1932

Abstract

Estimators of biological age hold promise for use in preventive medicine, for early detection of chronic conditions, and for monitoring the effectiveness of interventions aimed at improving population health. Among the promising biomarkers in this field are DNA methylation–based biomarkers, commonly referred to as epigenetic clocks. This review provides a survey of these clocks, with an emphasis on second-generation clocks that predict human morbidity and mortality. It explores the validity of epigenetic clocks when considering factors such as race, sex differences, lifestyle, and environmental influences. Furthermore, the review addresses the current challenges and limitations in this research area.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-publhealth-060222-015657
2025-04-04
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/publhealth/46/1/annurev-publhealth-060222-015657.html?itemId=/content/journals/10.1146/annurev-publhealth-060222-015657&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Armstrong NJ, Mather KA, Thalamuthu A, Wright MJ, Trollor JN, et al. 2017.. Aging, exceptional longevity and comparisons of the Hannum and Horvath epigenetic clocks. . Epigenomics 9:(5):689700
    [Crossref] [Google Scholar]
  2. 2.
    Assari S, Zare H. 2024.. Poverty status at birth predicts epigenetic changes at age 15. . J. Biomed. Life Sci. 4:(1):989
    [Google Scholar]
  3. 3.
    Aurich S, Müller L, Kovacs P, Keller M. 2023.. Implication of DNA methylation during lifestyle mediated weight loss. . Front. Endocrinol. 14:(Aug.):1181002
    [Crossref] [Google Scholar]
  4. 4.
    Beach SRH, Ong ML, Gibbons FX, Gerrard M, Lei M-K, et al. 2022.. Epigenetic and proteomic biomarkers of elevated alcohol use predict epigenetic aging and cell-type variation better than self-report. . Genes 13::1888
    [Crossref] [Google Scholar]
  5. 5.
    Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, et al. 2019.. DNA methylation aging clocks: challenges and recommendations. . Genome Biol. 20:(1):249
    [Crossref] [Google Scholar]
  6. 6.
    Belsky DW, Caspi A, Arseneault L, Baccarelli A, Corcoran DL, et al. 2020.. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. . eLife 9::e54870
    [Crossref] [Google Scholar]
  7. 7.
    Belsky DW, Caspi A, Corcoran DL, Sugden K, Poulton R, et al. 2022.. DunedinPACE, a DNA methylation biomarker of the pace of aging. . eLife 11::e73420
    [Crossref] [Google Scholar]
  8. 8.
    Bergquist SH, Wang D, Smith AK, Roberts DL, Moore MA. 2022.. Hormetic association between perceived stress and human epigenetic aging based on resilience capacity. . Biogerontology 23:(5):61527
    [Crossref] [Google Scholar]
  9. 9.
    Beydoun MA, Beydoun HA, Noren Hooten N, Maldonado AI, Weiss J, et al. 2022.. Epigenetic clocks and their association with trajectories in perceived discrimination and depressive symptoms among US middle-aged and older adults. . Aging 14:(13):531144
    [Crossref] [Google Scholar]
  10. 10.
    Binder AM, Corvalan C, Mericq V, Pereira A, Santos JL, et al. 2018.. Faster ticking rate of the epigenetic clock is associated with faster pubertal development in girls. . Epigenetics 13:(1):8594
    [Crossref] [Google Scholar]
  11. 11.
    Bocklandt S, Lin W, Sehl ME, Sánchez FJ, Sinsheimer JS, et al. 2011.. Epigenetic predictor of age. . PLOS ONE 6:(6):e14821
    [Crossref] [Google Scholar]
  12. 12.
    Bohlin J, Håberg SE, Magnus P, Reese SE, Gjessing HK, et al. 2016.. Prediction of gestational age based on genome-wide differentially methylated regions. . Genome Biol. 17:(1):207
    [Crossref] [Google Scholar]
  13. 13.
    Bøstrand SMK, Vaher K, de Nooij L, Harris MA, Cole JH, et al. 2022.. Associations between alcohol use and accelerated biological ageing. . Addict. Biol. 27:(1):e13100
    [Crossref] [Google Scholar]
  14. 14.
    Bourassa KJ, Caspi A, Brennan GM, Hall KS, Harrington HL, et al. 2023.. Which types of stress are associated with accelerated biological aging? Comparing perceived stress, stressful life events, childhood adversity, and posttraumatic stress disorder. . Psychosom. Med. 85:(5):38996
    [Crossref] [Google Scholar]
  15. 15.
    Boyer K, Domingo-Relloso A, Jiang E, Haack K, Goessler W, et al. 2023.. Metal mixtures and DNA methylation measures of biological aging in American Indian populations. . Environ. Int. 178::108064
    [Crossref] [Google Scholar]
  16. 16.
    Bozack AK, Boileau P, Hubbard AE, Sillé FCM, Ferreccio C, et al. 2022.. The impact of prenatal and early-life arsenic exposure on epigenetic age acceleration among adults in Northern Chile. . Environ. Epigenet. 8:(1):dvac014
    [Crossref] [Google Scholar]
  17. 17.
    Bozack AK, Rifas-Shiman SL, Baccarelli AA, Wright RO, Gold DR, et al. 2024.. Associations of prenatal one-carbon metabolism nutrients and metals with epigenetic aging biomarkers at birth and in childhood in a US cohort. . Aging 16:(4):310736
    [Crossref] [Google Scholar]
  18. 18.
    Brody GH, Miller GE, Yu T, Beach SRH, Chen E. 2016.. Supportive family environments ameliorate the link between racial discrimination and epigenetic aging: a replication across two longitudinal cohorts. . Psychol. Sci. 27:(4):53041
    [Crossref] [Google Scholar]
  19. 19.
