1932

Abstract

Landscape fires are an integral component of the Earth system and a feature of prehistoric, subsistence, and industrial economies. Specific spatiotemporal patterns of landscape fire occur in different locations around the world, shaped by the interactions between environmental and human drivers of fire activity. Seven distinct types of landscape fire emerge from these interactions: remote area fires, wildfire disasters, savanna fires, Indigenous burning, prescribed burning, agricultural burning, and deforestation fires. All can have substantial impacts on human health and well-being directly and indirectly through () exposure to heat flux (e.g., injuries and destructive impacts), () emissions (e.g., smoke-related health impacts), and () altered ecosystem functioning (e.g., biodiversity, amenity, water quality, and climate impacts). Minimizing the adverse effects of landscape fires on population health requires understanding how human and environmental influences on fire impacts can be modified through interventions targeted at individual, community, and regional levels.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-publhealth-060222-034131
2024-05-20
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/publhealth/45/1/annurev-publhealth-060222-034131.html?itemId=/content/journals/10.1146/annurev-publhealth-060222-034131&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdo M, Ward I, O'Dell K, Ford B, Pierce JR, et al. 2019.. Impact of wildfire smoke on adverse pregnancy outcomes in Colorado, 2007–2015. . Int. J. Environ. Res. Public Health 16::3720
    [Crossref] [Google Scholar]
  2. 2.
    Abraham J, Dowling K, Florentine S. 2017.. Risk of post-fire metal mobilization into surface water resources: a review. . Sci. Total Environ. 599::174055
    [Crossref] [Google Scholar]
  3. 3.
    Allen RW, Barn P. 2020.. Individual- and household-level interventions to reduce air pollution exposures and health risks: a review of the recent literature. . Curr. Environ. Health Rep. 7::42440
    [Crossref] [Google Scholar]
  4. 4.
    Altshuler SL, Zhang Q, Kleinman MT, Garcia-Menendez F, Moore CT, et al. 2020.. Wildfire and prescribed burning impacts on air quality in the United States. . J. Air Waste Manag. Assoc. 70::96170
    [Crossref] [Google Scholar]
  5. 5.
    Amjad S, Chojecki D, Osornio-Vargas A, Ospina MB. 2021.. Wildfire exposure during pregnancy and the risk of adverse birth outcomes: a systematic review. . Environ. Int. 156::106644
    [Crossref] [Google Scholar]
  6. 6.
    Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR, et al. 2017.. A human-driven decline in global burned area. . Science 356::135662
    [Crossref] [Google Scholar]
  7. 7.
    Anenberg SC, Haines S, Wang E, Nassikas N, Kinney PL. 2020.. Synergistic health effects of air pollution, temperature, and pollen exposure: a systematic review of epidemiological evidence. . Environ. Health 19::130
    [Crossref] [Google Scholar]
  8. 8.
    Balch JK, Abatzoglou JT, Joseph MB, Koontz MJ, Mahood AL, et al. 2022.. Warming weakens the night-time barrier to global fire. . Nature 602::44248
    [Crossref] [Google Scholar]
  9. 9.
    Bayham J, Yoder JK, Champ PA, Calkin DE. 2022.. The economics of wildfire in the United States. . Annu. Rev. Resour. Econ. 14::379401
    [Crossref] [Google Scholar]
  10. 10.
    Berlinck CN, Batista EKL. 2020.. Good fire, bad fire: It depends on who burns. . Flora 268::151610
    [Crossref] [Google Scholar]
  11. 11.
    Bhattacharyya P, Bisen J, Bhaduri D, Priyadarsini S, Munda S, et al. 2021.. Turn the wheel from waste to wealth: economic and environmental gain of sustainable rice straw management practices over field burning in reference to India. . Sci. Total Environ. 775::145896
    [Crossref] [Google Scholar]
  12. 12.
    Black C, Tesfaigzi Y, Bassein JA, Miller LA. 2017.. Wildfire smoke exposure and human health: significant gaps in research for a growing public health issue. . Environ. Toxicol. Pharmacol. 55::18695
    [Crossref] [Google Scholar]
  13. 13.
    Bonilla EX, Mickley LJ, Raheja G, Eastham SD, Buonocore JJ, et al. 2023.. Health impacts of smoke exposure in South America: increased risk for populations in the Amazonian Indigenous territories. . Environ. Res. Health 1::021007
    [Crossref] [Google Scholar]
  14. 14.
    Borchers-Arriagada N, Bowman DMJS, Price O, Palmer AJ, Samson S, et al. 2021.. Smoke health costs and the calculus for wildfires fuel management: a modelling study. . Lancet Planet. Health 5::e60819
    [Crossref] [Google Scholar]
  15. 15.
    Borchers Arriagada N, Horsley JA, Palmer AJ, Morgan GG, Tham R, Johnston FH. 2019.. Association between fire smoke fine particulate matter and asthma-related outcomes: systematic review and meta-analysis. . Environ. Res. 179::108777
    [Crossref] [Google Scholar]
  16. 16.
    Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, et al. 2011.. The human dimension of fire regimes on Earth. . J. Biogeogr. 38::222336
    [Crossref] [Google Scholar]
  17. 17.
