1932

Abstract

Imagine Genghis Khan, Aretha Franklin, and the Cleveland Cavaliers performing an opera on Maui. This silly sentence makes a serious point: As humans, we can flexibly generate and comprehend an unbounded number of complex ideas. Little is known, however, about how our brains accomplish this. Here we assemble clues from disparate areas of cognitive neuroscience, integrating recent research on language, memory, episodic simulation, and computational models of high-level cognition. Our review is framed by Fodor's classic language of thought hypothesis, according to which our minds employ an amodal, language-like system for combining and recombining simple concepts to form more complex thoughts. Here, we highlight emerging work on combinatorial processes in the brain and consider this work's relation to the language of thought. We review evidence for distinct, but complementary, contributions of map-like representations in subregions of the default mode network and sentence-like representations of conceptual relations in regions of the temporal and prefrontal cortex.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-122216-011829
2020-01-04
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/psych/71/1/annurev-psych-122216-011829.html?itemId=/content/journals/10.1146/annurev-psych-122216-011829&mimeType=html&fmt=ahah

Literature Cited

  1. Addis DR, Wong AT, Schacter DL 2007. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45:71363–77
    [Google Scholar]
  2. Allen K, Pereira F, Botvinick M, Goldberg AE 2012. Distinguishing grammatical constructions with fMRI pattern analysis. Brain Lang 123:3174–82
    [Google Scholar]
  3. Amodio DM, Frith CD. 2006. Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 7:268–77
    [Google Scholar]
  4. Anderson JR. 1978. Arguments concerning representations for mental imagery. Psychol. Rev. 85:4249–77
    [Google Scholar]
  5. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL 2010. Functional-anatomic fractionation of the brain's default network. Neuron 65:4550–62
    [Google Scholar]
  6. Aronov D, Nevers R, Tank DW 2017. Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit. Nature 543:7647719–22
    [Google Scholar]
  7. Baldassano C, Chen J, Zadbood A, Pillow JW, Hasson U, Norman KA 2017. Discovering event structure in continuous narrative perception and memory. Neuron 95:3709–21
    [Google Scholar]
  8. Banino A, Barry C, Uria B, Blundell C, Lillicrap T et al. 2018. Vector-based navigation using grid-like representations in artificial agents. Nature 557:7705429–33
    [Google Scholar]
  9. Baron SG, Osherson D. 2011. Evidence for conceptual combination in the left anterior temporal lobe. Neuroimage 55:41847–52
    [Google Scholar]
  10. Baron SG, Thompson-Schill SL, Weber M, Osherson D 2010. An early stage of conceptual combination: superimposition of constituent concepts in left anterolateral temporal lobe. Cogn. Neurosci. 1:144–51
    [Google Scholar]
  11. Barron HC, Dolan RJ, Behrens TE 2013. Online evaluation of novel choices by simultaneous representation of multiple memories. Nat. Neurosci. 16:1492–98
    [Google Scholar]
  12. Barry C, Hayman R, Burgess N, Jeffery KJ 2007. Experience-dependent rescaling of entorhinal grids. Nat. Neurosci. 10:6682
    [Google Scholar]
  13. Bedny M, Caramazza A, Grossman E, Pascual-Leone A, Saxe R 2008. Concepts are more than percepts: the case of action verbs. J. Neurosci. 28:4411347–53
    [Google Scholar]
  14. Behrens TE, Muller TH, Whittington JC, Mark S, Baram AB et al. 2018. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100:2490–509
    [Google Scholar]
  15. Bellmund JL, Deuker L, Schröder TN, Doeller CF 2016. Grid-cell representations in mental simulation. eLife 5:e17089
    [Google Scholar]
  16. Bellmund JL, Gärdenfors P, Moser EI, Doeller CF 2018. Navigating cognition: spatial codes for human thinking. Science 362:6415 eaat6766