    Brown RL, Alegria KE, Hamlat E, Tomiyama AJ, Laraia B, Crimmins EM. 2024.. Psychosocial disadvantage during childhood and midlife health NIMHD social epigenomics program. . JAMA Netw. Open 7:(7):e2421841
    [Crossref] [Google Scholar]
  20. 20.
    Cardenas A, Ecker S, Fadadu RP, Huen K, Orozco A, et al. 2022.. Epigenome-wide association study and epigenetic age acceleration associated with cigarette smoking among Costa Rican adults. . Sci. Rep. 12:(1):4277
    [Crossref] [Google Scholar]
  21. 21.
    Carroll JE, Irwin MR, Levine M, Seeman TE, Absher D, et al. 2017.. Epigenetic aging and immune senescence in women with insomnia symptoms: findings from the Women's Health Initiative Study. . Biol. Psychiatry 81:(2):13644
    [Crossref] [Google Scholar]
  22. 22.
    Carroll JE, Ross KM, Horvath S, Okun M, Hobel C, et al. 2021.. Postpartum sleep loss and accelerated epigenetic aging. . Sleep Health 7:(3):36267
    [Crossref] [Google Scholar]
  23. 23.
    Carter A, Bares C, Lin L, Reed BG, Bowden M, et al. 2022.. Sex-specific and generational effects of alcohol and tobacco use on epigenetic age acceleration in the Michigan longitudinal study. . Drug Alcohol Depend. Rep. 4::100077
    [Crossref] [Google Scholar]
  24. 24.
    Chen E, Miller GE, Yu T, Brody GH. 2016.. The Great Recession and health risks in African American youth. . Brain Behav. Immun. 53::23441
    [Crossref] [Google Scholar]
  25. 25.
    Chiavellini P, Lehmann M, Gallardo MD, Canatelli Mallat M, Pasquini DC, et al. 2024.. Young plasma rejuvenates blood DNA methylation profile, extends mean lifespan and improves physical appearance in old rats. . J. Gerontol. A 79::glae071
    [Crossref] [Google Scholar]
  26. 26.
    Clement J, Yan Q, Agrawal M, Coronado RE, Sturges JA, et al. 2022.. Umbilical cord plasma concentrate has beneficial effects on DNA methylation GrimAge and human clinical biomarkers. . Aging Cell 21:(10):e13696
    [Crossref] [Google Scholar]
  27. 27.
    Crimmins EM, Thyagarajan B, Levine ME, Weir DR, Faul J. 2021.. Associations of age, sex, race/ethnicity, and education with 13 epigenetic clocks in a nationally representative U.S. sample: the Health and Retirement Study. . J. Gerontol. Ser. A Biol. Sci. Med. Sci. 76:(6):111723
    [Crossref] [Google Scholar]
  28. 28.
    Cronjé HT, Nienaber-Rousseau C, Min JL, Green FR, Elliott HR, Pieters M. 2021.. Comparison of DNA methylation clocks in Black South African men. . Epigenomics 13:(6):43749
    [Crossref] [Google Scholar]
  29. 29.
    Dalecka A, Polcrova AB, Pikhart H, Bobak M, Ksinan AJ. 2024.. Living in poverty and accelerated biological aging: evidence from population-representative sample of U.S. adults. . BMC Public Health 24::458
    [Crossref] [Google Scholar]
  30. 30.
    Daunay A, Hardy LM, Bouyacoub Y, Sahbatou M, Touvier M, et al. 2022.. Centenarians consistently present a younger epigenetic age than their chronological age with four epigenetic clocks based on a small number of CpG sites. . Aging 14:(19):771833
    [Crossref] [Google Scholar]
  31. 31.
    de Lima Camillo LP, Lapierre LR, Singh R. 2022.. A pan-tissue DNA-methylation epigenetic clock based on deep learning. . npj Aging 8:(1):4
    [Crossref] [Google Scholar]
  32. 32.
    de Magalhães JP. 2023.. Ageing as a software design flaw. . Genome Biol. 24:(1):51
    [Crossref] [Google Scholar]
  33. 33.
    Dec E, Clement J, Cheng K, Church GM, Fossel MB, et al. 2023.. Centenarian clocks: epigenetic clocks for validating claims of exceptional longevity. . Geroscience 45:(3):181735
    [Crossref] [Google Scholar]
  34. 34.
    Ecker S, Beck S. 2019.. The epigenetic clock: a molecular crystal ball for human aging?. Aging 11::83335
    [Crossref] [Google Scholar]
  35. 35.
    Eipel M, Mayer F, Arent T, Ferreira MRP, Birkhofer C, et al. 2016.. Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures. . Aging 8:(5):103444
    [Crossref] [Google Scholar]
  36. 36.
    El Khoury LY, Gorrie-Stone T, Smart M, Hughes A, Bao Y, et al. 2019.. Systematic underestimation of the epigenetic clock and age acceleration in older subjects. . Genome Biol. 20:(1):283
    [Crossref] [Google Scholar]
  37. 37.
    Erdogan K, Ceylani T, Teker HT, Sengil AZ, Uysal F. 2023.. Young plasma transfer recovers decreased sperm counts and restores epigenetics in aged testis. . Exp. Gerontol. 172::112042
    [Crossref] [Google Scholar]
  38. 38.
    Fahy GM, Brooke RT, Watson JP, Good Z, Vasanawala SS, et al. 2019.. Reversal of epigenetic aging and immunosenescent trends in humans. . Aging Cell 18:(6):e13028
    [Crossref] [Google Scholar]
  39. 39.