    Bowman DMJS, Daniels LD, Johnston FH, Williamson GJ, Jolly WM, et al. 2018.. Can air quality management drive sustainable fuels management at the temperate wildland–urban interface?. Fire 1::27
    [Crossref] [Google Scholar]
  18. 18.
    Bowman DMJS, Dingle JK, Johnston FH, Parry D, Foley M. 2007.. Seasonal patterns in biomass smoke pollution and the mid 20th-century transition from Aboriginal to European fire management in northern Australia. . Glob. Ecol. Biogeogr. 16::24656
    [Crossref] [Google Scholar]
  19. 19.
    Bowman DMJS, Kolden CA, Abatzoglou JT, Johnston FH, van der Werf GR, Flannigan M. 2020.. Vegetation fires in the Anthropocene. . Nat. Rev. Earth Environ. 1::50015
    [Crossref] [Google Scholar]
  20. 20.
    Bowman DMJS, Moreira-Muñoz A, Kolden CA, Chávez RO, Muñoz AA, et al. 2019.. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. . Ambio 48::35062
    [Crossref] [Google Scholar]
  21. 21.
    Bowman DMJS, Williamson GJ, Abatzoglou JT, Kolden CA, Cochrane MA, Smith AM. 2017.. Human exposure and sensitivity to globally extreme wildfire events. . Nat. Ecol. Evol. 1::0058
    [Crossref] [Google Scholar]
  22. 22.
    Bryant RA, Gibbs L, Gallagher HC, Pattison P, Lusher D, et al. 2021.. The dynamic course of psychological outcomes following the Victorian Black Saturday bushfires. . Aust. N. Z. J. Psychiatry 55::66677
    [Crossref] [Google Scholar]
  23. 23.
    Burke M, Childs ML, de la Cuesta B, Qiu M, Li J, et al. 2023.. The contribution of wildfire to PM2.5 trends in the USA. . Nature 622::76166
    [Crossref] [Google Scholar]
  24. 24.
    Butt EW, Conibear L, Reddington CL, Darbyshire E, Morgan WT, et al. 2020.. Large air quality and human health impacts due to Amazon forest and vegetation fires. . Environ. Res. Commun. 2::095001
    [Crossref] [Google Scholar]
  25. 25.
    Campbell SL, Jones PJ, Williamson GJ, Wheeler AJ, Lucani C, et al. 2020.. Using digital technology to protect health in prolonged poor air quality episodes: a case study of the AirRater app during the Australian 2019–20 fires. . Fire 3::40
    [Crossref] [Google Scholar]
  26. 26.
    Canadell JG, Meyer C, Cook GD, Dowdy A, Briggs PR, et al. 2021.. Multi-decadal increase of forest burned area in Australia is linked to climate change. . Nat. Commun. 12::6921
    [Crossref] [Google Scholar]
  27. 27.
    Carroll M, Gao CX, Campbell TCH, Smith CL, Dimitriadis C, et al. 2022.. Impacts of coal mine fire-related PM2.5 on the utilisation of ambulance and hospital services for mental health conditions. . Atmos. Pollut. Res. 13::101415
    [Crossref] [Google Scholar]
  28. 28.
    Cascio WE. 2018.. Wildland fire smoke and human health. . Sci. Total Environ. 624::58695
    [Crossref] [Google Scholar]
  29. 29.
    Chas-Amil ML, Touza J, García-Martínez E. 2013.. Forest fires in the wildland–urban interface: a spatial analysis of forest fragmentation and human impacts. . Appl. Geogr. 43::12737
    [Crossref] [Google Scholar]
  30. 30.
    Chen G, Guo Y, Yue X, Tong S, Gasparrini A, et al. 2021.. Mortality risk attributable to wildfire-related PM2·5 pollution: a global time series study in 749 locations. . Lancet Planet. Health 5::e57987
    [Crossref] [Google Scholar]
  31. 31.
    Chen H, Samet JM, Bromberg PA, Tong H. 2021.. Cardiovascular health impacts of wildfire smoke exposure. . Part. Fibre Toxicol. 18::2
    [Crossref] [Google Scholar]
  32. 32.
    Clarke H, Cirulis B, Penman T, Price O, Boer MM, Bradstock R. 2022.. The 2019–2020 Australian forest fires are a harbinger of decreased prescribed burning effectiveness under rising extreme conditions. . Sci. Rep. 12::11871
    [Crossref] [Google Scholar]
  33. 33.
    Cleland SE, Wyatt LH, Wei L, Paul N, Serre ML, et al. 2022.. Short-term exposure to wildfire smoke and PM2.5 and cognitive performance in a brain-training game: a longitudinal study of US adults. . Environ. Health Perspect. 130::067005
    [Crossref] [Google Scholar]
  34. 34.
    Cochrane MA. 2003.. Fire science for rainforests. . Nature 421::91319
    [Crossref] [Google Scholar]
  35. 35.
    Cohen J. 2010.. The wildland-urban interface fire problem. . Fremontia 38::1622
    [Google Scholar]
  36. 36.
    Constantine M IV, Williams AN, Francke A, Cadd H, Forbes M, et al. 2023.. Exploration of the burning question: a long history of fire in eastern Australia with and without people. . Fire 6::152
    [Crossref] [Google Scholar]
  37. 37.