    [Google Scholar]
  17. Bemis DK, Pylkkänen L. 2011. Simple composition: a magnetoencephalography investigation into the comprehension of minimal linguistic phrases. J. Neurosci. 31:82801–14
    [Google Scholar]
  18. Bemis DK, Pylkkänen L. 2013a. Basic linguistic composition recruits the left anterior temporal lobe and left angular gyrus during both listening and reading. Cereb. Cortex 23:81859–73
    [Google Scholar]
  19. Bemis DK, Pylkkänen L. 2013b. Combination across domains: an MEG investigation into the relationship between mathematical, pictorial, and linguistic processing. Front. Psychol. 3:583
    [Google Scholar]
  20. Benoit RG, Schacter DL. 2015. Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia 75:450–57
    [Google Scholar]
  21. Binder JR, Desai RH, Graves WW, Conant LL 2009. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19:122767–96
    [Google Scholar]
  22. Boylan C, Trueswell JC, Thompson-Schill SL 2015. Compositionality and the angular gyrus: a multi-voxel similarity analysis of the semantic composition of nouns and verbs. Neuropsychologia 78:130–41
    [Google Scholar]
  23. Braga RM, Buckner RL. 2017. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95:2457–71
    [Google Scholar]
  24. Buckner RL, Andrews‐Hanna JR, Schacter DL 2008. The brain's default network. Ann. N. Y. Acad. Sci. 1124:11–38
    [Google Scholar]
  25. Buckner RL, Carroll DC. 2007. Self-projection and the brain. Trends Cogn. Sci. 11:249–57
    [Google Scholar]
  26. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R et al. 2005. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25:7709–17
    [Google Scholar]
  27. Camp E. 2007. Thinking with maps. Philos. Perspect. 21:1145–82
    [Google Scholar]
  28. Carpenter F, Manson D, Jeffery K, Burgess N, Barry C 2015. Grid cells form a global representation of connected environments. Curr. Biol. 25:91176–82
    [Google Scholar]
  29. Cases I, Rosenbaum C, Riemer M, Geiger A, Klinger T et al. 2019. Recursive routing networks: learning to compose modules for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)3631–48 Stroudsburg, PA: ACL
    [Google Scholar]
  30. Chen J, Leong YC, Honey CJ, Yong CH, Norman KA, Hasson U 2017. Shared memories reveal shared structure in neural activity across individuals. Nat. Neurosci. 20:1115–25
    [Google Scholar]
  31. Chomsky N. 2006. Language and Mind Cambridge, UK: Cambridge Univ. Press
  32. Christoff K, Gordon AM, Smallwood J, Smith R, Schooler JW 2009. Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. PNAS 106:8719–24
    [Google Scholar]
  33. Christoff K, Irving ZC, Fox KC, Spreng RN, Andrews-Hanna JR 2016. Mind-wandering as spontaneous thought: a dynamic framework. Nat. Rev. Neurosci. 17:718–31
    [Google Scholar]
  34. Connolly AC, Guntupalli JS, Gors J, Hanke M, Halchenko YO et al. 2012. The representation of biological classes in the human brain. J. Neurosci. 32:82608–18
    [Google Scholar]
  35. Constantinescu AO, O'Reilly JX, Behrens TE 2016. Organizing conceptual knowledge in humans with a gridlike code. Science 352:62921464–68
    [Google Scholar]
  36. Coutanche MN, Thompson-Schill SL. 2014. Creating concepts from converging features in human cortex. Cereb. Cortex 25:92584–93
    [Google Scholar]
  37. Crawford E, Gingerich M, Eliasmith C 2016. Biologically plausible, human‐scale knowledge representation. Cogn. Sci. 40:4782–821
    [Google Scholar]
  38. Crittenden BM, Mitchell DJ, Duncan J 2015. Recruitment of the default mode network during a demanding act of executive control. eLife 4:e06481
    [Google Scholar]
  39. Cueva CJ, Wei XX. 2018. Emergence of grid-like representations by training recurrent neural networks to perform spatial localization. arXiv:1803.07770 [q-bio.NC]
  40. D'Argembeau A, Collette F, Van der Linden M, Laureys S, Del Fiore G et al. 2005. Self-referential reflective activity and its relationship with rest: a PET study. Neuroimage 25:2616–24