    Farrell C, Lapborisuth K, Hu C, Pu K, Snir S, Pellegrini M. 2021.. The Epigenetic Pacemaker is a more sensitive tool than penalized regression for identifying moderators of epigenetic aging. . bioRxiv. https://doi.org/10.1101/2021.10.05.463222
  40. 40.
    Field AE, Robertson NA, Wang T, Havas A, Ideker T, Adams PD. 2018.. DNA methylation clocks in aging: categories, causes, and consequences. . Mol. Cell 71::88295
    [Crossref] [Google Scholar]
  41. 41.
    Fiorito G, Caini S, Palli D, Bendinelli B, Saieva C, et al. 2021.. DNA methylation-based biomarkers of aging were slowed down in a two-year diet and physical activity intervention trial: the DAMA study. . Aging Cell 20:(10):e13439
    [Crossref] [Google Scholar]
  42. 42.
    Fiorito G, Pedron S, Ochoa-Rosales C, McCrory C, Polidoro S, et al. 2022.. The role of epigenetic clocks in explaining educational inequalities in mortality: a multicohort study and meta-analysis. . J Gerontol. A Biol. Sci. Med. Sci. 77:(9):175059
    [Crossref] [Google Scholar]
  43. 43.
    Folger AT, Ding L, Yolton K, Ammerman RT, Ji H, et al. 2024.. Association between maternal prenatal depressive symptoms and offspring epigenetic aging at 3–5 weeks. . Ann. Epidemiol. 93::16
    [Crossref] [Google Scholar]
  44. 44.
    Fox FAU, Liu D, Breteler MMB, Aziz NA. 2023.. Physical activity is associated with slower epigenetic ageing—findings from the Rhineland study. . Aging Cell 22:(6):e13828
    [Crossref] [Google Scholar]
  45. 45.
    Freni-Sterrantino A, Fiorito G, D'Errico A, Robinson O, Virtanen M, et al. 2022.. Work-related stress and well-being in association with epigenetic age acceleration: a Northern Finland Birth Cohort 1966 Study. . Aging 14:(3):112856
    [Crossref] [Google Scholar]
  46. 46.
    Galkin F, Mamoshina P, Kochetov K, Sidorenko D, Zhavoronkov A. 2021.. DeepMAge: a methylation aging clock developed with deep learning. . Aging Dis. 12:(5):125262
    [Crossref] [Google Scholar]
  47. 47.
    Gensous N, Garagnani P, Santoro A, Giuliani C, Ostan R, et al. 2020.. One-year Mediterranean diet promotes epigenetic rejuvenation with country- and sex-specific effects: a pilot study from the NU-AGE project. . Geroscience 42:(2):687701
    [Crossref] [Google Scholar]
  48. 48.
    Gomaa N, Konwar C, Gladish N, Au-Young SH, Guo T, et al. 2022.. Association of pediatric buccal epigenetic age acceleration with adverse neonatal brain growth and neurodevelopmental outcomes among children born very preterm with a neonatal infection. . JAMA Netw. Open 5:(11):E2239796
    [Crossref] [Google Scholar]
  49. 49.
    Graf GH, Crowe CL, Kothari M, Kwon D, Manly JJ, et al. 2022.. Testing Black-White disparities in biological aging among older adults in the United States: analysis of DNA-methylation and blood-chemistry methods. . Am. J. Epidemiol. 191:(4):61325
    [Crossref] [Google Scholar]
  50. 50.
    Graf GHJ, Aiello AE, Caspi A, Kothari M, Liu H, et al. 2024.. Educational mobility, pace of aging, and lifespan among participants in the Framingham Heart Study. . JAMA Netw. Open 7:(3):E240655
    [Crossref] [Google Scholar]
  51. 51.
    Graf GH-J, Zhang Y, Domingue BW, Harris KM, Kothari M, et al. 2022.. Social mobility and biological aging among older adults in the United States. . PNAS Nexus 1:(2):pgac029
    [Crossref] [Google Scholar]
  52. 52.
    Graw S, Camerota M, Carter BS, Helderman J, Hofheimer JA, et al. 2021.. NEOage clocks—epigenetic clocks to estimate post-menstrual and postnatal age in preterm infants. . Aging 13:(20):2352744
    [Crossref] [Google Scholar]
  53. 53.
    Grodstein F, Lemos B, Yu L, Iatrou A, De Jager PL, Bennett DA. 2021.. Characteristics of epigenetic clocks across blood and brain tissue in older women and men. . Front. Neurosci. 14::555307
    [Crossref] [Google Scholar]
  54. 54.
    Guvatova ZG, Kobelyatskaya AA, Pudova EA, Tarasova IV, Kudryavtseva AV, et al. 2023.. Decelerated epigenetic aging in long livers. . Int. J. Mol. Sci. 24:(23):16867
    [Crossref] [Google Scholar]
  55. 55.
    Hamlat EJ, Prather AA, Horvath S, Belsky J, Epel ES. 2021.. Early life adversity, pubertal timing, and epigenetic age acceleration in adulthood. . Dev. Psychobiol. 63:(5):890902
    [Crossref] [Google Scholar]
  56. 56.
    Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, et al. 2013.. Genome-wide methylation profiles reveal quantitative views of human aging rates. . Mol. Cell 49:(2):35967
    [Crossref] [Google Scholar]
  57. 57.
    Harvanek ZM, Fogelman N, Xu K, Sinha R. 2021.. Psychological and biological resilience modulates the effects of stress on epigenetic aging. . Transl. Psychiatry 11::601
    [Crossref] [Google Scholar]
  58. 58.
