1932

Abstract

While energy transitions have always taken place, shifts have historically been primarily from one type of fossil fuel to another (e.g., from coal to oil). Yet today we are experiencing transitions away from fossil fuel toward cleaner and sustainable energy sources. These transitions include shifts to renewable energy, electric vehicles, pedestrian pathways and more walkable cities, energy efficiency measures in the built environment, and increased public transportation. This restructuring of our energy system will bring impacts on public health (e.g., improved air quality from lower use of traditional gasoline-powered vehicles). Furthermore, the transition can lower emissions of greenhouse gases (GHGs), thereby helping slow climate change and minimize its anticipated impacts on public health. While more work is needed to understand the full implications of these energy transitions, including the implications for environmental justice in terms of who will share in the health benefits and potential detriments such as increased emissions from brake wear for electric vehicles, the existing literature indicates substantial benefits to public health. Moving away from fossil fuel may offer a rare win-win strategy for a healthier society with a cleaner environment and lower GHGs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-publhealth-071723-024649
2025-04-04
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/publhealth/46/1/annurev-publhealth-071723-024649.html?itemId=/content/journals/10.1146/annurev-publhealth-071723-024649&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aldy J, Kotchen MJ, Evans M, Fowlie M, Levinson A, Palmer K. 2021.. Cobenefits and regulatory impact analysis: theory and evidence from federal air quality regulations. . Environ. Energy Policy Econ. 2::11756
    [Google Scholar]
  2. 2.
    Althor G, Watson JEM, Fuller RA. 2016.. Global mismatch between greenhouse gas emissions and the burden of climate change. . Sci. Rep. 6::20281
    [Crossref] [Google Scholar]
  3. 3.
    Alves C, Evtyugina M, Vicente A, Conca E, Amato F. 2021.. Organic profiles of brake wear particles. . Atmos. Res. 255::105557
    [Crossref] [Google Scholar]
  4. 4.
    Andersson J, Kramer LJ, Campbell M, Marshall I, Norris J, et al. 2024.. A practical approach for on-road measurements of brake wear particles from a light-duty vehicle. . Atmosphere 15:(2):224
    [Crossref] [Google Scholar]
  5. 5.
    Anenberg SC, Schwartz J, Shindell D, Amann M, Faluvegi G, et al. 2012.. Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls. . Environ. Health Perspect. 120:(6):83139
    [Crossref] [Google Scholar]
  6. 6.
    Bain P, Milfont TL, Kashima Y, Bilewicz M, Doron G, et al. 2016.. Co-benefits of addressing climate change can motivate action around the world. . Nat. Clim. Change 6:(2):15457
    [Crossref] [Google Scholar]
  7. 7.
    Balcetis E, Cole S, Duncan DT. 2020.. How walkable neighborhoods promote physical activity: policy implications for development and renewal. . Policy Insights Behav. Brain Sci. 7:(2):17380
    [Crossref] [Google Scholar]
  8. 8.
    Balmes JR. 2019.. Household air pollution from domestic combustion of solid fuels and health. . J. Allergy Clin. Immunol. 143:(6):197987
    [Crossref] [Google Scholar]
  9. 9.
    Baobeid A, Koç M, Al-Ghamdi SG. 2021.. Walkability and its relationships with health, sustainability, and livability: elements of physical environment and evaluation frameworks. . Front. Built Environ. 7::721218
    [Crossref] [Google Scholar]
  10. 10.
    Barton J, Hine R, Pretty J. 2009.. The health benefits of walking in greenspaces of high natural and heritage value. . J. Integr. Environ. Sci. 6:(4):26178
    [Crossref] [Google Scholar]
  11. 11.
    Bednar DJ, Reames TG. 2020.. Recognition of and response to energy poverty in the United States. . Nat. Energy 5:(6):43239
    [Crossref] [Google Scholar]
  12. 12.
    Bell ML, Davis DL, Cifuentes LA, Krupnick AJ, Morgenstern RD, Thurston GD. 2008.. Ancillary human health benefits of improved air quality resulting from climate change mitigation. . Environ. Health 7::41
    [Crossref] [Google Scholar]
  13. 13.
    Bell ML, Gasparrini A, Benjamin GC. 2024.. Climate change, extreme heat, and health. . N. Engl. J. Med. 390:(19):1793801
    [Crossref] [Google Scholar]
  14. 14.