    [Google Scholar]
  41. De Brigard F, Addis DR, Ford JH, Schacter DL, Giovanello KS 2013. Remembering what could have happened: neural correlates of episodic counterfactual thinking. Neuropsychologia 51:122401–14
    [Google Scholar]
  42. Del Prato P, Pylkkänen L 2014. MEG evidence for conceptual combination but not numeral quantification in the left anterior temporal lobe during language production. Front. Psychol. 5:524
    [Google Scholar]
  43. Devereux BJ, Clarke A, Marouchos A, Tyler LK 2013. Representational similarity analysis reveals commonalities and differences in the semantic processing of words and objects. J. Neurosci. 33:4818906–16
    [Google Scholar]
  44. Doeller CF, Barry C, Burgess N 2010. Evidence for grid cells in a human memory network. Nature 463:7281657–61
    [Google Scholar]
  45. Dordek Y, Soudry D, Meir R, Derdikman D 2016. Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis. eLife 5:e10094
    [Google Scholar]
  46. Doumas LA, Hummel JE. 2012. Computational models of higher cognition. The Oxford Handbook of Thinking and Reasoning KJ Holyoak, RG Morrison 52–66 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  47. Doumas LA, Hummel JE, Sandhofer CM 2008. A theory of the discovery and predication of relational concepts. Psychol. Rev. 115:11–43
    [Google Scholar]
  48. Dronkers NF, Wilkins DP, Van Valin RD Jr., Redfern BB, Jaeger JJ 2004. Lesion analysis of the brain areas involved in language comprehension. Cognition 92:1–2145–77
    [Google Scholar]
  49. Duncan J, Chylinski D, Mitchell DJ, Bhandari A 2017. Complexity and compositionality in fluid intelligence. PNAS 114:205295–99
    [Google Scholar]
  50. Eliasmith C. 2013. How to Build a Brain: A Neural Architecture for Biological Cognition Oxford, UK: Oxford Univ. Press
  51. Estes Z, Glucksberg S. 2000. Interactive property attribution in concept combination. Mem. Cogn. 28:128–34
    [Google Scholar]
  52. Evans G. 1982. The Varieties of Reference Oxford, UK: Oxford Univ. Press
  53. Fairhall SL, Caramazza A. 2013. Brain regions that represent amodal conceptual knowledge. J. Neurosci. 33:2510552–58
    [Google Scholar]
  54. Fang H, Gupta S, Iandola F, Srivastava RK, Deng L et al. 2015. From captions to visual concepts and back. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition1473–82 New York: IEEE
    [Google Scholar]
  55. Fiete IR, Burak Y, Brookings T 2008. What grid cells convey about rat location. J. Neurosci. 28:276858–71
    [Google Scholar]
  56. Fillmore CJ. 1968. The case for case. Universals in Linguistic Theory E Bach, RT Harms 1–88 New York: Holt, Rinehart, and Winston
    [Google Scholar]
  57. Fodor JA. 1975. The Language of Thought Cambridge, MA: Harvard Univ. Press
  58. Fodor JA. 2001. The Mind Doesn't Work That Way: The Scope and Limits of Computational Psychology Cambridge, MA: MIT Press
  59. Fodor JA. 2003. Hume Variations Oxford, UK: Oxford Univ. Press
  60. Fodor JA, Pylyshyn ZW. 1988. Connectionism and cognitive architecture: a critical analysis. Cognition 28:1–23–71
    [Google Scholar]
  61. Forgács B, Bohrn I, Baudewig J, Hofmann MJ, Pléh C, Jacobs AM 2012. Neural correlates of combinatorial semantic processing of literal and figurative noun noun compound words. Neuroimage 63:31432–42
    [Google Scholar]
  62. Frankland SM, Greene JD. 2015. An architecture for encoding sentence meaning in left mid-superior temporal cortex. PNAS 112:3711732–37
    [Google Scholar]
  63. Frankland SM, Greene JD. 2019. Two ways to build a thought: distinct forms of compositional semantic representation across brain regions. PsyArXiv, Aug. 27. https://doi.org/10.31234/osf.io/65tn7
    [Crossref]
  64. Frankland SM, Webb TW, Petrov AA, O'Reilly RC, Cohen JD 2019. Extracting and utilizing abstract, structured representations for analogy. Proceedings of the Cognitive Science Society1766–72 Montreal: Cogn. Sci. Soc.