    Harvanek ZM, Kudinova AY, Wong SA, Xu K, Brick L, et al. 2024.. Childhood adversity, accelerated GrimAge, and associated health consequences. . J. Behav. Med. 47::91326
    [Crossref] [Google Scholar]
  59. 59.
    Hillary RF, Stevenson AJ, Cox SR, McCartney DL, Harris SE, et al. 2021.. An epigenetic predictor of death captures multi-modal measures of brain health. . Mol. Psychiatry 26::380616
    [Crossref] [Google Scholar]
  60. 60.
    Holloway TD, Harvanek ZM, Xu K, Gordon DM, Sinha R. 2023.. Greater stress and trauma mediate race-related differences in epigenetic age between Black and White young adults in a community sample. . Neurobiol. Stress 26::100557
    [Crossref] [Google Scholar]
  61. 61.
    Horvath S. 2013.. DNA methylation age of human tissues and cell types. . Genome Biol. 14:(10):R115
    [Crossref] [Google Scholar]
  62. 62.
    Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, et al. 2016.. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. . Genome Biol. 17:(1):171
    [Crossref] [Google Scholar]
  63. 63.
    Horvath S, Lu AT, Haghani A, Zoller JA, Li CZ, et al. 2022.. DNA methylation clocks for dogs and humans. . PNAS 119:(21):e2120887119
    [Crossref] [Google Scholar]
  64. 64.
    Horvath S, Mah V, Lu AT, Woo JS, Choi O-W, et al. 2015.. The cerebellum ages slowly according to the epigenetic clock. . Aging 7:(5):294305
    [Crossref] [Google Scholar]
  65. 65.
    Horvath S, Oshima J, Martin GM, Lu AT, Quach A, et al. 2018.. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. . Aging 10:(7):175875
    [Crossref] [Google Scholar]
  66. 66.
    Horvath S, Pirazzini C, Bacalini MG, Gentilini D, Di Blasio AM, et al. 2015.. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. . Aging 7:(12):115970
    [Crossref] [Google Scholar]
  67. 67.
    Horvath S, Raj K. 2018.. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. . Nat. Rev. Genet. 19::37184
    [Crossref] [Google Scholar]
  68. 68.
    Horvath S, Singh K, Raj K, Khairnar S, Sanghavi A, et al. 2023.. Reversal of biological age in multiple rat organs by young porcine plasma fraction. . Geroscience 46::36794
    [Crossref] [Google Scholar]
  69. 69.
    Jiang EX, Domingo-Relloso A, Abuawad A, Haack K, Tellez-Plaza M, et al. 2023.. Arsenic exposure and epigenetic aging: the association with cardiovascular disease and all-cause mortality in the Strong Heart Study. . Environ. Health Perspect. 131:(12):127016
    [Crossref] [Google Scholar]
  70. 70.
    Johnson AA, Torosin NS, Shokhirev MN, Cuellar TL. 2022.. A set of common buccal CpGs that predict epigenetic age and associate with lifespan-regulating genes. . iScience 25:(11):105304
    [Crossref] [Google Scholar]
  71. 71.
    Joshi D, van Lenthe FJ, Huisman M, Sund ER, Krokstad S, et al. 2024.. Association of neighborhood deprivation and depressive symptoms with epigenetic age acceleration: evidence from the Canadian Longitudinal Study on Aging. . J. Gerontol. A. 79:(2):glad118
    [Crossref] [Google Scholar]
  72. 72.
    Kabacik S, Lowe D, Fransen L, Leonard M, Ang S-L, et al. 2022.. The relationship between epigenetic age and the hallmarks of aging in human cells. . Nat. Aging 2:(6):48493
    [Crossref] [Google Scholar]
  73. 73.
    Katrinli S, Stevens J, Wani AH, Lori A, Kilaru V, et al. 2020.. Evaluating the impact of trauma and PTSD on epigenetic prediction of lifespan and neural integrity. . Neuropsychopharmacology 45:(10):160916
    [Crossref] [Google Scholar]
  74. 74.
    Kim K, Yaffe K, Rehkopf DH, Zheng Y, Nannini DR, et al. 2023.. Association of adverse childhood experiences with accelerated epigenetic aging in midlife. . JAMA Netw. Open. 6:(6):e2317987
    [Crossref] [Google Scholar]
  75. 75.
    Kim K, Zheng Y, Joyce BT, Jiang H, Greenland P, et al. 2022.. Relative contributions of six lifestyle- and health-related exposures to epigenetic aging: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. . Clin. Epigenet. 14:(1):85
    [Crossref] [Google Scholar]
  76. 76.
    Kim Y, Huan T, Joehanes R, McKeown NM, Horvath S, et al. 2022.. Higher diet quality relates to decelerated epigenetic aging. . Am. J. Clin. Nutr. 115:(1):16370
    [Crossref] [Google Scholar]
  77. 77.
    Klopack ET, Carroll JE, Cole SW, Seeman TE, Crimmins EM. 2022.. Lifetime exposure to smoking, epigenetic aging, and morbidity and mortality in older adults. . Clin. Epigenet. 14:(1):72
    [Crossref] [Google Scholar]
  78. 78.
    Knight AK, Craig JM, Theda C, Bækvad-Hansen M, Bybjerg-Grauholm J, et al. 2016.. An epigenetic clock for gestational age at birth based on blood methylation data. . Genome Biol. 17:(1):206
    [Crossref] [Google Scholar]
  79. 79.
