1932

Abstract

Climate change poses a significant occupational health hazard. Rising temperatures and more frequent heat waves are expected to cause increasing heat-related morbidity and mortality for workers across the globe. Agricultural, construction, military, firefighting, mining, and manufacturing workers are at particularly high risk for heat-related illness (HRI). Various factors, including ambient temperatures, personal protective equipment, work arrangements, physical exertion, and work with heavy equipment may put workers at higher risk for HRI. While extreme heat will impact workers across the world, workers in low- and middle-income countries will be disproportionately affected. Tracking occupational HRI will be critical to informing prevention and mitigation strategies. Renewed investment in these strategies, including workplace heat prevention programs and regulatory standards for indoor and outdoor workers, will be needed. Additional research is needed to evaluate the effectiveness of interventions in order to successfully reduce the risk of HRI in the workplace.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-publhealth-060222-034715
2024-05-20
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/publhealth/45/1/annurev-publhealth-060222-034715.html?itemId=/content/journals/10.1146/annurev-publhealth-060222-034715&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    ACGIH (Am. Conf. Gov. Ind. Hyg.). 2017.. Heat stress and strain: TLV® physical agents 7th edition documentation (2017). . In TLVs and BEIs with 7th Edition Documentation, CD-ROM. Cincinnati, OH:: ACGIH
    [Google Scholar]
  2. 2.
    Adewumi-Gunn T. 2021.. Workplace heat protections across the globe. . Nat. Resour. Def. Counc. Blog, Sept. 15. https://www.nrdc.org/bio/teniope-adewumi-gunn/workplace-heat-protections-across-globe
    [Google Scholar]
  3. 3.
    Ahn Y, Uejio CK, Rennie J, Schmit L. 2022.. Verifying experimental wet bulb globe temperature hindcasts across the United States. . Geohealth 6::e2021GH000527
    [Crossref] [Google Scholar]
  4. 4.
    Alizadeh MR, Abatzoglou JT, Adamowski JF, Prestemon JP, Chittoori B, et al. 2022.. Increasing heat-stress inequality in a warming climate. . Earth's Future 10::e2021EF002488
    [Crossref] [Google Scholar]
  5. 5.
    Amnesty Int. 2016.. The ugly side of the beautiful game: exploitation of migrant workers on a Qatar 2022 World Cup Site. Rep., Amnesty Int., London:. https://www.amnesty.org/en/documents/mde22/3548/2016/en/
    [Google Scholar]
  6. 6.
    Amnesty Int. 2021.. “In the prime of their lives”: Qatar's failure to investigate, remedy, and prevent migrant workers’ deaths. Rep., Amnesty Int., London:. https://www.amnesty.org/en/documents/mde22/4614/2021/en/
    [Google Scholar]
  7. 7.
    Arbury S, Jacklitsch B, Farquah O, Hodgson M, Lamson G, et al. 2014.. Heat illness and death among workers—United States, 2012–2013. . MMWR 63::66165
    [Google Scholar]
  8. 8.
    Arcury TA, Summers P, Talton JW, Chen H, Sandberg JC, et al. 2015.. Heat illness among North Carolina Latino farmworkers. . J. Occup. Environ. Med. 57::1299304
    [Crossref] [Google Scholar]
  9. 9.
    Ayyappan R, Sankar S, Rajkumar P, Balakrishnan K. 2009.. Work-related heat stress concerns in automotive industries: a case study from Chennai, India. . Glob. Health Action 2::2060
    [Crossref] [Google Scholar]
  10. 10.
    Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. 2018.. Present and future Köppen-Geiger climate classification maps at 1-km resolution. . Sci. Data 5::180214
    [Crossref] [Google Scholar]
  11. 11.
    Beck N, Balanay JAG, Johnson T. 2018.. Assessment of occupational exposure to heat stress and solar ultraviolet radiation among groundskeepers in an eastern North Carolina university setting. . J. Occup. Environ. Hyg. 15::10516
    [Crossref] [Google Scholar]
  12. 12.
    Bennett CM, McMichael AJ. 2010.. Non-heat related impacts of climate change on working populations. . Glob. Health Action 3::5640
    [Crossref] [Google Scholar]
  13. 13.
    Binazzi A, Levi M, Bonafede M, Bugani M, Messeri A, et al. 2019.. Evaluation of the impact of heat stress on the occurrence of occupational injuries: meta-analysis of observational studies. . Am. J. Ind. Med. 62::23343
    [Crossref] [Google Scholar]
  14. 14.
    Bodin T, García-Trabanino R, Weiss I, Jarquín E, Glaser J, et al. 2016.. Intervention to reduce heat stress and improve efficiency among sugarcane workers in El Salvador: phase 1. . Occup. Environ. Med. 73::40916
    [Crossref] [Google Scholar]
  15. 15.