    [Google Scholar]
  65. Frege G. 1980. Letter to Jourdain. Philosophical and Mathematical Correspondence of Gottlob Frege B McGuinness 78–80 Chicago: Univ. Chicago Press
    [Google Scholar]
  66. Friederici AD, Rueschemeyer SA, Hahne A, Fiebach CJ 2003. The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cereb. Cortex 13:2170–77
    [Google Scholar]
  67. Fuster J. 1997. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe New York: Lippincott-Raven
  68. Gagné CL, Shoben EJ. 1997. Influence of thematic relations on the comprehension of modifier–noun combinations. J. Exp. Psychol. Learn. Mem. Cogn. 23:171–87
    [Google Scholar]
  69. Gallistel CR, King AP. 2011. Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience Hoboken, NJ: John Wiley & Sons
  70. Gärdenfors P. 2004. Conceptual Spaces: The Geometry of Thought Cambridge, MA: MIT Press
  71. Garner HL. 1959. The residue number system. Papers Presented at the March 3–5, 1959, Western Joint Computer Conference146–53 New York: ACM
    [Google Scholar]
  72. Garvert MM, Dolan RJ, Behrens TE 2017. A map of abstract relational knowledge in the human hippocampal–entorhinal cortex. eLife 6:e17086
    [Google Scholar]
  73. Gilbert SJ, Gonen-Yaacovi G, Benoit RG, Volle E, Burgess PW 2010. Distinct functional connectivity associated with lateral versus medial rostral prefrontal cortex: a meta-analysis. Neuroimage 53:41359–67
    [Google Scholar]
  74. Goodman ND, Tenenbaum JB, Gerstenberg T 2014. Concepts in a Probabilistic Language of Thought Cambridge, MA: CBMM Memos
  75. Graves A, Wayne G, Danihelka I 2014. Neural Turing machines. arXiv:1410.5401 [cs.NE]
  76. Graves A, Wayne G, Reynolds M, Harley T, Danihelka I et al. 2016. Hybrid computing using a neural network with dynamic external memory. Nature 538:471–76
    [Google Scholar]
  77. Graves WW, Binder JR, Desai RH, Conant LL, Seidenberg MS 2010. Neural correlates of implicit and explicit combinatorial semantic processing. Neuroimage 53:2638–46
    [Google Scholar]
  78. Gu S, Pasqualetti F, Cieslak M, Telesford QK, Alfred BY et al. 2015. Controllability of structural brain networks. Nat. Commun. 6:8414
    [Google Scholar]
  79. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI 2005. Microstructure of a spatial map in the entorhinal cortex. Nature 436:7052801–6
    [Google Scholar]
  80. Hagoort P, Indefrey P. 2014. The neurobiology of language beyond single words. Annu. Rev. Neurosci. 37:347–62
    [Google Scholar]
  81. Hampton JA. 1997. Conceptual combination. Knowledge, Concepts and Categories K Lambert, D Shanks 133–59 Sussex, UK: Psychol. Press
    [Google Scholar]
  82. Hassabis D, Kumaran D, Maguire EA 2007. Using imagination to understand the neural basis of episodic memory. J. Neurosci. 27:5214365–74
    [Google Scholar]
  83. Hassabis D, Maguire EA. 2007. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11:7299–306
    [Google Scholar]
  84. Hasson U, Yang E, Vallines I, Heeger DJ, Rubin N 2008. A hierarchy of temporal receptive windows in human cortex. J. Neurosci. 28:102539–50
    [Google Scholar]
  85. Hayworth KJ. 2012. Dynamically partitionable autoassociative networks as a solution to the neural binding problem. Front. Comput. Neurosci. 6:73
    [Google Scholar]
  86. Higgins I, Matthey L, Pal A, Burgess C, Glorot X et al. 2017a. β-VAE: learning basic visual concepts with a constrained variational framework Paper presented at the 5th International Conference on Learning Representations, Toulon, Fr .
    [Google Scholar]
  87. Higgins I, Sonnerat N, Matthey L, Pal A, Burgess C et al. 2017b. Scan: learning abstract hierarchical compositional visual concepts. arXiv:1707.03389 [stat.ML]
  88. Honey CJ, Thesen T, Donner TH, Silbert LJ, Carlson CE et al. 2012. Slow cortical dynamics and the accumulation of information over long timescales. Neuron 76:2423–34
    [Google Scholar]
  89. Horner AJ, Bisby JA, Zotow E, Bush D, Burgess N 2016. Grid-like processing of imagined navigation. Curr. Biol. 26:842–47
    [Google Scholar]