    Koenigsberg SH, Chang C-J, Ish J, Xu Z, Kresovich JK, et al. 2023.. Air pollution and epigenetic aging among Black and White women in the US. . Environ. Int. 181::108270
    [Crossref] [Google Scholar]
  80. 80.
    Komaki S, Nagata M, Arai E, Otomo R, Ono K, et al. 2023.. Epigenetic profile of Japanese supercentenarians: a cross-sectional study. . Lancet Healthy Longev. 4:(2):e8390
    [Crossref] [Google Scholar]
  81. 81.
    Korous KM, Surachman A, Rogers CR, Cuevas AG. 2023.. Parental education and epigenetic aging in middle-aged and older adults in the United States: a life course perspective. . Soc. Sci. Med. 333::116173
    [Crossref] [Google Scholar]
  82. 82.
    Kresovich JK, Park Y-MM, Keller JA, Sandler DP, Taylor JA. 2022.. Healthy eating patterns and epigenetic measures of biological age. . Am. J. Clin. Nutr. 115:(1):17179
    [Crossref] [Google Scholar]
  83. 83.
    Kuo C-L, Chen Z, Liu P, Pilling LC, Atkins JL. 2023.. Proteomic aging clock (PAC) predicts age-related outcomes in middle-aged and older adults. . Aging Cell 23::e14195
    [Crossref] [Google Scholar]
  84. 84.
    Kuo P-L, Moore AZ, Tanaka T, Belsky DW, Tzu-Hui Lu A, et al. 2024.. Longitudinal changes in epigenetic clocks predict survival in the InCHIANTI cohort. . medRxiv. https://doi.org/10.1101/2024.09.13.24313620
  85. 85.
    Kusters CDJ, Klopack ET, Crimmins EM, Seeman T, Cole S, Carroll JE. 2024.. Short sleep and insomnia are associated with accelerated epigenetic age. . Psychosom. Med. 86::45362
    [Crossref] [Google Scholar]
  86. 86.
    Kusters CDJ, Paul KC, Lu AT, Ferruci L, Ritz BR, et al. 2024.. Higher testosterone and testosterone/estradiol ratio in men are associated with decreased Pheno/GrimAge and DNA methylation based PAI1. . Geroscience 46::105369
    [Crossref] [Google Scholar]
  87. 87.
    Lawrence KG, Kresovich JK, O'Brien KM, Hoang TT, Xu Z, et al. 2020.. Association of neighborhood deprivation with epigenetic aging using 4 clock metrics. . JAMA Netw. Open. 3:(11):e2024329
    [Crossref] [Google Scholar]
  88. 88.
    Lee Y, Choufani S, Weksberg R, Wilson SL, Yuan V, et al. 2019.. Placental epigenetic clocks: estimating gestational age using placental DNA methylation levels. . Aging 11:(12):423853
    [Crossref] [Google Scholar]
  89. 89.
    Lei M-K, Berg MT, Simons RL, Beach SRH. 2022.. Neighborhood structural disadvantage and biological aging in a sample of Black middle age and young adults. . Soc. Sci. Med. 293::114654
    [Crossref] [Google Scholar]
  90. 90.
    Levine ME, Lu AT, Chen BH, Hernandez DG, Singleton AB, et al. 2016.. Menopause accelerates biological aging. . PNAS 113:(33):932732
    [Crossref] [Google Scholar]
  91. 91.
    Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, et al. 2018.. An epigenetic biomarker of aging for lifespan and healthspan. . Aging 10:(4):57391
    [Google Scholar]
  92. 92.
    Li DL, Hodge AM, Cribb L, Southey MC, Giles GG, et al. 2024.. Body size, diet quality, and epigenetic aging: cross-sectional and longitudinal analyses. . J. Gerontol. A 79::glae026
    [Google Scholar]
  93. 93.
    Li M, Bao L, Zhu P, Wang S. 2022.. Effect of metformin on the epigenetic age of peripheral blood in patients with diabetes mellitus. . Front. Genet. 13::955835
    [Google Scholar]
  94. 94.
    Lim S, Nzegwu D, Wright ML. 2022.. The impact of psychosocial stress from life trauma and racial discrimination on epigenetic aging—a systematic review. . Biol. Res. Nurs. 24:(2):20215
    [Google Scholar]
  95. 95.
    Lin W-Y. 2022.. Genome-wide association study for four measures of epigenetic age acceleration and two epigenetic surrogate markers using DNA methylation data from Taiwan Biobank. . Hum. Mol. Genet. 31:(11):186070
    [Google Scholar]
  96. 96.
    Liu Y, Li C. 2024.. Hormone therapy and biological aging in postmenopausal women. . JAMA Netw. Open 7:(8):e2430839
    [Google Scholar]
  97. 97.
    Liu Z, Chen BH, Assimes TL, Ferrucci L, Horvath S, Levine ME. 2019.. The role of epigenetic aging in education and racial/ethnic mortality disparities among older U.S. women. . Psychoneuroendocrinology 104::1824
    [Google Scholar]
  98. 98.
    Liu Z, Leung D, Thrush K, Zhao W, Ratliff S, et al. 2020.. Underlying features of epigenetic aging clocks in vivo and in vitro. . Aging Cell 19:(10):e13229
    [Google Scholar]
  99. 99.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013.. The hallmarks of aging. . Cell 153:(6):1194217
    [Google Scholar]
  100. 100.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2023.. Hallmarks of aging: an expanding universe. . Cell 186:(2):24378
    [Google Scholar]
  101. 101.
    Lu AT, Binder AM, Zhang J, Yan Q, Reiner AP, et al. 2022.. DNA methylation GrimAge version 2. . Aging 14:(23):9484549
    [Google Scholar]
  102. 102.