    Bonauto D, Anderson R, Rauser E, Burke B. 2007.. Occupational heat illness in Washington State, 1995–2005. . Am. J. Ind. Med. 50::94050
    [Crossref] [Google Scholar]
  16. 16.
    Boonruksa P, Maturachon T, Kongtip P, Woskie S. 2020.. Heat stress, physiological response, and heat-related symptoms among Thai sugarcane workers. . Int. J. Environ. Res. Public Health 17::6363
    [Crossref] [Google Scholar]
  17. 17.
    Borg MA, Xiang J, Anikeeva O, Pisaniello D, Hansen A, et al. 2021.. Occupational heat stress and economic burden: a review of global evidence. . Environ. Res. 195::110781
    [Crossref] [Google Scholar]
  18. 18.
    Bouchama A, Knochel JP. 2002.. Heat stroke. . N. Engl. J. Med. 346::197888
    [Crossref] [Google Scholar]
  19. 19.
    Bourbonnais R, Zayed J, Lévesque M, Busque M-A, Duguay P, Truchon G. 2013.. Identification of workers exposed concomitantly to heat stress and chemicals. . Ind. Health 51::2533
    [Crossref] [Google Scholar]
  20. 20.
    Calif. Dep. Ind. Relat. 2005.. Heat illness prevention in outdoor places of employment. Calif. Code Regul., Title 8, §3395. https://www.dir.ca.gov/title8/3395.html
    [Google Scholar]
  21. 21.
    Calif. Dep. Ind. Relat. 2023.. Heat illness prevention in indoor places of employment. Propos. Regul. Calif. Code Regul., Title 8, §3396. https://www.dir.ca.gov/oshsb/Indoor-Heat.html
    [Google Scholar]
  22. 22.
    Calkins MM, Bonauto D, Hajat A, Lieblich M, Seixas N, et al. 2019.. A case-crossover study of heat exposure and injury risk among outdoor construction workers in Washington State. . Scand. J. Work Environ. Health 45::58899
    [Crossref] [Google Scholar]
  23. 23.
    Campbell S, Remenyi TA, White CJ, Johnston FH. 2018.. Heatwave and health impact research: a global review. . Health Place 53::21018
    [Crossref] [Google Scholar]
  24. 24.
    Carballo-Leyenda B, Villa-Vicente JG, Delogu GM, Rodríguez-Marroyo JA, Molina-Terrén DM. 2022.. Perceptions of heat stress, heat strain and mitigation practices in wildfire suppression across Southern Europe and Latin America. . Int. J. Environ. Res. Public Health 19::12288
    [Crossref] [Google Scholar]
  25. 25.
    Chan J, Nair M, Rhomberg C. 2019.. Precarization and labor resistance: Canada, the USA, India and China. . Crit. Sociol. 45::46983
    [Crossref] [Google Scholar]
  26. 26.
    Chicas R, Xiuhtecutli N, Dickman NE, Scammell ML, Steenland K, et al. 2020.. Cooling intervention studies among outdoor occupational groups: a review of the literature. . Am. J. Ind. Med. 63::9881007
    [Crossref] [Google Scholar]
  27. 27.
    Cianconi P, Betrò S, Janiri L. 2020.. The impact of climate change on mental health: a systematic descriptive review. . Front. Psychiatry 11::74
    [Crossref] [Google Scholar]
  28. 28.
    Ciuha U, Pogačar T, Bogataj LK, Gliha M, Nybo L, et al. 2019.. Interaction between indoor occupational heat stress and environmental temperature elevations during heat waves. . Weather Clim. Soc. 11::75562
    [Crossref] [Google Scholar]
  29. [Google Scholar]
  30. 30.
    Courville MD, Wadsworth G, Schenker M. 2016.. “ We just have to continue working”: farmworker self-care and heat-related illness. . J. Agric. Food Syst. Community Dev. 6:(2):14364
    [Google Scholar]
  31. 31.
    Crowe J, Nilsson M, Kjellstrom T, Wesseling C. 2015.. Heat-related symptoms in sugarcane harvesters. . Am. J. Ind. Med. 58::54148
    [Crossref] [Google Scholar]
  32. 32.
    Crowe J, van Wendel de Joode B, Wesseling C. 2009.. A pilot field evaluation on heat stress in sugarcane workers in Costa Rica: What to do next?. Glob. Health Action 2::2062
    [Crossref] [Google Scholar]
  33. 33.
    d'Ambrosio Alfano FR, Malchaire J, Palella BI, Riccio G. 2014.. WBGT index revisited after 60 years of use. . Ann. Occup. Hyg. 58::95570
    [Google Scholar]
  34. 34.
    DARA, Clim. Vulnerable Forum. 2012.. Climate Vulnerability Monitor 2nd Edition. A Guide to the Cold Calculus of a Hot Planet. Madrid:: Estud. Gráf. Eur. S.A. https://daraint.org/wp-content/uploads/2012/10/CVM2-Low.pdf
    [Google Scholar]
  35. 35.