  90. Hudson DA, Manning CD. 2018. Compositional attention networks for machine reasoning. arXiv:1803.03067 [cs.AI]
  91. Hume D. 2003. 1738. A Treatise of Human Nature North Chelmsford, MA: Courier Corp.
  92. Hummel JE, Holyoak KJ. 1997. Distributed representations of structure: a theory of analogical access and mapping. Psychol. Rev. 104:3427–66
    [Google Scholar]
  93. Hummel JE, Holyoak KJ, Green C, Doumas LA, Devnich D et al. 2004. A solution to the binding problem for compositional connectionism. Compositional Connectionism in Cognitive Science: Papers from the AAAI Fall Symposium SD Levy, R Gayler 31–34 Palo Alto, CA: AAAI
    [Google Scholar]
  94. Humphreys GF, Hoffman P, Visser M, Binney RJ, Ralph MAL 2015. Establishing task- and modality-dependent dissociations between the semantic and default mode networks. PNAS 112:257857–62
    [Google Scholar]
  95. Humphreys GF, Ralph MAL. 2014. Fusion and fission of cognitive functions in the human parietal cortex. Cereb. Cortex 25:103547–60
    [Google Scholar]
  96. Huth AG, de Heer WA, Griffiths TL, Theunissen FE, Gallant JL 2016. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532:7600453–58
    [Google Scholar]
  97. Irish M, Addis DR, Hodges JR, Piguet O 2012. Considering the role of semantic memory in episodic future thinking: evidence from semantic dementia. Brain 135:72178–91
    [Google Scholar]
  98. Irish M, Piguet O. 2013. The pivotal role of semantic memory in remembering the past and imagining the future. Front. Behav. Neurosci. 7:27
    [Google Scholar]
  99. Jackendoff R. 1992. Semantic Structures Cambridge, MA: MIT Press
  100. Jacobs J, Weidemann CT, Miller JF, Solway A, Burke JF et al. 2013. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat. Neurosci. 16:91188–90
    [Google Scholar]
  101. Johnson J, Hariharan B, van der Maaten L, Fei-Fei L, Lawrence Zitnick C, Girshick R 2017. CLEVR: a diagnostic dataset for compositional language and elementary visual reasoning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition2901–10 New York: IEEE
    [Google Scholar]
  102. Johnson K. 2004. On the systematicity of language and thought. J. Philos. 101:3111–39
    [Google Scholar]
  103. Johnson SC, Baxter LC, Wilder LS, Pipe JG, Heiserman JE, Prigatano GP 2002. Neural correlates of self‐reflection. Brain 125:81808–14
    [Google Scholar]
  104. Karpathy A, Fei-Fei L. 2015. Deep visual-semantic alignments for generating image descriptions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition3128–37 New York: IEEE
    [Google Scholar]
  105. Kingma DP, Welling M. 2013. Auto-encoding variational Bayes. arXiv:1312.6114 [stat.ML]
  106. Kiros R, Salakhutdinov R, Zemel R 2014. Multimodal neural language models. PMLR 32:2595–603
    [Google Scholar]
  107. Konkle T, Caramazza A. 2013. Tripartite organization of the ventral stream by animacy and object size. J. Neurosci. 33:2510235–42
    [Google Scholar]
  108. Kriete T, Noelle DC, Cohen JD, O'Reilly RC 2013. Indirection and symbol-like processing in the prefrontal cortex and basal ganglia. PNAS 110:4116390–95
    [Google Scholar]
  109. Lake BM, Salakhutdinov R, Tenenbaum JB 2015. Human-level concept learning through probabilistic program induction. Science 350:62661332–38
    [Google Scholar]
  110. Lake BM, Ullman TD, Tenenbaum JB, Gershman SJ 2017. Building machines that learn and think like people. Behav. Brain Sci. 40:e253
    [Google Scholar]
  111. LeCun Y, Bengio Y, Hinton G 2015. Deep learning. Nature 521:7553436–44
    [Google Scholar]
  112. Lerner Y, Honey CJ, Silbert LJ, Hasson U 2011. Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. J. Neurosci. 31:82906–15
    [Google Scholar]
  113. Leshinskaya A, Caramazza A. 2015. Abstract categories of functions in anterior parietal lobe. Neuropsychologia 76:27–40
    [Google Scholar]
  114. Levin B, Hovav MR. 2005. Argument Realization Cambridge, UK: Cambridge Univ. Press
  115. Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O'Keefe J 1998. Knowing where and getting there: a human navigation network. Science 280:921–24