    Cottle P, Strawbridge K, McKendry I. 2014.. Long-range transport of Siberian wildfire smoke to British Columbia: lidar observations and air quality impacts. . Atmos. Environ. 90::7177
    [Crossref] [Google Scholar]
  38. 38.
    D'Evelyn SM, Jung J, Alvarado E, Baumgartner J, Caligiuri P, et al. 2022.. Wildfire, smoke exposure, human health, and environmental justice need to be integrated into forest restoration and management. . Curr. Environ. Health Rep. 9::36685
    [Crossref] [Google Scholar]
  39. 39.
    de Groot WJ, Cantin AS, Flannigan MD, Soja AJ, Gowman LM, Newbery A. 2013.. A comparison of Canadian and Russian boreal forest fire regimes. . For. Ecol. Manag. 294::2334
    [Crossref] [Google Scholar]
  40. 40.
    DeFlorio-Barker S, Crooks J, Reyes J, Rappold AG. 2019.. Cardiopulmonary effects of fine particulate matter exposure among older adults, during wildfire and non-wildfire periods, in the United States 2008–2010. . Environ. Health Perspect. 127::37006
    [Crossref] [Google Scholar]
  41. 41.
    Dev S, Barnes D, Kadir A, Betha R, Aggarwal S. 2021.. Outdoor and indoor concentrations of size-resolved particulate matter during a wildfire episode in interior Alaska and the impact of ventilation. . Air Q. Atmos. Health 15::14958
    [Crossref] [Google Scholar]
  42. 42.
    Doubleday A, Schulte J, Sheppard L, Kadlec M, Dhammapala R, et al. 2020.. Mortality associated with wildfire smoke exposure in Washington state, 2006–2017: a case-crossover study. . Environ. Health 19::4
    [Crossref] [Google Scholar]
  43. 43.
    Doubleday A, Sheppard L, Austin E, Busch Isaksen T. 2023.. Wildfire smoke exposure and emergency department visits in Washington state. . Environ. Res. Health 1::025006
    [Crossref] [Google Scholar]
  44. 44.
    Edwards LJ, Williamson G, Williams SA, Veitch MGK, Salimi F, Johnston FH. 2018.. Did fine particulate matter from the summer 2016 landscape fires in Tasmania increase emergency ambulance dispatches? A case crossover analysis. . Fire 1::26
    [Crossref] [Google Scholar]
  45. 45.
    Eisenman DP, Galway LP. 2022.. The mental health and well-being effects of wildfire smoke: a scoping review. . BMC Public Health 22::2274
    [Crossref] [Google Scholar]
  46. 46.
    Ellis TM, Bowman DMJS, Jain P, Flannigan MD, Williamson GJ. 2022.. Global increase in wildfire risk due to climate-driven declines in fuel moisture. . Glob. Change Biol. 28::154459
    [Crossref] [Google Scholar]
  47. 47.
    Eriksen C. 2022.. Wildfires in the atomic age: mitigating the risk of radioactive smoke. . Fire 5::2
    [Crossref] [Google Scholar]
  48. 48.
    Eykelbosh A. 2023.. Do-it-yourself (DIY) air cleaners: evidence on effectiveness and considerations for safe operation. Rep. , Natl. Collab. Cent. Environ. Health, Vancouver, BC:. https://ncceh.ca/documents/evidence-review/do-it-yourself-diy-air-cleaners-evidence-effectiveness-and-considerations
    [Google Scholar]
  49. 49.
    Fadadu RP, Green M, Grimes B, Jewell NP, Seth D, et al. 2023.. Association of wildfire air pollution with clinic visits for psoriasis. . JAMA Netw. Open 6::e2251553
    [Crossref] [Google Scholar]
  50. 50.
    Fasullo JT, Rosenbloom N, Buchholz R. 2023.. A multiyear tropical Pacific cooling response to recent Australian wildfires in CESM2. . Sci. Adv. 9::eadg1213
    [Crossref] [Google Scholar]
  51. 51.
    Fernandes PM, Botelho HS. 2003.. A review of prescribed burning effectiveness in fire hazard reduction. . Int. J. Wildland Fire 12::11728
    [Crossref] [Google Scholar]
  52. 52.
    Filkov AI, Ngo T, Matthews S, Telfer S, Penman TD. 2020.. Impact of Australia's catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends. . J. Saf. Sci. Resil. 1::4456
    [Google Scholar]
  53. 53.
    Fischer AP, Spies TA, Steelman TA, Moseley C, Johnson BR, et al. 2016.. Wildfire risk as a socioecological pathology. . Front. Ecol. Environ. 14::27684
    [Crossref] [Google Scholar]
  54. 54.
    Fisk W, Chan W. 2017.. Health benefits and costs of filtration interventions that reduce indoor exposure to PM2.5 during wildfires. . Indoor Air 27::191204
    [Crossref] [Google Scholar]
  55. 55.
    Fulé PZ, Crouse JE, Roccaforte JP, Kalies EL. 2012.. Do thinning and/or burning treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire behavior?. For. Ecol. Manag. 269::6881
    [Crossref] [Google Scholar]
  56. 56.