    Lu AT, Fei Z, Haghani A, Robeck TR, Zoller JA, et al. 2023.. Universal DNA methylation age across mammalian tissues. . Nat. Aging 3:(9):114466
    [Google Scholar]
  103. 103.
    Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, et al. 2019.. DNA methylation GrimAge strongly predicts lifespan and healthspan. . Aging 11:(2):30327
    [Google Scholar]
  104. 104.
    Lyons CE, Razzoli M, Bartolomucci A. 2023.. The impact of life stress on hallmarks of aging and accelerated senescence: connections in sickness and in health. . Neurosci. Biobehav. Rev. 153::105359
    [Google Scholar]
  105. 105.
    Malhotra N, Malhotra J, Bora NM, Bora R, Malhotra K. 2014.. Fetal origin of adult disease. . Donald Sch. J. Ultrasound Obstet. Gynecol. 8:(2):16477
    [Google Scholar]
  106. 106.
    Maunakea AK, Phankitnirundorn K, Peres R, Dye C, Juarez R, et al. 2024.. Socioeconomic status, lifestyle, and DNA methylation age among racially and ethnically diverse adults: NIMHD social epigenomics program. . JAMA Netw. Open 7:(7):e2421889
    [Crossref] [Google Scholar]
  107. 107.
    Mayne BT, Leemaqz SY, Smith AK, Breen J, Roberts CT, Bianco-Miotto T. 2017.. Accelerated placental aging in early onset preeclampsia pregnancies identified by DNA methylation. . Epigenomics 9:(3):27989
    [Crossref] [Google Scholar]
  108. 108.
    Mboning L, Rubbi L, Thompson M, Bouchard L-S, Pellegrini M. 2024.. BayesAge: a maximum likelihood algorithm to predict epigenetic age. . Front. Bioinform. 4::1329144
    [Crossref] [Google Scholar]
  109. 109.
    McCrory C, Fiorito G, Hernandez B, Polidoro S, O'Halloran AM, et al. 2021.. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. . J. Gerontol. A 76:(5):74149
    [Crossref] [Google Scholar]
  110. 110.
    McCrory C, Fiorito G, O'Halloran AM, Polidoro S, Vineis P, Kenny RA. 2022.. Early life adversity and age acceleration at mid-life and older ages indexed using the next-generation GrimAge and Pace of Aging epigenetic clocks. . Psychoneuroendocrinology 137::105643
    [Crossref] [Google Scholar]
  111. 111.
    McEwen LM, O'Donnell KJ, McGill MG, Edgar RD, Jones MJ, et al. 2020.. The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. . PNAS 117:(38):2332935
    [Crossref] [Google Scholar]
  112. 112.
    Mehta D, Bruenig D, Lawford B, Harvey W, Carrillo-Roa T, et al. 2018.. Accelerated DNA methylation aging and increased resilience in veterans: the biological cost for soldiering on. . Neurobiol. Stress 8::11219
    [Crossref] [Google Scholar]
  113. 113.
    Mendy A, Mersha TB. 2024.. Epigenetic age acceleration and mortality prediction in U.S. adults. . medRxiv. https://doi.org/10.1101/2024.08.21.24312373
  114. 114.
    [Google Scholar]
  115. 115.
    Moqri M, Cipriano A, Nachun D, Murty T, de Sena Brandine G, et al. 2022.. PRC2 clock: a universal epigenetic biomarker of aging and rejuvenation. . bioRxiv. https://doi.org/10.1101/2022.06.03.494609
  116. 116.
    Nielsen JL, Bakula D, Scheibye-Knudsen M. 2022.. Clinical trials targeting aging. . Front. Aging 3:. https://doi.org/10.3389/fragi.2022.820215
    [Crossref] [Google Scholar]
  117. 117.
    Noroozi R, Rudnicka J, Pisarek A, Wysocka B, Masny A, et al. 2024.. Analysis of epigenetic clocks links yoga, sleep, education, reduced meat intake, coffee, and a SOCS2 gene variant to slower epigenetic aging. . Geroscience 46:(2):2583604
    [Crossref] [Google Scholar]
  118. 118.
    Nwanaji-Enwerem JC, Cardenas A, Gao X, Wang C, Vokonas P, et al. 2023.. Psychological stress and epigenetic aging in older men: the VA Normative Aging Study. . Transl. Med. Aging 7::6674
    [Crossref] [Google Scholar]
  119. 119.
    Oblak L, van der Zaag J, Higgins-Chen AT, Levine ME, Boks MP. 2021.. A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. . Ageing Res. Rev. 69::101348
    [Crossref] [Google Scholar]
  120. 120.
    Oh HS-H, Rutledge J, Nachun D, Pálovics R, Abiose O, et al. 2023.. Organ aging signatures in the plasma proteome track health and disease. . Nature 624:(7990):16472
    [Crossref] [Google Scholar]
  121. 121.
    Palma-Gudiel H, Fañanás L, Horvath S, Zannas AS. 2020.. Psychosocial stress and epigenetic aging. . Int. Rev. Neurobiol. 150::10728
    [Crossref] [Google Scholar]
  122. 122.
    Phang M, Ross J, Raythatha JH, Dissanayake HU, McMullan RL, et al. 2020.. Epigenetic aging in newborns: role of maternal diet. . Am. J. Clin. Nutr. 111:(3):55561
    [Crossref] [Google Scholar]
  123. 123.
    Phyo AZZ, Fransquet PD, Wrigglesworth J, Woods RL, Espinoza SE, Ryan J. 2024.. Sex differences in biological aging and the association with clinical measures in older adults. . Geroscience 46:(2):177588
    [Crossref] [Google Scholar]
  124. 124.