    [Google Scholar]
  116. Mahon BZ, Anzellotti S, Schwarzbach J, Zampini M, Caramazza A 2009. Category-specific organization in the human brain does not require visual experience. Neuron 63:3397–405
    [Google Scholar]
  117. Mahon BZ, Caramazza A. 2009. Concepts and categories: a cognitive neuropsychological perspective. Annu. Rev. Psychol. 60:27–51
    [Google Scholar]
  118. Mansimov E, Parisotto E, Ba JL, Salakhutdinov R 2015. Generating images from captions with attention. arXiv:1511.02793 [cs.LG]
  119. Marcus GF. 2001. The Algebraic Mind: Integrating Connectionism and Cognitive Science Cambridge, MA: MIT Press
  120. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM et al. 2016. Situating the default-mode network along a principal gradient of macroscale cortical organization. PNAS 113:4412574–79
    [Google Scholar]
  121. Martin A. 2007. The representation of object concepts in the brain. Annu. Rev. Psychol. 58:25–45
    [Google Scholar]
  122. Martin A, Chao LL. 2001. Semantic memory and the brain: structure and processes. Curr. Opin. Neurobiol. 11:2194–201
    [Google Scholar]
  123. Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O et al. 2001. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res. Bull. 54:3287–98
    [Google Scholar]
  124. Medin DL, Shoben EJ. 1988. Context and structure in conceptual combination. Cogn. Psychol. 20:2158–90
    [Google Scholar]
  125. Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24:1167–202
    [Google Scholar]
  126. Mitchell TM, Shinkareva SV, Carlson A, Chang KM, Malave VL et al. 2008. Predicting human brain activity associated with the meanings of nouns. Science 320:58801191–95
    [Google Scholar]
  127. Molinaro N, Carreiras M, Duñabeitia JA 2012. Semantic combinatorial processing of non-anomalous expressions. Neuroimage 59:43488–501
    [Google Scholar]
  128. Molinaro N, Paz-Alonso PM, Duñabeitia JA, Carreiras M 2015. Combinatorial semantics strengthens angular-anterior temporal coupling. Cortex 65:113–27
    [Google Scholar]
  129. Murphy GL. 1988. Comprehending complex concepts. Cogn. Sci. 12:4529–62
    [Google Scholar]
  130. Musslick S, Saxe A, Özcimder K, Dey B, Henselman G, Cohen JD 2017. Multitasking capability versus learning efficiency in neural network architectures. Proceedings of the Cognitive Science Society829–34 Austin, TX: Cogn. Sci. Soc.
    [Google Scholar]
  131. Newell A. 1980. Physical symbol systems. Cogn. Sci. 4:2135–83
    [Google Scholar]
  132. O'Reilly RC, Busby RS. 2002. Generalizable relational binding from coarse-coded distributed representations. Advances in Neural Information Processing Systems 14 DG Dietterich, S Becker, Z Ghahramani 75–82 San Diego, CA: NIPS
    [Google Scholar]
  133. Pallier C, Devauchelle AD, Dehaene S 2011. Cortical representation of the constituent structure of sentences. PNAS 108:62522–27
    [Google Scholar]
  134. Pascual B, Masdeu JC, Hollenbeck M, Makris N, Insausti R et al. 2013. Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. Cereb. Cortex 25:3680–702
    [Google Scholar]
  135. Patterson K, Nestor PJ, Rogers TT 2007. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat. Rev. Neurosci. 8:12976–87
    [Google Scholar]
  136. Pearson J, Kosslyn SM. 2015. The heterogeneity of mental representation: ending the imagery debate. PNAS 112:3310089–92
    [Google Scholar]
  137. Penn DC, Holyoak KJ, Povinelli DJ 2008. Darwin's mistake: explaining the discontinuity between human and nonhuman minds. Behav. Brain Sci. 31:2109–30
    [Google Scholar]
  138. Perez E, Strub F, De Vries H, Dumoulin V, Courville A 2018. Film: visual reasoning with a general conditioning layer. The Thirty-Second AAAI Conference on Artificial Intelligence3942–51 Palo Alto, CA: AAAI
    [Google Scholar]
  139. Piantadosi ST. 2011. Learning and the Language of Thought PhD Diss., Mass. Inst. Technol Cambridge, MA:
  140. Piantadosi ST, Jacobs RA. 2016. Four problems solved by the probabilistic language of thought. Curr. Dir. Psychol. Sci. 25:154–59
    [Google Scholar]