    Gill AM, Stephens SL. 2009.. Scientific and social challenges for the management of fire-prone wildland–urban interfaces. . Environ. Res. Lett. 4::034014
    [Crossref] [Google Scholar]
  57. 57.
    Hadley MB, Henderson SB, Brauer M, Vedanthan R. 2022.. Protecting cardiovascular health from wildfire smoke. . Circulation 146::788801
    [Crossref] [Google Scholar]
  58. 58.
    Hahn M, Kuiper G, O'Dell K, Fischer E, Magzamen S. 2021.. Wildfire smoke is associated with an increased risk of cardiorespiratory emergency department visits in Alaska. . GeoHealth 5::e2020GH000349
    [Crossref] [Google Scholar]
  59. 59.
    Haikerwal A, Akram M, Del Monaco A, Smith K, Sim MR, et al. 2015.. Impact of fine particulate matter (PM2.5) exposure during wildfires on cardiovascular health outcomes. . J. Am. Heart Assoc. 4::e001653
    [Crossref] [Google Scholar]
  60. 60.
    Harris RMB, Remenyi TA, Williamson GJ, Bindoff NL, Bowman DMJS. 2016.. Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system?. WIREs Clim. Change 7::91031
    [Crossref] [Google Scholar]
  61. 61.
    Haynes K, Short K, Xanthopoulos G, Viegas D, Ribeiro LM, Blanchi R. 2020.. Wildfires and WUI fire fatalities. . In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, ed. SL Manzello , pp. 107388. Cham, Switz.:: Springer. https://doi.org/10.1007/978-3-319-51727-8_92-1
    [Google Scholar]
  62. 62.
    Heaney A, Stowell JD, Liu JC, Basu R, Marlier M, Kinney P. 2022.. Impacts of fine particulate matter from wildfire smoke on respiratory and cardiovascular health in California. . GeoHealth 6::e2021GH000578
    [Crossref] [Google Scholar]
  63. 63.
    Heaney E, Hunter L, Clulow A, Bowles D, Vardoulakis S. 2021.. Efficacy of communication techniques and health outcomes of bushfire smoke exposure: a scoping review. . Int. J. Environ. Res. Public Health 18::10889
    [Crossref] [Google Scholar]
  64. 64.
    Holt NR, Gao CX, Borg BM, Brown D, Broder JC, et al. 2021.. Long-term impact of coal mine fire smoke on lung mechanics in exposed adults. . Respirology 26::86168
    [Crossref] [Google Scholar]
  65. 65.
    Hu X, Han W, Wang Y, Aunan K, Pan X, et al. 2022.. Does air pollution modify temperature-related mortality? A systematic review and meta-analysis. . Environ. Res. 210::112898
    [Crossref] [Google Scholar]
  66. 66.
    Javins T, Robarge G, Snyder EG, Nilsson G, Emmerich SJ. 2021.. Protecting building occupants from smoke during wildfire and prescribed burn events. . ASHRAE J. 63::3843
    [Google Scholar]
  67. 67.
    Jegasothy E, Hanigan IC, Van Buskirk J, Morgan GG, Jalaludin B, et al. 2023.. Acute health effects of bushfire smoke on mortality in Sydney, Australia. . Environ. Int. 171::107684
    [Crossref] [Google Scholar]
  68. 68.
    Jethva H, Chand D, Torres O, Gupta P, Lyapustin A, Patadia F. 2018.. Agricultural burning and air quality over northern India: a synergistic analysis using NASA's A-train satellite data and ground measurements. . Aerosol Air Qual. Res. 18::175673
    [Crossref] [Google Scholar]
  69. 69.
    Johnston FH. 2020.. Burning to reduce fuels: the benefits and risks of a public health protection strategy. . Med. J. Aust. 213::2468.e1
    [Crossref] [Google Scholar]
  70. 70.
    Johnston FH, Borchers-Arriagada N, Morgan GG, Jalaludin B, Palmer AJ, et al. 2021.. Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires. . Nat. Sustain. 4::4247
    [Crossref] [Google Scholar]
  71. 71.
    Johnston FH, Henderson SB, Chen Y, Randerson JT, Marlier M, et al. 2012.. Estimated global mortality attributable to smoke from landscape fires. . Environ. Health Perspect. 120::659701
    [Crossref] [Google Scholar]
  72. 72.
    Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, et al. 2015.. Climate-induced variations in global wildfire danger from 1979 to 2013. . Nat. Commun. 6::7537
    [Crossref] [Google Scholar]
  73. 73.
    Jones BA, McDermott S, Champ PA, Berrens RP. 2022.. More smoke today for less smoke tomorrow? We need to better understand the public health benefits and costs of prescribed fire. . Int. J. Wildland Fire 31::91826
    [Crossref] [Google Scholar]
  74. 74.
    Jones CG, Rappold AG, Vargo J, Cascio WE, Kharrazi M, et al. 2020.. Out-of-hospital cardiac arrests and wildfire-related particulate matter during 2015–2017 California wildfires. . J. Am. Heart Assoc. 9::e014125
    [Crossref] [Google Scholar]
  75. 75.
    Jones MW, Abatzoglou JT, Veraverbeke S, Andela N, Lasslop G, et al. 2022.. Global and regional trends and drivers of fire under climate change. . Rev. Geophys. 60::e2020RG000726
    [Crossref] [Google Scholar]
  76. 76.