    Prosz A, Pipek O, Börcsök J, Palla G, Szallasi Z, et al. 2024.. Biologically informed deep learning for explainable epigenetic clocks. . Sci. Rep. 14:(1):1306
    [Crossref] [Google Scholar]
  125. 125.
    Protsenko E, Wolkowitz OM, Yaffe K. 2023.. Associations of stress and stress-related psychiatric disorders with GrimAge acceleration: review and suggestions for future work. . Transl. Psychiatry 13::142
    [Crossref] [Google Scholar]
  126. 126.
    Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, et al. 2017.. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. . Aging 9:(2):41937
    [Crossref] [Google Scholar]
  127. 127.
    Raffington L, Belsky DW. 2022.. Integrating DNA methylation measures of biological aging into social determinants of health research. . Curr. Environ. Health Rep. 9:(2):196210
    [Crossref] [Google Scholar]
  128. 128.
    Raffington L, Belsky DW, Kothari M, Malanchini M, Tucker-Drob EM, Harden KP. 2021.. Socioeconomic disadvantage and the pace of biological aging in children. . Pediatrics 147:(6):e2020024406
    [Crossref] [Google Scholar]
  129. 129.
    Saeed H, Wu J, Tesfaye M, Grantz KL, Tekola-Ayele F. 2024.. Placental accelerated aging in antenatal depression. . Am. J. Obstet. Gynecol. MFM. 6:(1):101237
    [Crossref] [Google Scholar]
  130. 130.
    Sehgal R, Markov Y, Qin C, Meer M, Hadley C, et al. 2023.. Systems age: a single blood methylation test to quantify aging heterogeneity across 11 physiological systems. . bioRxiv. https://doi.org/10.1101/2023.07.13.548904
  131. 131.
    Shen B, Mode NA, Noren Hooten N, Pacheco NL, Ezike N, et al. 2023.. Association of race and poverty status with DNA methylation-based age. . JAMA Netw. Open. 6:(4):E236340
    [Crossref] [Google Scholar]
  132. 132.
    Shireby GL, Davies JP, Francis PT, Burrage J, Walker EM, et al. 2020.. Recalibrating the epigenetic clock: implications for assessing biological age in the human cortex. . Brain 143:(12):376375
    [Crossref] [Google Scholar]
  133. 133.
    Shokhirev MN, Torosin NS, Kramer DJ, Johnson AA, Cuellar TL. 2024.. CheekAge: a next-generation buccal epigenetic aging clock associated with lifestyle and health. . Geroscience 46:(3):342943
    [Crossref] [Google Scholar]
  134. 134.
    Short AK, Weber R, Kamei N, Wilcox Thai C, Arora H, et al. 2024.. Individual longitudinal changes in DNA-methylome identify signatures of early-life adversity and correlate with later outcome. . Neurobiol. Stress 31::100652
    [Crossref] [Google Scholar]
  135. 135.
    Sillanpää E, Heikkinen A, Kankaanpää A, Paavilainen A, Kujala UM, et al. 2021.. Blood and skeletal muscle ageing determined by epigenetic clocks and their associations with physical activity and functioning. . Clin. Epigenet. 13:(1):110
    [Crossref] [Google Scholar]
  136. 136.
    Simons RL, Lei M-K, Klopach E, Berg M, Zhang Y, Beach SSR. 2021.. Re(setting) epigenetic clocks: an important avenue whereby social conditions become biologically embedded across the life course. . J. Health Soc. Behav. 62:(3):43653
    [Crossref] [Google Scholar]
  137. 137.
    Simons RL, Lei M-K, Klopack E, Beach SRH, Gibbons FX, Philibert RA. 2021.. The effects of social adversity, discrimination, and health risk behaviors on the accelerated aging of African Americans: further support for the weathering hypothesis. . Soc. Sci. Med. 282::113169
    [Crossref] [Google Scholar]
  138. 138.
    Skinner HG, Palma-Gudiel H, Stewart JD, Love S-A, Bhatti P, et al. 2024.. Stressful life events, social support, and epigenetic aging in the Women's Health Initiative. . J. Am. Geriatr. Soc. 72:(2):34960
    [Crossref] [Google Scholar]
  139. 139.
    Song AY, Feinberg JI, Bakulski KM, Croen LA, Fallin MD, et al. 2022.. Prenatal exposure to ambient air pollution and epigenetic aging at birth in newborns. . Front. Genet. 13::929416
    [Crossref] [Google Scholar]
  140. 140.
    Sosnowski DW, Rojo-Wissar DM, Peng G, Parade SH, Sharkey K, et al. 2024.. Maternal childhood adversity and infant epigenetic aging: moderation by restless sleep during pregnancy. . Dev. Psychobiol. 66:(2):e22464
    [Crossref] [Google Scholar]
  141. 141.
    Stevenson AJ, McCartney DL, Gadd DA, Shireby G, Hillary RF, et al. 2022.. A comparison of blood and brain-derived ageing and inflammation-related DNA methylation signatures and their association with microglial burdens. . Eur. J. Neurosci. 56:(9):563749
    [Crossref] [Google Scholar]
  142. 142.
    Sullivan ADW, Bozack AK, Cardenas A, Comer JS, Bagner DM, et al. 2023.. Parenting practices may buffer the impact of adversity on epigenetic age acceleration among young children with developmental delays. . Psychol. Sci. 34:(10):117385
    [Crossref] [Google Scholar]
  143. 143.