    Dodman D, Sverdlik A, Agarwal S, Kadungure A, Kothiwal K, et al. 2023.. Climate change and informal workers: towards an agenda for research and practice. . Urban Clim. 48::101401
    [Crossref] [Google Scholar]
  36. 36.
    Dong XS, West GH, Holloway-Beth A, Wang X, Sokas RK. 2019.. Heat-related deaths among construction workers in the United States. . Am. J. Ind. Med. 62::104757
    [Crossref] [Google Scholar]
  37. 37.
    Donoghue AM. 2004.. Heat illness in the U.S. mining industry. . Am. J. Ind. Med. 45::35156
    [Crossref] [Google Scholar]
  38. 38.
    Duenwald MC, Abdih MY, Gerling MK, Stepanyan V, Al-Hassan A, et al. 2022.. Feeling the heat: adapting to climate change in the Middle East and Central Asia. Dep. Pap., Int. Monet. Fund, Washington, DC:. https://www.imf.org/en/Publications/Departmental-Papers-Policy-Papers/Issues/2022/03/25/Feeling-the-Heat-Adapting-to-Climate-Change-in-the-Middle-East-and-Central-Asia-464856
    [Google Scholar]
  39. 39.
    Dun O, Klocker N, Farbotko C, McMichael C. 2023.. Climate change adaptation in agriculture: learning from an international labour mobility programme in Australia and the Pacific Islands region. . Environ. Sci. Policy 139::25073
    [Crossref] [Google Scholar]
  40. 40.
    Dutta P, Rajiva A, Andhare D, Azhar GS, Tiwari A, Sheffield P. 2015.. Perceived heat stress and health effects on construction workers. . Indian J. Occup. Environ. Med. 19::15158
    [Crossref] [Google Scholar]
  41. 41.
    Ebi KL, Vanos J, Baldwin JW, Bell JE, Hondula DM, et al. 2021.. Extreme weather and climate change: population health and health system implications. . Annu. Rev. Public Health 42::293315
    [Crossref] [Google Scholar]
  42. 42.
    Eisenberg J, Li JF, Feldmann KD. 2019.. Evaluation of rhabdomyolysis and heat stroke in structural firefighter cadets. NIOSH Health Hazard Eval. Rep. 2018-0154-3361 , US Dep. Health Hum. Serv., Cent. Dis. Control Prev., Cincinnati, OH:. https://stacks.cdc.gov/view/cdc/82755
    [Google Scholar]
  43. 43.
    El-Shafei DA, Bolbol SA, Awad Allah MB, Abdelsalam AE. 2018.. Exertional heat illness: knowledge and behavior among construction workers. . Environ. Sci. Pollut. Res. Int. 25::3226976
    [Crossref] [Google Scholar]
  44. 44.
    Erickson EA, Engel LS, Christenbury K, Weems L, Schwartz EG, Rusiecki JA. 2019.. Environmental heat exposure and heat-related symptoms in United States Coast Guard Deepwater Horizon disaster responders. . Disaster Med. Public Health Prep. 13::56169
    [Crossref] [Google Scholar]
  45. 45.
    Fleischer NL, Tiesman HM, Sumitani J, Mize T, Amarnath KK, et al. 2013.. Public health impact of heat-related illness among migrant farmworkers. . Am. J. Prev. Med. 44::199206
    [Crossref] [Google Scholar]
  46. 46.
    Fogleman M, Fakhrzadeh L, Bernard TE. 2005.. The relationship between outdoor thermal conditions and acute injury in an aluminum smelter. . Int. J. Ind. Ergon. 35::4755
    [Crossref] [Google Scholar]
  47. 47.
    Frank A, Belokopytov M, Shapiro Y, Epstein Y. 2001.. The cumulative heat strain index—a novel approach to assess the physiological strain induced by exercise-heat stress. . Eur. J. Appl. Physiol. 84::52732
    [Crossref] [Google Scholar]
  48. 48.
    Fujii RK, Horie S, Tsutsui T, Nagano C. 2007.. Heat exposure control using non-refrigerated water in Brazilian steel factory workers. . Ind. Health 45::1006
    [Crossref] [Google Scholar]
  49. 49.
    Gao C, Kuklane K, Östergren P-O, Kjellstrom T. 2018.. Occupational heat stress assessment and protective strategies in the context of climate change. . Int. J. Biometeorol. 62::35971
    [Crossref] [Google Scholar]
  50. 50.
    Gauer RL, Meyers BK. 2019.. Heat-related illnesses. . Am. Fam. Phys. 99::48289
    [Google Scholar]
  51. 51.