  141. Pinker S. 1997. How the Mind Works New York: W.W Norton & Co.
  142. Pinker S. 2005. So how does the mind work?. Mind Lang 20:11–24
    [Google Scholar]
  143. Plate TA. 1995. Holographic reduced representations. IEEE Trans. Neural Netw. 6:3623–41
    [Google Scholar]
  144. Poortman EB, Pylkkänen L. 2016. Adjective conjunction as a window into the LATL's contribution to conceptual combination. Brain Lang 160:50–60
    [Google Scholar]
  145. Price AR, Bonner MF, Peelle JE, Grossman M 2015. Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus. J. Neurosci. 35:73276–84
    [Google Scholar]
  146. Price AR, Peelle JE, Bonner MF, Grossman M, Hamilton RH 2016. Causal evidence for a mechanism of semantic integration in the angular gyrus as revealed by high-definition transcranial direct current stimulation. J. Neurosci. 36:133829–38
    [Google Scholar]
  147. Pylkkänen L, Bemis DK, Elorrieta EB 2014. Building phrases in language production: an MEG study of simple composition. Cognition 133:2371–84
    [Google Scholar]
  148. Rabagliati H, Doumas LA, Bemis DK 2017. Representing composed meanings through temporal binding. Cognition 162:61–72
    [Google Scholar]
  149. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL 2001. A default mode of brain function. PNAS 98:2676–82
    [Google Scholar]
  150. Ralph MAL, Jefferies E, Patterson K, Rogers TT 2017. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 18:142–55
    [Google Scholar]
  151. Regev M, Honey CJ, Simony E, Hasson U 2013. Selective and invariant neural responses to spoken and written narratives. J. Neurosci. 33:4015978–88
    [Google Scholar]
  152. Rigotti M, Barak O, Warden MR, Wang XJ, Daw ND et al. 2013. The importance of mixed selectivity in complex cognitive tasks. Nature 497:7451585–90
    [Google Scholar]
  153. Rosenbaum C, Klinger T, Riemer M 2017. Routing networks: adaptive selection of non-linear functions for multi-task learning. arXiv:1711.01239 [cs.LG]
  154. Rougier NP, Noelle DC, Braver TS, Cohen JD, O'Reilly RC 2005. Prefrontal cortex and flexible cognitive control: rules without symbols. PNAS 102:207338–43
    [Google Scholar]
  155. Russin J, Jo J, O'Reilly RC 2019. Compositional generalization in a deep seq2seq model by separating syntax and semantics. arXiv:1904.09708 [cs.LG]
  156. Santoro A, Raposo D, Barrett DG, Malinowski M, Pascanu R et al. 2017. A simple neural network module for relational reasoning. Advances in Neural Information Processing Systems 30 I Guyon, UV Luxburg, S Bengio, H Wallach, R Fergus et al.4967–76 San Diego, CA: NIPS
    [Google Scholar]
  157. Saxe R, Carey S, Kanwisher N 2004. Understanding other minds: linking developmental psychology and functional neuroimaging. Annu. Rev. Psychol. 55:87–124
    [Google Scholar]
  158. Schacter DL, Addis DR, Buckner RL 2007. Remembering the past to imagine the future: the prospective brain. Nat. Rev. Neurosci. 8:9657–61
    [Google Scholar]
  159. Schacter DL, Addis DR, Buckner RL 2008. Episodic simulation of future events: concepts, data, and applications. Ann. N. Y. Acad. Sci. 1124:139–60
    [Google Scholar]
  160. Schacter DL, Addis DR, Hassabis D, Martin VC, Spreng RN, Szpunar KK 2012. The future of memory: remembering, imagining, and the brain. Neuron 76:4677–94
    [Google Scholar]
  161. Shadlen MN, Movshon JA. 1999. Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24:167–77
    [Google Scholar]
  162. Shastri L, Ajjanagadde V. 1993. From simple associations to systematic reasoning: a connectionist representation of rules, variables and dynamic bindings using temporal synchrony. Behav. Brain Sci. 16:3417–51
    [Google Scholar]
  163. Shepard RN. 1987. Toward a universal law of generalization for psychological science. Science 237:48201317–23
    [Google Scholar]
  164. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM et al. 1997. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci. 9:5648–63
    [Google Scholar]
  165. Sigala N, Kusunoki M, Nimmo-Smith I, Gaffan D, Duncan J 2008. Hierarchical coding for sequential task events in the monkey prefrontal cortex. PNAS 105:3311969–74
    [Google Scholar]
  166. Smith EE, Osherson DN. 1984. Conceptual combination with prototype concepts. Cogn. Sci. 8:4337–61
    [Google Scholar]
  167. Smith EE, Osherson DN, Rips LJ, Keane M 1988. Combining prototypes: a selective modification model. Cogn. Sci. 12:4485–527
    [Google Scholar]
  168. Smith V, Mitchell DJ, Duncan J 2018. Role of the default mode network in cognitive transitions. Cereb. Cortex 28:103685–96