    Tamargo JA, Cruz-Almeida Y. 2024.. Food insecurity and epigenetic aging in middle-aged and older adults. . Soc. Sci. Med. 350::116949
    [Crossref] [Google Scholar]
  144. 144.
    Tanaka T, Basisty N, Fantoni G, Candia J, Moore AZ, et al. 2020.. Plasma proteomic biomarker signature of age predicts health and life span. . eLife 9::e61073
    [Crossref] [Google Scholar]
  145. 145.
    Tangili M, Slettenhaar AJ, Sudyka J, Dugdale HL, Pen I, et al. 2023.. DNA methylation markers of age(ing) in non-model animals. . Mol. Ecol. 32:(17):472541
    [Crossref] [Google Scholar]
  146. 146.
    Thomas A, Ryan CP, Caspi A, Liu Z, Moffitt TE, et al. 2024.. Diet, pace of biological aging, and risk of dementia in the Framingham Heart Study. . Ann. Neurol. 95::106979
    [Crossref] [Google Scholar]
  147. 147.
    Voisin S, Harvey NR, Haupt LM, Griffiths LR, Ashton KJ, et al. 2020.. An epigenetic clock for human skeletal muscle. . J. Cachexia Sarcopenia Muscle 11:(4):88798
    [Crossref] [Google Scholar]
  148. 148.
    Wang M, Li Y, Lai M, Nannini DR, Hou L, et al. 2023.. Alcohol consumption and epigenetic age acceleration across human adulthood. . Aging 15:(20):1093871
    [Google Scholar]
  149. 149.
    Wang S, Li W, Li S, Tu H, Jia J, et al. 2023.. Association between plant-based dietary pattern and biological aging trajectory in a large prospective cohort. . BMC Med. 21:(1):310
    [Crossref] [Google Scholar]
  150. 150.
    Warner B, Ratner E, Datta A, Lendasse A. 2024.. A systematic review of phenotypic and epigenetic clocks used for aging and mortality quantification in humans. . Aging 16::1241427
    [Crossref] [Google Scholar]
  151. 151.
    Watkins SH, Testa C, Chen JT, De Vivo I, Simpkin AJ, et al. 2023.. Epigenetic clocks and research implications of the lack of data on whom they have been developed: a review of reported and missing sociodemographic characteristics. . Environ. Epigenet. 9::dvad005
    [Crossref] [Google Scholar]
  152. 152.
    Waziry R, Ryan CP, Corcoran DL, Huffman KM, Kobor MS, et al. 2023.. Effect of long-term caloric restriction on DNA methylation measures of biological aging in healthy adults from the CALERIE trial. . Nat. Aging 3:(3):24857
    [Google Scholar]
  153. 153.
    Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, et al. 2014.. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. . Genome Biol. 15:(2):R24
    [Crossref] [Google Scholar]
  154. 154.
    White AJ, Kresovich JK, Keller JP, Xu Z, Kaufman JD, et al. 2019.. Air pollution, particulate matter composition and methylation-based biologic age. . Environ. Int. 132::105071
    [Crossref] [Google Scholar]
  155. 155.
    Wu X, Huang Q, Javed R, Zhong J, Gao H, Liang H. 2019.. Effect of tobacco smoking on the epigenetic age of human respiratory organs. . Clin. Epigenet. 11:(1):183
    [Crossref] [Google Scholar]
  156. 156.
    Yang R, Wu GWY, Verhoeven JE, Gautam A, Reus VI, et al. 2021.. A DNA methylation clock associated with age-related illnesses and mortality is accelerated in men with combat PTSD. . Mol. Psychiatry 26:(9):49995009
    [Crossref] [Google Scholar]
  157. 157.
    Yang Y, Lu X, Liu N, Ma S, Zhang H, et al. 2024.. Metformin decelerates aging clock in male monkeys. . Cell 187::635878.e29
    [Crossref] [Google Scholar]
  158. 158.
    Yaskolka Meir A, Keller M, Hoffmann A, Rinott E, Tsaban G, et al. 2023.. The effect of polyphenols on DNA methylation-assessed biological age attenuation: the DIRECT PLUS randomized controlled trial. . BMC Med. 21:(1):364
    [Crossref] [Google Scholar]
  159. 159.
    Ying K, Liu H, Tarkhov AE, Sadler MC, Lu AT, et al. 2024.. Causality-enriched epigenetic age uncouples damage and adaptation. . Nat. Aging 4:(2):23146
    [Crossref] [Google Scholar]
  160. 160.
    Yusipov I, Kalyakulina A, Franceschi C, Ivanchenko M. 2024.. Map of epigenetic age acceleration: a worldwide meta-analysis. . bioRxiv. https://doi.org/10.1101/2024.03.17.585398
  161. 161.
    Zannas AS, Arloth J, Carrillo-Roa T, Iurato S, Röh S, et al. 2015.. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. . Genome Biol. 16:(1):266
    [Crossref] [Google Scholar]
  162. 162.
    Zhang A, Zhang Y, Meng Y, Ji Q, Ye M, et al. 2024.. Associations between psychological resilience and epigenetic clocks in the health and retirement study. . Geroscience 46:(1):96168
    [Crossref] [Google Scholar]
  163. 163.
    Zhang Q, Vallerga CL, Walker RM, Lin T, Henders AK, et al. 2019.. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. . Genome Med. 11:(1):54
    [Crossref] [Google Scholar]
  164. 164.
    Zhao W, Ammous F, Ratliff S, Liu J, Yu M, et al. 2019.. Education and lifestyle factors are associated with DNA methylation clocks in older African Americans. . Int. J. Environ. Res. Public Health 16:(17):3141
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-publhealth-060222-015657
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error