    Gharibi V, Khanjani N, Heidari H, Ebrahimi MH, Hosseinabadi MB. 2020.. The effect of heat stress on hematological parameters and oxidative stress among bakery workers. . Toxicol. Ind. Health 36::110
    [Crossref] [Google Scholar]
  52. 52.
    Gubernot DM, Anderson GB, Hunting KL. 2014.. The epidemiology of occupational heat exposure in the United States: a review of the literature and assessment of research needs in a changing climate. . Int. J. Biometeorol. 58::177988
    [Crossref] [Google Scholar]
  53. 53.
    Gubernot DM, Anderson GB, Hunting KL. 2015.. Characterizing occupational heat-related mortality in the United States, 2000–2010: an analysis using the Census of Fatal Occupational Injuries database. . Am. J. Ind. Med. 58::20311
    [Crossref] [Google Scholar]
  54. 54.
    Habib RR, El-Haddad NW, Halwani DA, Elzein K, Hojeij S. 2021.. Heat stress-related symptoms among bakery workers in Lebanon: a national cross-sectional study. . Inquiry 58::46958021990517
    [Google Scholar]
  55. 55.
    Hagen I, Huggel C, Ramajo L, Chacón N, Ometto JP, et al. 2022.. Climate change-related risks and adaptation potential in Central and South America during the 21st century. . Environ. Res. Lett. 17::033002
    [Crossref] [Google Scholar]
  56. 56.
    Han S-R, Wei M, Wu Z, Duan S, Chen X, et al. 2021.. Perceptions of workplace heat exposure and adaption behaviors among Chinese construction workers in the context of climate change. . BMC Public Health 21::2160
    [Crossref] [Google Scholar]
  57. 57.
    Heinzerling A, Laws RL, Frederick M, Jackson R, Windham G, et al. 2020.. Risk factors for occupational heat-related illness among California workers, 2000–2017. . Am. J. Ind. Med. 63::114554
    [Crossref] [Google Scholar]
  58. 58.
    Hesketh M, Wuellner S, Robinson A, Adams D, Smith C, Bonauto D. 2020.. Heat related illness among workers in Washington State: a descriptive study using workers' compensation claims, 2006–2017. . Am. J. Ind. Med. 63::30011
    [Crossref] [Google Scholar]
  59. 59.
    Hollander K, Klöwer M, Richardson A, Navarro L, Racinais S, et al. 2021.. Apparent temperature and heat-related illnesses during international athletic championships: a prospective cohort study. . Scand. J. Med. Sci. Sports 31::2092102
    [Crossref] [Google Scholar]
  60. 60.
    Hughes S, Afanuh S. 2021.. Reducing the risk of rhabdomyolysis and other heat-related illnesses in landscaping and tree care workers. . NIOSH Sci. Blog, Aug. 6. https://blogs.cdc.gov/niosh-science-blog/2021/08/06/rhabdo-landscaping/
    [Google Scholar]
  61. 61.
    Hunt AP, Parker AW, Stewart IB. 2013.. Symptoms of heat illness in surface mine workers. . Int. Arch. Occup. Environ. Health 86::51927
    [Crossref] [Google Scholar]
  62. 62.
    Ierardi AM, Pavilonis B. 2020.. Heat stress risk among New York City public school kitchen workers: a quantitative exposure assessment. . J. Occup. Environ. Hyg. 17::35363
    [Crossref] [Google Scholar]
  63. 63.
    ILO (Int. Labor Organ.). 2019.. Working on a warmer planet: the impact of heat stress on labour productivity and decent work. Rep., ILO, Geneva:. https://www.ilo.org/wcmsp5/groups/public/---dgreports/---dcomm/---publ/documents/publication/wcms_711919.pdf
    [Google Scholar]
  64. 64.
    Ioannou LG, Foster J, Morris NB, Piil JF, Havenith G, et al. 2022.. Occupational heat strain in outdoor workers: a comprehensive review and meta-analysis. . Temperature 9::67102
    [Crossref] [Google Scholar]
  65. 65.
    Ioannou LG, Mantzios K, Tsoutsoubi L, Nintou E, Vliora M, et al. 2021.. Occupational heat stress: multi-country observations and interventions. . Int. J. Environ. Res. Public Health 18::6303
    [Crossref] [Google Scholar]
  66. 66.
    Ioannou LG, Mantzios K, Tsoutsoubi L, Notley SR, Dinas PC, et al. 2022.. Indicators to assess physiological heat strain - Part 1: systematic review. . Temperature 9::22762
    [Crossref] [Google Scholar]
  67. 67.
    IPCC (Intergov. Panel Clim. Change). 2022.. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. H-O Pörtner, DC Roberts, M Tignor, ES Poloczanska, K Mintenbeck , et al. Cambridge, UK/New York:: Cambridge Univ. Press
    [Google Scholar]
  68. 68.