    [Google Scholar]
  169. Smolensky P. 1990. Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artif. Intell. 46:1–2159–216
    [Google Scholar]
  170. Spreng RN, Stevens WD, Chamberlain JP, Gilmore AW, Schacter DL 2010. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53:303–17
    [Google Scholar]
  171. Srivastava N, Salakhutdinov RR. 2012. Multimodal learning with deep Boltzmann machines. Advances in Neural Information Processing Systems 25 F Pereira, CJC Burges, L Bottou, KQ Weinberger 2222–30 San Diego, CA: NIPS
    [Google Scholar]
  172. Stachenfeld KL, Botvinick MM, Gershman SJ 2017. The hippocampus as a predictive map. Nat. Neurosci. 20:111643–53
    [Google Scholar]
  173. Sutskever I, Vinyals O, Le QV 2014. Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems 27 Z Ghahramani, M Welling, C Cortes, ND Lawrence, KQ Weinberger 3104–12 San Diego, CA: NIPS
    [Google Scholar]
  174. Tamir DI, Bricker AB, Dodell-Feder D, Mitchell JP 2015. Reading fiction and reading minds: the role of simulation in the default network. Soc. Cogn. Affect. Neurosci. 11:2215–24
    [Google Scholar]
  175. Thompson-Schill SL. 2003. Neuroimaging studies of semantic memory: inferring “how” from “where.”. Neuropsychologia 41:3280–92
    [Google Scholar]
  176. Thothathiri M, Rattinger M. 2015. Ventral and dorsal streams for choosing word order during sentence production. PNAS 112:5015456–61
    [Google Scholar]
  177. Tolman EC. 1948. Cognitive maps in rats and men. Psychol. Rev. 55:4189–208
    [Google Scholar]
  178. Tversky A. 1977. Features of similarity. Psychol. Rev. 84:4327–52
    [Google Scholar]
  179. Van der Velde F, De Kamps M 2006. Neural blackboard architectures of combinatorial structures in cognition. Behav. Brain Sci. 29:137–70
    [Google Scholar]
  180. Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR et al. 2006. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96:3517–31
    [Google Scholar]
  181. Wang J, Cherkassky VL, Yang Y, Chang KMK, Vargas R et al. 2016. Identifying thematic roles from neural representations measured by functional magnetic resonance imaging. Cogn. Neuropsychol. 33:3–4257–64
    [Google Scholar]
  182. Westerlund M, Kastner I, Al Kaabi M, Pylkkänen L 2015. The LATL as locus of composition: MEG evidence from English and Arabic. Brain Lang 141:124–34
    [Google Scholar]
  183. Westerlund M, Pylkkänen L. 2014. The role of the left anterior temporal lobe in semantic composition vs. semantic memory. Neuropsychologia 57:59–70
    [Google Scholar]
  184. Whittington JC, Muller TH, Barry C, Behrens TE 2018. Generalisation of structural knowledge in the hippocampal-entorhinal system. arXiv:1805.09042 [cs.AI]
  185. Wisniewski EJ. 1997. When concepts combine. Psychon. Bull. Rev. 4:2167–83
    [Google Scholar]
  186. Wisniewski EJ, Middleton EL. 2002. Of bucket bowls and coffee cup bowls: spatial alignment in conceptual combination. J. Mem. Lang. 46:11–23
    [Google Scholar]
  187. Wu DH, Waller S, Chatterjee A 2007. The functional neuroanatomy of thematic role and locative relational knowledge. J. Cogn. Neurosci. 19:91542–55
    [Google Scholar]
  188. Wurm MF, Caramazza A. 2019. Distinct roles of temporal and frontoparietal cortex in representing actions across vision and language. Nat. Commun. 10:1289
    [Google Scholar]
  189. Yi K, Wu J, Gan C, Torralba A, Kohli P, Tenenbaum J 2018. Neural-symbolic VQA: disentangling reasoning from vision and language understanding. Advances in Neural Information Processing Systems 31 S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, R Garnett 1039–50 San Diego, CA: NIPS
    [Google Scholar]
  190. Yuille A, Kersten D. 2006. Vision as Bayesian inference: analysis by synthesis. ? Trends Cogn. Sci. 10:7301–8
    [Google Scholar]
  191. Zadbood A, Chen J, Leong YC, Norman KA, Hasson U 2017. How we transmit memories to other brains: constructing shared neural representations via communication. Cereb. Cortex 27:104988–5000
    [Google Scholar]
  192. Zhang L, Pylkkänen L. 2015. The interplay of composition and concept specificity in the left anterior temporal lobe: an MEG study. Neuroimage 111:228–40
    [Google Scholar]
  193. Ziegler J, Pylkkänen L. 2016. Scalar adjectives and the temporal unfolding of semantic composition: an MEG investigation. Neuropsychologia 89:161–71
    [Google Scholar]
/content/journals/10.1146/annurev-psych-122216-011829
Loading
/content/journals/10.1146/annurev-psych-122216-011829
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error