    Jones PJ, Furlaud JM, Williamson GJ, Johnston FH, Bowman DMJS. 2022.. Smoke pollution must be part of the savanna fire management equation: a case study from Darwin, Australia. . Ambio 51::221426
    [Crossref] [Google Scholar]
  77. 77.
    Kelly LT, Fletcher M-S, Menor IO, Pellegrini AFA, Plumanns-Pouton ES, et al. 2023.. Understanding fire regimes for a better Anthropocene. . Annu. Rev. Environ. Resour. 48::20735
    [Crossref] [Google Scholar]
  78. 78.
    Kodros JK, O'Dell K, Samet JM, L'Orange C, Pierce JR, Volckens J. 2021.. Quantifying the health benefits of face masks and respirators to mitigate exposure to severe air pollution. . GeoHealth 5::e2021GH000482
    [Crossref] [Google Scholar]
  79. 79.
    Korsiak J, Pinault L, Christidis T, Burnett RT, Abrahamowicz M, Weichenthal S. 2022.. Long-term exposure to wildfires and cancer incidence in Canada: a population-based observational cohort study. . Lancet Planet. Health 6::e4009
    [Crossref] [Google Scholar]
  80. 80.
    Krause A, Kloster S, Wilkenskjeld S, Paeth H. 2014.. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. . J. Geophys. Res. Biogeosci. 119::31222
    [Crossref] [Google Scholar]
  81. 81.
    Landguth EL, Holden ZA, Graham J, Stark B, Mokhtari EB, et al. 2020.. The delayed effect of wildfire season particulate matter on subsequent influenza season in a mountain west region of the USA. . Environ. Int. 139::105668
    [Crossref] [Google Scholar]
  82. 82.
    Lankaputhra M, Johnston FH, Otahal P, Jalil E, Dennekamp M, Negishi K. 2023.. Cardiac autonomic impacts of bushfire smoke—a prospective panel study. . Heart Lung Circ. 32::5258
    [Crossref] [Google Scholar]
  83. 83.
    Laumbach RJ. 2019.. Clearing the air on personal interventions to reduce exposure to wildfire smoke. . Ann. Am. Thor. Soc. 16::81518
    [Crossref] [Google Scholar]
  84. 84.
    Li X-Y, Jin H-J, Wang H-W, Marchenko SS, Shan W, et al. 2021.. Influences of forest fires on the permafrost environment: a review. . Adv. Clim. Change Res. 12::4865
    [Crossref] [Google Scholar]
  85. 85.
    Liu JC, Wilson A, Mickley LJ, Ebisu K, Sulprizio MP, et al. 2017.. Who among the elderly is most vulnerable to exposure to and health risks of fine particulate matter from wildfire smoke?. Am. J. Epidemiol. 186::73035
    [Crossref] [Google Scholar]
  86. 86.
    Mahsin M, Cabaj J, Saini V. 2022.. Respiratory and cardiovascular condition-related physician visits associated with wildfire smoke exposure in Calgary, Canada, in 2015: a population-based study. . Int. J. Epidemiol. 51::16678
    [Crossref] [Google Scholar]
  87. 87.
    Mariani M, Connor SE, Theuerkauf M, Herbert A, Kuneš P, et al. 2022.. Disruption of cultural burning promotes shrub encroachment and unprecedented wildfires. . Front. Ecol. Environ. 20::292300
    [Crossref] [Google Scholar]
  88. 88.
    Marlier ME, Liu T, Yu K, Buonocore JJ, Koplitz SN, et al. 2019.. Fires, smoke exposure, and public health: an integrative framework to maximize health benefits from peatland restoration. . GeoHealth 3::17889
    [Crossref] [Google Scholar]
  89. 89.
    Mattioli W, Ferrara C, Lombardo E, Barbati A, Salvati L, Tomao A. 2022.. Estimating wildfire suppression costs: a systematic review. . Int. For. Rev. 24::1529
    [Google Scholar]
  90. 90.
    McCaffrey SM, Rappold AG, Hano MC, Navarro KM, Phillips TF, et al. 2022.. Social considerations: health, economics, and risk communication. . In Wildland Fire Smoke in the United States: A Scientific Assessment, ed. DL Peterson, SM McCaffrey, T Patel-Weynand , pp. 199237. Cham, Switz.:: Springer
    [Google Scholar]
  91. 91.
    Melody SM, Ford J, Wills K, Venn A, Johnston FH. 2019.. Maternal exposure to fine particulate matter from a coal mine fire and birth outcomes in Victoria, Australia. . Environ. Int. 127::23342
    [Crossref] [Google Scholar]
  92. 92.
    Melody SM, Ford JB, Wills K, Venn A, Johnston FH. 2020.. Maternal exposure to fine particulate matter from a large coal mine fire is associated with gestational diabetes mellitus: a prospective cohort study. . Environ. Res. 183::108956
    [Crossref] [Google Scholar]
  93. 93.
    Mockrin MH, Fishler HK, Stewart SI. 2018.. Does wildfire open a policy window? Local government and community adaptation after fire in the United States. . Environ. Manag. 62::21028
    [Crossref] [Google Scholar]
  94. 94.