    ISO (Int. Organ. Standard.). 1989.. Hot environments – estimation of the heat stress on working man, based on the WBGT-index (wet bulb globe temperature). ISO 7243, ISO, Geneva:. https://www.iso.org/standard/13895.html
    [Google Scholar]
  69. 69.
    Jacklitsch BW, Williams J, Musolin K, Coca A, Kim J-H, Turner N. 2016.. Criteria for a recommended standard occupational exposure to heat and hot environments. Rep. 2016–106 , Natl. Inst. Occup. Saf. Health, Washington, DC:. https://www.cdc.gov/niosh/docs/2016-106/pdfs/2016-106.pdf
    [Google Scholar]
  70. 70.
    Jay O, Brotherhood JR. 2016.. Occupational heat stress in Australian workplaces. . Temperature 3::394411
    [Crossref] [Google Scholar]
  71. 71.
    Jay O, Capon A, Berry P, Broderick C, de Dear R, et al. 2021.. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. . Lancet 398::70924
    [Crossref] [Google Scholar]
  72. 72.
    Johnson RJ, Wesseling C, Newman LS. 2019.. Chronic kidney disease of unknown cause in agricultural communities. . N. Engl. J. Med. 380::184352
    [Crossref] [Google Scholar]
  73. 73.
    Kabir H, Maple M, Usher K, Islam MS. 2019.. Health vulnerabilities of readymade garment (RMG) workers: a systematic review. . BMC Public Health 19::70
    [Crossref] [Google Scholar]
  74. 74.
    Kiatkitroj K, Arphorn S, Tangtong C, Maruo SJ, Ishimaru T. 2022.. Risk factors associated with heat-related illness among sugarcane farmers in Thailand. . Ind. Health 60::44758
    [Crossref] [Google Scholar]
  75. 75.
    Kiefer M, Rodríguez-Guzmán J, Watson J, van Wendel de Joode B, Mergler D, Soares da Silva A. 2016.. Worker health and safety and climate change in the Americas: issues and research needs. . Rev. Panam. Salud Publica 40::19297
    [Google Scholar]
  76. 76.
    Kim S, Kim D-H, Lee H-H, Lee J-Y. 2019.. Frequency of firefighters' heat-related illness and its association with removing personal protective equipment and working hours. . Ind. Health 57::37080
    [Crossref] [Google Scholar]
  77. 77.
    Kjellstrom T, Freyberg C, Lemke B, Otto M, Briggs D. 2018.. Estimating population heat exposure and impacts on working people in conjunction with climate change. . Int. J. Biometeorol. 62::291306
    [Crossref] [Google Scholar]
  78. 78.
    Kjellstrom T, Phan K. 2017.. Heat exposure and effects on productivity at a garment factory in Phnom Penh, Cambodia - a pilot study. Tech. Rep. 2017:1 , Clim. Heat Impact Res. Program, Mapua, NZ:. https://www.climatechip.org/sites/default/files/publications/Kjellstrom%20Heat%20Exposure%20Cambodia%202017-2.pdf
    [Google Scholar]
  79. 79.
    Langer CE, Mitchell DC, Armitage TL, Moyce SC, Tancredi DJ, et al. 2021.. Are Cal/OSHA regulations protecting farmworkers in California from heat-related illness?. J. Occup. Environ. Med. 63::53239
    [Crossref] [Google Scholar]
  80. 80.
    Leigh JP, Du J, McCurdy SA. 2014.. An estimate of the U.S. government's undercount of nonfatal occupational injuries and illnesses in agriculture. . Ann. Epidemiol. 24::25459
    [Crossref] [Google Scholar]
  81. 81.
    Lemke B, Kjellstrom T. 2012.. Calculating workplace WBGT from meteorological data: a tool for climate change assessment. . Ind. Health 50::26778
    [Crossref] [Google Scholar]
  82. 82.
    Lin R-T, Chan C-C. 2009.. Effects of heat on workers' health and productivity in Taiwan. . Glob. Health Action 2::2024
    [Crossref] [Google Scholar]
  83. 83.
    Lundgren K, Kuklane K, Gao C, Holmér I. 2013.. Effects of heat stress on working populations when facing climate change. . Ind. Health 51::315
    [Crossref] [Google Scholar]
  84. 84.
    Luque JS, Bossak BH, Davila CB, Tovar-Aguilar JA. 2019.. “ I think the temperature was 110 degrees!”: work safety discussions among Hispanic farmworkers. . J. Agromed. 24::1525
    [Crossref] [Google Scholar]
  85. 85.
    Marquez D, Krenz JE, Chavez Santos É, Torres E, Palmández P, et al. 2023.. The effect of participatory heat education on agricultural worker knowledge. . J. Agromed. 28::18798
    [Crossref] [Google Scholar]
  86. 86.
    McCarthy RB, Shofer FS, Green-McKenzie J. 2019.. Outcomes of a heat stress awareness program on heat-related illness in municipal outdoor workers. . J. Occup. Environ. Med. 61::72428
    [Crossref] [Google Scholar]
  87. 87.
