour and to estimate intrinsic circadian period. . Nat. Protoc. 18:(2):579603
    [Crossref] [Google Scholar]
  137. Wilson JV, Reynolds EH. 1990.. Texts and documents. Translation and analysis of a cuneiform text forming part of a Babylonian treatise on epilepsy. . Med. Hist. 34:(2):18598
    [Crossref] [Google Scholar]
  138. Wirz-Justice A, Benedetti F. 2020.. Perspectives in affective disorders: clocks and sleep. . Eur. J. Neurosci. 51:(1):34665
    [Crossref] [Google Scholar]
  139. Wright KP Jr., Hull JT, Czeisler CA. 2002.. Relationship between alertness, performance, and body temperature in humans. . Am. J. Physiol. Regul. Integr. Comp. Physiol. 283::R137077
    [Crossref] [Google Scholar]
  140. Wright KP Jr., Hull JT, Hughes RJ, Ronda JM, Czeisler CA. 2006.. Sleep and wakefulness out of phase with internal biological time impairs learning in humans. . J. Cogn. Neurosci. 18:(4):50821
    [Crossref] [Google Scholar]
  141. Wulff K, Gatti S, Wettstein JG, Foster RG. 2010.. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. . Nat. Rev. Neurosci. 11:(8):58999
    [Crossref] [Google Scholar]
  142. Wyatt JK, Ritz-De Cecco A, Czeisler CA, Dijk DJ. 1999.. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. . Am. J. Physiol. Regul. Integr. Comp. Physiol. 277::R115263
    [Crossref] [Google Scholar]
  143. Zeitzer JM, Buckmaster CL, Parker KJ, Hauck CM, Lyons DM, Mignot E. 2003.. Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. . J. Neurosci. 23:(8):355560
    [Crossref] [Google Scholar]
  144. Zhang C, Liu X. 2023.. Fundamental crosstalk between circadian rhythm and the intestine in the pathogenesis of inflammatory bowel disease. . Clin. Res. Hepatol. Gastroenterol. 47:(9):102214
    [Crossref] [Google Scholar]
  145. Zhang DX, Rusak B. 1989.. Photic sensitivity of geniculate neurons that project to the suprachiasmatic nuclei or the contralateral geniculate. . Brain Res. 504:(1):16164
    [Crossref] [Google Scholar]
  146. Zhou X, Ferguson SA, Matthews RW, Sargent C, Darwent D, et al. 2011.. Sleep, wake and phase dependent changes in neurobehavioral function under forced desynchrony. . Sleep 34:(7):93141
    [Google Scholar]
/content/journals/10.1146/annurev-psych-022824-043825
Loading
/content/journals/10.1146/annurev-psych-022824-043825
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error