    Moosavi S, Nwaka B, Akinjise I, Corbett SE, Chue P, et al. 2019.. Mental health effects in primary care patients 18 months after a major wildfire in Fort McMurray: risk increased by social demographic issues, clinical antecedents, and degree of fire exposure. . Front. Psychiatry 10::683
    [Crossref] [Google Scholar]
  95. 95.
    Moritz MA, Batllori E, Bradstock RA, Gill AM, Handmer J, et al. 2014.. Learning to coexist with wildfire. . Nature 515::5866
    [Crossref] [Google Scholar]
  96. 96.
    Nikolakis WD, Roberts E. 2020.. Indigenous fire management: a conceptual model from literature. . Ecol. Soc. 25::11
    [Crossref] [Google Scholar]
  97. 97.
    Nolan RH, Bowman DMJS, Clarke H, Haynes K, Ooi MKJ, et al. 2021.. What do the Australian Black Summer fires signify for the global fire crisis?. Fire 4::97
    [Crossref] [Google Scholar]
  98. 98.
    Norman B, Newman P, Steffen W. 2021.. Apocalypse now: Australian bushfires and the future of urban settlements. . NPJ Urban Sustain. 1::2
    [Crossref] [Google Scholar]
  99. 99.
    O'Neill SJ, Handmer J. 2012.. Responding to bushfire risk: the need for transformative adaptation. . Environ. Res. Lett. 7::014018
    [Crossref] [Google Scholar]
  100. 100.
    Orr A, AL Migliaccio C, Buford M, Ballou S, Migliaccio CT. 2020.. Sustained effects on lung function in community members following exposure to hazardous PM2.5 levels from wildfire smoke. . Toxics 8::53
    [Crossref] [Google Scholar]
  101. 101.
    Pechony O, Shindell DT. 2009.. Fire parameterization on a global scale. . J. Geophys. Res. 114::D16115
    [Crossref] [Google Scholar]
  102. 102.
    Penman TD, Christie FJ, Andersen AN, Bradstock RA, Cary GJ, et al. 2011.. Prescribed burning: How can it work to conserve the things we value?. Int. J. Wildland Fire 20::72133
    [Crossref] [Google Scholar]
  103. 103.
    Price O, Bradstock R. 2013.. Landscape scale influences of forest area and housing density on house loss in the 2009 Victorian bushfires. . PLOS ONE 8::e73421
    [Crossref] [Google Scholar]
  104. 104.
    Prince BA. 2022.. Using federal power to compel fire prevention and address growing property insurance issues in wildland-urban interface. . Hastings Environ. Law J. 28::149
    [Google Scholar]
  105. 105.
    Rahman MM, McConnell R, Schlaerth H, Ko J, Silva S, et al. 2022.. The effects of coexposure to extremes of heat and particulate air pollution on mortality in California: implications for climate change. . Am. J. Respir. Crit. Care Med. 206::111727
    [Crossref] [Google Scholar]
  106. 106.
    Randerson J, van der Werf G, Giglio L, Collatz G, Kasibhatla P. 2017.. Global Fire Emissions Database, Version 4.1 (GFEDv4). Oak Ridge Natl. Lab. Distrib. Act. Arch. Cent., Oak Ridge, TN:, updated Sept. 29. https://doi.org/10.3334/ORNLDAAC/1293
    [Google Scholar]
  107. 107.
    Rappold A, Hano M, Prince S, Wei L, Huang S, et al. 2019.. Smoke Sense initiative leverages citizen science to address the growing wildfire-related public health problem. . GeoHealth 3::44357
    [Crossref] [Google Scholar]
  108. 108.
    Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. 2016.. Critical review of health impacts of wildfire smoke exposure. . Environ. Health Perspect. 124::133443
    [Crossref] [Google Scholar]
  109. 109.
    Reisen F, Powell JC, Dennekamp M, Johnston FH, Wheeler AJ. 2019.. Is remaining indoors an effective way of reducing exposure to fine particulate matter during biomass burning events?. J. Air Waste Manag. Assoc. 69::61122
    [Crossref] [Google Scholar]
  110. 110.
    Rice MB, Henderson SB, Lambert AA, Cromar KR, Hall JA, et al. 2021.. Respiratory impacts of wildland fire smoke: future challenges and policy opportunities. An official American Thoracic Society Workshop Report. . Ann. Am. Thorac. Soc. 18::92130
    [Crossref] [Google Scholar]
  111. 111.
    Roberts G, Wooster MJ. 2021.. Global impact of landscape fire emissions on surface level PM2.5 concentrations, air quality exposure and population mortality. . Atmos. Environ. 252::118210
    [Crossref] [Google Scholar]
  112. 112.
    Rodney RM, Swaminathan A, Calear AL, Christensen BK, Lal A, et al. 2021.. Physical and mental health effects of bushfire and smoke in the Australian Capital Territory 2019–20. . Front. Public Health 9::682402
    [Crossref] [Google Scholar]
  113. 113.
    Rooney B, Wang Y, Jiang JH, Zhao B, Zeng Z-C, Seinfeld JH. 2020.. Air quality impact of the northern California Camp Fire of November 2018. . Atmos. Chem. Phys. 20::14597616
    [Crossref] [Google Scholar]
  114. 114.