    Meshi EB, Kishinhi SS, Mamuya SH, Rusibamayila MG. 2018.. Thermal exposure and heat illness symptoms among workers in Mara Gold Mine, Tanzania. . Ann. Glob. Health 84::36068
    [Crossref] [Google Scholar]
  88. 88.
    Messeri A, Morabito M, Bonafede M, Bugani M, Levi M, et al. 2019.. Heat stress perception among native and migrant workers in Italian industries—case studies from the construction and agricultural sectors. . Int. J. Environ. Res. Public Health 16::1090
    [Crossref] [Google Scholar]
  89. 89.
    Mirabelli MC, Quandt SA, Crain R, Grzywacz JG, Robinson EN, et al. 2010.. Symptoms of heat illness among Latino farm workers in North Carolina. . Am. J. Prev. Med. 39::46871
    [Crossref] [Google Scholar]
  90. 90.
    Mitchell DC, Castro J, Armitage TL, Vega-Arroyo AJ, Moyce SC, et al. 2017.. Recruitment, methods, and descriptive results of a physiologic assessment of Latino farmworkers: the California Heat Illness Prevention study. . J. Occup. Environ. Med. 59::64958
    [Crossref] [Google Scholar]
  91. 91.
    Montoya-Barthelemy A. 2019.. The occupational health of prison inmates: an ignored population and an opportunity. . J. Occup. Environ. Med. 61::e7476
    [Crossref] [Google Scholar]
  92. 92.
    Moran DS, Shitzer A, Pandolf KB. 1998.. A physiological strain index to evaluate heat stress. . Am. J. Physiol. 275::R12934
    [Google Scholar]
  93. 93.
    Morris NB, Jay O, Flouris AD, Casanueva A, Gao C, et al. 2020.. Sustainable solutions to mitigate occupational heat strain—an umbrella review of physiological effects and global health perspectives. . Environ. Health 19::95
    [Crossref] [Google Scholar]
  94. 94.
    Moyce SC, Schenker M. 2018.. Migrant workers and their occupational health and safety. . Annu. Rev. Public Health 39::35165
    [Crossref] [Google Scholar]
  95. 95.
    Ncube F, Kanda A. 2018.. Current status and the future of occupational safety and health legislation in low- and middle-income countries. . Saf. Health Work 9::36571
    [Crossref] [Google Scholar]
  96. 96.
    Nelson DA, Deuster PA, O'Connor FG, Kurina LM. 2018.. Timing and predictors of mild and severe heat illness among new military enlistees. . Med. Sci. Sports Exerc. 50::160312
    [Crossref] [Google Scholar]
  97. 97.
    Nerbass FB, Pecoits-Filho R, Clark WF, Sontrop JM, McIntyre CW, Moist L. 2017.. Occupational heat stress and kidney health: from farms to factories. . Kidney Int. Rep. 2::9981008
    [Crossref] [Google Scholar]
  98. 98.
    Newth D, Gunasekera D. 2018.. Projected changes in wet-bulb globe temperature under alternative climate scenarios. . Atmosphere 9::187
    [Crossref] [Google Scholar]
  99. 99.
    Notley SR, Flouris AD, Kenny GP. 2018.. On the use of wearable physiological monitors to assess heat strain during occupational heat stress. . Appl. Physiol. Nutr. Metab. 43::86981
    [Crossref] [Google Scholar]
  100. 100.
    Nunfam VF, Adusei-Asante K, Van Etten EJ, Frimpong K, Oosthuizen J. 2021.. Estimating the magnitude and risk associated with heat exposure among Ghanaian mining workers. . Int. J. Biometeorol. 65::205975
    [Crossref] [Google Scholar]
  101. 101.
    Nybo L, Flouris AD, Kjellstrom T, Kajfež L, Ioannou L, et al. 2022.. Heat Shield: final report for each industrial sector incorporating the final recommendations/conclusions. Final Tech. Rep. D6.1 , Eur. Union, Copenhagen:. https://www.heat-shield.eu/_files/ugd/441f54_da74daf748864d84a83de7e06995f2b6.pdf
    [Google Scholar]
  102. 102.
    O'Neill BC, Tebaldi C, van Vuuren DP, Eyring V, Friedlingstein P, et al. 2016.. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. . Geosci. Model Dev. 9::346182
    [Crossref] [Google Scholar]
  103. 103.
    Orlov A, Sillmann J, Aaheim A, Aunan K, De Bruin K. 2019.. Economic losses of heat-induced reductions in outdoor worker productivity: a case study of Europe. . Econ. Disasters Clim. Change 3::191211
    [Crossref] [Google Scholar]
  104. 104.
    Pan Q, Sumner DA, Mitchell DC, Schenker M. 2021.. Compensation incentives and heat exposure affect farm worker effort. . PLOS ONE 16::e0259459
    [Crossref] [Google Scholar]
  105. 105.
    Park RJ, Pankratz N, Behrer AP. 2021.. Temperature, workplace safety, and labor market inequality. Discuss. Pap. 14560 , IZA/Inst. Labor Econ., Bonn, Ger:. https://docs.iza.org/dp14560.pdf
    [Google Scholar]
  106. 106.
    Périard JD, DeGroot D, Jay O. 2022.. Exertional heat stroke in sport and the military: epidemiology and mitigation. . Exp. Physiol. 107::111121
    [Crossref] [Google Scholar]
  107. 107.
    Périard JD, Racinais S, Timpka T, Dahlström Ö, Spreco A, et al. 2017.. Strategies and factors associated with preparing for competing in the heat: a cohort study at the 2015 IAAF World Athletics Championships. . Br. J. Sports Med. 51::26470
    [Crossref] [Google Scholar]
  108. 108.
    Pradhan B, Kjellstrom T, Atar D, Sharma P, Kayastha B, et al. 2019.. Heat stress impacts on cardiac mortality in Nepali migrant workers in Qatar. . Cardiology 143::3748
    [Crossref] [Google Scholar]
  109. 109.
    Rahman MM, McConnell R, Schlaerth H, Ko J, Silva S, et al. 2022.. The effects of coexposure to extremes of heat and particulate air pollution on mortality in California: implications for climate change. . Am. J. Respir. Crit Care Med. 206::111727
    [Crossref] [Google Scholar]
  110. 110.
    Roelofs C. 2018.. Without warning: worker deaths from heat 2014–2016. . New Solut. 28::34457
    [Crossref] [Google Scholar]
  111. 111.
    Rosenman KD, Kalush A, Reilly MJ, Gardiner JC, Reeves M, Luo Z. 2006.. How much work-related injury and illness is missed by the current national surveillance system?. J. Occup. Environ. Med. 48::35765
    [Crossref] [Google Scholar]
  112. 112.
    Roser M. 2023.. Employment in agriculture. . Our World in Data. https://ourworldindata.org/employment-in-agriculture
    [Google Scholar]
  113. 113.
    Seng M, Ye M, Choy K, Ho SF. 2018.. Heat stress in rice vermicelli manufacturing factories. . Int. J. Occup. Environ. Health 24::11925
    [Crossref] [Google Scholar]
  114. 114.
    Shi DS, Weaver VM, Hodgson MJ, Tustin AW. 2022.. Hospitalised heat-related acute kidney injury in indoor and outdoor workers in the USA. . Occup. Environ. Med. 79::18491
    [Crossref] [Google Scholar]
  115. 115.
    Smith KR, Woodward A, Campbell-Lendrum D, Chadee D, Honda Y, et al. 2014.. Human health: impacts, adaptation, and co-benefits. . In Climate Change 2014: Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects, pp. 70954. Cambridge, UK/New York:: Cambridge Univ. Press
    [Google Scholar]
  116. 116.
    Sorensen C, Hess J. 2022.. Treatment and prevention of heat-related illness. . N. Engl. J. Med. 387::140413
    [Crossref] [Google Scholar]
  117. 117.
    Spector JT, Bonauto DK, Sheppard L, Busch-Isaksen T, Calkins M, et al. 2016.. A case-crossover study of heat exposure and injury risk in outdoor agricultural workers. . PLOS ONE 11::e0164498
    [Crossref] [Google Scholar]
  118. 118.
    Spector JT, Krenz J, Rauser E, Bonauto DK. 2014.. Heat-related illness in Washington State agriculture and forestry sectors. . Am. J. Ind. Med. 57::88195
    [Crossref] [Google Scholar]
  119. 119.
    Spector JT, Sheffield PE. 2014.. Re-evaluating occupational heat stress in a changing climate. . Ann. Occup. Hyg. 58::93642
    [Google Scholar]
  120. 120.
    Srivastava A, Kumar R, Joseph E, Kumar A. 2000.. Heat exposure study in the workplace in a glass manufacturing unit in India. . Ann. Occup. Hyg. 44::44953
    [Crossref] [Google Scholar]
  121. 121.
    Sulzer M, Christen A, Matzarakis A. 2023.. Predicting indoor air temperature and thermal comfort in occupational settings using weather forecasts, indoor sensors, and artificial neural networks. . Build. Environ. 234::110077
    [Crossref] [Google Scholar]
  122. 122.
    Tawatsupa B, Yiengprugsawan V, Kjellstrom T, Berecki-Gisolf J, Seubsman S-A, Sleigh A. 2013.. Association between heat stress and occupational injury among Thai workers: findings of the Thai cohort study. . Ind. Health 51::3446
    [Crossref] [Google Scholar]
  123. 123.