    Roos CI, Swetnam TW, Ferguson T, Liebmann MJ, Loehman RA, et al. 2021.. Native American fire management at an ancient wildland–urban interface in the Southwest United States. . PNAS 118::e2018733118
    [Crossref] [Google Scholar]
  115. 115.
    Rosenthal N, Benmarhnia T, Ahmadov R, James E, Marlier ME. 2022.. Population co-exposure to extreme heat and wildfire smoke pollution in California during 2020. . Environ. Res. Clim. 1::025004
    [Crossref] [Google Scholar]
  116. 116.
    Rouet-Leduc J, Pe'er G, Moreira F, Bonn A, Helmer W, et al. 2021.. Effects of large herbivores on fire regimes and wildfire mitigation. . J. Appl. Ecol. 58::2690702
    [Crossref] [Google Scholar]
  117. 117.
    Ruiz-Mirazo J, Martínez-Fernández J, Vega-García C. 2012.. Pastoral wildfires in the Mediterranean: understanding their linkages to land cover patterns in managed landscapes. . J. Environ. Manag. 98::4350
    [Crossref] [Google Scholar]
  118. 118.
    Russell-Smith J, Yates C, Vernooij R, Eames T, van der Werf G, et al. 2021.. Opportunities and challenges for savanna burning emissions abatement in southern Africa. . J. Environ. Manag. 288::112414
    [Crossref] [Google Scholar]
  119. 119.
    Shao J, Zosky GR, Wheeler AJ, Dharmage S, Dalton M, et al. 2020.. Exposure to air pollution during the first 1000 days of life and subsequent health service and medication usage in children. . Environ. Pollut. 256::113340
    [Crossref] [Google Scholar]
  120. 120.
    Shaposhnikov D, Revich B, Bellander T, Bedada GB, Bottai M, et al. 2014.. Mortality related to air pollution with the Moscow heat wave and wildfire of 2010. . Epidemiology 25::35964
    [Crossref] [Google Scholar]
  121. 121.
    Smith AMS, Kolden CA, Paveglio TB, Cochrane MA, Bowman DMJS, et al. 2016.. The science of firescapes: achieving fire-resilient communities. . Bioscience 66::13046
    [Crossref] [Google Scholar]
  122. 122.
    Smith CL, Gao CX, Xu R, Ikin JF, Dimitriadis C, et al. 2023.. Long-term impact of the 2014 Hazelwood coal mine fire on emergency department presentations in Australia. . Environ. Res. 223::115440
    [Crossref] [Google Scholar]
  123. 123.
    Stephens SL, Moghaddas JJ, Edminster C, Fiedler CE, Haase S, et al. 2009.. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western US forests. . Ecol. Appl. 19::30520
    [Crossref] [Google Scholar]
  124. 124.
    Tian C, Yue X, Zhu J, Liao H, Yang Y, et al. 2022.. Fire–climate interactions through the aerosol radiative effect in a global chemistry–climate–vegetation model. . Atmos. Chem. Phys. 22::1235366
    [Crossref] [Google Scholar]
  125. 125.
    To P, Eboreime E, Agyapong VIO. 2021.. The impact of wildfires on mental health: a scoping review. . Behav. Sci. 11::126
    [Crossref] [Google Scholar]
  126. 126.
    Trauernicht C, Brook BW, Murphy BP, Williamson GJ, Bowman DMJS. 2015.. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. . Ecol. Evol. 5::190818
    [Crossref] [Google Scholar]
  127. 127.
    Treves RJ, Liu E, Fischer SL, Rodriguez E, Wong-Parodi G. 2023.. Wildfire smoke clean air centers: identifying barriers and opportunities for improvement from California practitioner and community perspectives. . Soc. Nat. Resour. 36::107897
    [Crossref] [Google Scholar]
  128. 128.
    van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, et al. 2010.. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). . Atmos. Chem. Phys. 10::1170735
    [Crossref] [Google Scholar]
  129. 129.
    Vieira DCS, Borrelli P, Jahanianfard D, Benali A, Scarpa S, Panagos P. 2023.. Wildfires in Europe: burned soils require attention. . Environ. Res. 217::114936
    [Crossref] [Google Scholar]
  130. 130.
    Wang D, Guan D, Zhu S, Kinnon MM, Geng G, et al. 2021.. Economic footprint of California wildfires in 2018. . Nat. Sustain. 4::25260
    [Crossref] [Google Scholar]
  131. 131.
    Wang Q, Li B, Benmarhnia T, Hajat S, Ren M, et al. 2020.. Independent and combined effects of heatwaves and PM2.5 on preterm birth in Guangzhou, China: a survival analysis. . Environ. Health Perspect. 128::017006
    [Crossref] [Google Scholar]
  132. 132.
    Wees D, van der Werf GR, Randerson JT, Andela N, Chen Y, Morton DC. 2021.. The role of fire in global forest loss dynamics. . Glob. Change Biol. 27::237791
    [Crossref] [Google Scholar]
  133. 133.
    Weise DR, Wright CS. 2014.. Wildland fire emissions, carbon and climate: characterizing wildland fuels. . For. Ecol. Manag. 317::2640
    [Crossref] [Google Scholar]
  134. 134.