    Tigchelaar M, Battisti DS, Spector JT. 2020.. Work adaptations insufficient to address growing heat risk for U.S. agricultural workers. . Environ. Res. Lett. 15::094035
    [Crossref] [Google Scholar]
  124. 124.
    Tikuisis P, McLellan TM, Selkirk G. 2002.. Perceptual versus physiological heat strain during exercise-heat stress. . Med. Sci. Sports Exerc. 34::145461
    [Crossref] [Google Scholar]
  125. 125.
    Tong S, Prior J, McGregor G, Shi X, Kinney P. 2021.. Urban heat: an increasing threat to global health. . BMJ 375::n2467
    [Crossref] [Google Scholar]
  126. 126.
    Tustin A, Sayeed Y, Berenji M, Fagan K, McCarthy RB, et al. 2021.. Prevention of occupational heat-related illnesses. . J. Occup. Environ. Med. 63::e73744
    [Crossref] [Google Scholar]
  127. 127.
    Tustin AW, Cannon DL, Arbury SB, Thomas RJ, Hodgson MJ. 2018.. Risk factors for heat-related illness in U.S. workers: an OSHA case series. . J. Occup. Environ. Med. 60::e38389
    [Crossref] [Google Scholar]
  128. 128.
    Tustin AW, Lamson GE, Jacklitsch BL, Thomas RJ, Arbury SB, et al. 2018.. Evaluation of occupational exposure limits for heat stress in outdoor workers—United States, 2011–2016. . MMWR 67::73337
    [Google Scholar]
  129. 129.
    Ueno S, Sakakibara Y, Hisanaga N, Oka T, Yamaguchi-Sekino S. 2018.. Heat strain and hydration of Japanese construction workers during work in summer. . Ann. Work Expo. Health 62::57182
    [Crossref] [Google Scholar]
  130. 130.
    US EPA (Environ. Prot. Agency). 2012.. Cool pavements. . In Reducing Urban Heat Islands: Compendium of Strategies. Rep., US EPA, Washington, DC:. https://www.epa.gov/sites/default/files/2017-05/documents/reducing_urban_heat_islands_ch_5.pdf
    [Google Scholar]
  131. 131.
    Vujovic S, Haddad B, Karaky H, Sebaibi N, Boutouil M. 2021.. Urban heat island: causes, consequences, and mitigation measures with emphasis on reflective and permeable pavements. . CivilEng 2::45984
    [Crossref] [Google Scholar]
  132. 132.
    Wagoner RS, López-Gálvez NI, de Zapien JG, Griffin SC, Canales RA, Beamer PI. 2020.. An occupational heat stress and hydration assessment of agricultural workers in North Mexico. . Int. J. Environ. Res. Public Health 17::2102
    [Crossref] [Google Scholar]
  133. 133.
    West MR, Costello S, Sol JA, Domitrovich JW. 2020.. Risk for heat-related illness among wildland firefighters: job tasks and core body temperature change. . Occup. Environ. Med. 77::43338
    [Crossref] [Google Scholar]
  134. 134.
    Williams VF, Oh GT. 2022.. Update: heat illness, active component, U.S. Armed Forces, 2021. . MSMR 29::814
    [Google Scholar]
  135. 135.
    World Bank. 2023.. Labor force, total. World Dev. Indic., World Bank, Washington, DC:, retrieved on March 12. https://data.worldbank.org/indicator/SL.TLF.TOTL.IN
    [Google Scholar]
  136. 136.
    Xiang J, Bi P, Pisaniello D, Hansen A. 2014.. Health impacts of workplace heat exposure: an epidemiological review. . Ind. Health 52::91101
    [Crossref] [Google Scholar]
  137. 137.
    Xiang J, Bi P, Pisaniello D, Hansen A, Sullivan T. 2014.. Association between high temperature and work-related injuries in Adelaide, South Australia, 2001–2010. . Occup. Environ. Med. 71::24652
    [Crossref] [Google Scholar]
  138. 138.
    Xiang J, Hansen A, Pisaniello D, Dear K, Bi P. 2018.. Correlates of occupational heat-induced illness costs: case study of South Australia 2000 to 2014. . J. Occup. Environ. Med. 60::e46369
    [Crossref] [Google Scholar]
  139. 139.
    Yankelson L, Sadeh B, Gershovitz L, Werthein J, Heller K, et al. 2014.. Life-threatening events during endurance sports: Is heat stroke more prevalent than arrhythmic death?. J. Am. Coll. Cardiol. 64::46369
    [Crossref] [Google Scholar]
  140. 140.
    Zhao Y, Sultan B, Vautard R, Braconnot P, Wang HJ, Ducharne A. 2016.. Potential escalation of heat-related working costs with climate and socioeconomic changes in China. . PNAS 113::464045
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-publhealth-060222-034715
Loading
/content/journals/10.1146/annurev-publhealth-060222-034715
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error