    Wen B, Wu Y, Xu R, Guo Y, Li S. 2022.. Excess emergency department visits for cardiovascular and respiratory diseases during the 2019–20 bushfire period in Australia: a two-stage interrupted time-series analysis. . Sci. Total Environ. 809::152226
    [Crossref] [Google Scholar]
  135. 135.
    Wettstein ZS, Hoshiko S, Fahimi J, Harrison RJ, Cascio WE, Rappold AG. 2018.. Cardiovascular and cerebrovascular emergency department visits associated with wildfire smoke exposure in California in 2015. . J. Am. Heart Assoc. 7::e007492
    [Crossref] [Google Scholar]
  136. 136.
    Wheeler AJ, Allen RW, Lawrence K, Roulston CT, Powell J, et al. 2021.. Can public spaces effectively be used as cleaner indoor air shelters during extreme smoke events?. Int. J. Environ. Res. Public Health 18::4085
    [Crossref] [Google Scholar]
  137. 137.
    Williamson GJ, Bowman DMJS, Price OF, Henderson SB, Johnston FH. 2016.. A transdisciplinary approach to understanding the health effects of wildfire and prescribed fire smoke regimes. . Environ. Res. Lett. 11::125009
    [Crossref] [Google Scholar]
  138. 138.
    Willis GA, Chappell K, Williams S, Melody SM, Wheeler A, et al. 2020.. Respiratory and atopic conditions in children two to four years after the 2014 Hazelwood coalmine fire. . Med. J. Aust. 213::26975
    [Crossref] [Google Scholar]
  139. 139.
    Woo S, Yoon S, Kim J, Hwang SW, Kweon SJ. 2021.. Optimal cooling shelter assignment during heat waves using real-time mobile-based floating population data. . Urban Clim. 38::100874
    [Crossref] [Google Scholar]
  140. 140.
    Workman A, Jones PJ, Wheeler AJ, Campbell SL, Williamson GJ, et al. 2021.. Environmental hazards and behavior change: user perspectives on the usability and effectiveness of the AirRater smartphone app. . Int. J. Environ. Res. Public Health 18::3591
    [Crossref] [Google Scholar]
  141. 141.
    Wright BR, Laffineur B, Royé D, Armstrong G, Fensham RJ. 2021.. Rainfall-linked megafires as innate fire regime elements in arid Australian Spinifex (Triodia spp.) grasslands. . Front. Ecol. Evol. 9::666241
    [Crossref] [Google Scholar]
  142. 142.
    Xi Y, Kshirsagar AV, Wade TJ, Richardson DB, Brookhart MA, et al. 2020.. Mortality in US hemodialysis patients following exposure to wildfire smoke. . J. Am. Soc. Nephrol. 31::182435
    [Crossref] [Google Scholar]
  143. 143.
    Xu R, Gao CX, Dimitriadis C, Smith CL, Carroll MTC, et al. 2022.. Long-term impacts of coal mine fire-emitted PM2.5 on hospitalisation: a longitudinal analysis of the Hazelwood Health Study. . Int. J. Epidemiol. 51::17990
    [Crossref] [Google Scholar]
  144. 144.
    Xue T, Geng G, Li J, Han Y, Guo Q, et al. 2021.. Associations between exposure to landscape fire smoke and child mortality in low-income and middle-income countries: a matched case-control study. . Lancet Planet. Health 5::e58898
    [Crossref] [Google Scholar]
  145. 145.
    Yao J, Brauer M, Wei J, McGrail KM, Johnston FH, Henderson SB. 2020.. Sub-daily exposure to fine particulate matter and ambulance dispatches during wildfire seasons: a case-crossover study in British Columbia, Canada. . Environ. Health Perspect. 128::67006
    [Crossref] [Google Scholar]
  146. 146.
    Ye T, Xu R, Yue X, Chen G, Yu P, et al. 2022.. Short-term exposure to wildfire-related PM2.5 increases mortality risks and burdens in Brazil. . Nat. Commun. 13::7651
    [Crossref] [Google Scholar]
  147. 147.
    Yu P, Xu R, Li S, Yue X, Chen G, et al. 2022.. Exposure to wildfire-related PM2.5 and site-specific cancer mortality in Brazil from 2010 to 2016: a retrospective study. . PLOS Med. 19::e1004103
    [Crossref] [Google Scholar]
  148. 148.
    Zhao H, Zhang X, Zhang S, Chen W, Tong DQ, Xiu A. 2017.. Effects of agricultural biomass burning on regional haze in China: a review. . Atmosphere 8::88
    [Crossref] [Google Scholar]
  149. 149.
    Ziou M, Gao C, Wheeler A, Zosky G, Stephens N, et al. 2022.. Early life exposure to coal smoke and hospital visitation: findings from a data linkage cohort study. . Proc. ISEE Conf. Abstr. 2022:(1). https://doi.org/10.1289/isee.2022.P-0441
    [Google Scholar]
  150. 150.
    Ziou M, Gao CX, Wheeler AJ, Zosky GR, Stephens N, et al. 2023.. Primary and pharmaceutical care usage concurrent associations with a severe smoke episode and low ambient air pollution in early life. . Sci. Total Environ. 883::163580
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-publhealth-060222-034131
Loading
/content/journals/10.1146/annurev-publhealth-060222-034131
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error