    Berberian AG, Gonzalez DJX, Cushing LJ. 2022.. Racial disparities in climate change-related health effects in the United States. . Curr. Environ. Health Rep. 9:(3):45164
    [Crossref] [Google Scholar]
  15. 15.
    Bi S, Hu J, Shao L, Feng T, Appolloni A. 2024.. Can public transportation development improve urban air quality? Evidence from China. . Urban Clim. 54::101825
    [Crossref] [Google Scholar]
  16. 16.
    Bianco G, Espinoza-Chávez RM, Ashigbie PG, Junio H, Borhani C, et al. 2024.. Projected impact of climate change on human health in low- and middle-income countries: a systematic review. . BMJ Glob. Health 8:(Suppl. 3):e015550
    [Crossref] [Google Scholar]
  17. 17.
    Bouredji A, Pourchez J, Forest V. 2023.. Biological effects of tire and road wear particles (TRWP) assessed by in vitro and in vivo studies—a systematic review. . Sci. Total Environ. 894::164989
    [Crossref] [Google Scholar]
  18. 18.
    Campbell-Lendrum D, Neville T, Schweizer C, Neira M. 2023.. Climate change and health: three grand challenges. . Nat. Med. 29:(7):163138
    [Crossref] [Google Scholar]
  19. 19.
    Carey J. 2023.. The other benefit of electric vehicles. . PNAS 120:(3):e2220923120
    [Crossref] [Google Scholar]
  20. 20.
    Carrión D, Belcourt A, Fuller CH. 2022.. Heading upstream: strategies to shift environmental justice research from disparities to equity. . Am. J. Public Health 112:(1):5962
    [Crossref] [Google Scholar]
  21. 21.
    Casey JA, Daouda M, Babadi RS, Do V, Flores NM, et al. 2023.. Methods in public health environmental justice research: a scoping review from 2018 to 2021. . Curr. Environ. Health Rep. 10:(3):31236
    [Crossref] [Google Scholar]
  22. 22.
    Cenci S, Burato M, Rei M, Zollo M. 2023.. The alignment of companies' sustainability behavior and emissions with global climate targets. . Nat. Commun. 14:(1):7831
    [Crossref] [Google Scholar]
  23. 23.
    Chen K, Vicedo-Cabrera AM, Dubrow R. 2020.. Projections of ambient temperature- and air pollution-related mortality burden under combined climate change and population aging scenarios: a review. . Curr. Environ. Health Rep. 7:(3):24355
    [Crossref] [Google Scholar]
  24. 24.
    Chen W, Tang H, He L, Zhang Y, Ma W. 2022.. Co-effect assessment on regional air quality: a perspective of policies and measures with greenhouse gas reduction potential. . Sci. Total Environ. 851:(Pt. 1):158119
    [Crossref] [Google Scholar]
  25. 25.
    Choi C, Berry P, Smith A. 2021.. The climate benefits, co-benefits, and trade-offs of green infrastructure: a systematic literature review. . J. Environ. Manag. 291::112583
    [Crossref] [Google Scholar]
  26. 26.
    Choma EF, Evans JS, Hammitt JK, Gómez-Ibáñez JA, Spengler JD. 2020.. Assessing the health impacts of electric vehicles through air pollution in the United States. . Environ. Int. 144::106015
    [Crossref] [Google Scholar]
  27. 27.
    Crippa M, Guizzardi D, Pagani F, Banja M, Muntean M, et al. 2024.. GHG emissions of all world countries. JRC Sci. Policy Rep., Publ. Off. Eur. Union, Luxemb. https://data.europa.eu/doi/10.2760/4002897
    [Google Scholar]
  28. 28.
    Cropper M, Suri P. 2024.. Measuring the air pollution benefits of public transport projects. . Reg. Sci. Urban Econ. 107::103976
    [Crossref] [Google Scholar]
  29. 29.
    Cui W, Hong J, Liu G, Li K, Huang Y, Zhang L. 2021.. Co-benefits analysis of buildings based on different renewal strategies: the Emergy-Lca approach. . Int. J. Environ. Res. Public Health 18:(2):592
    [Crossref] [Google Scholar]
  30. 30.
    Davis RJ, Holladay JS, Sims C. 2022.. Coal-fired power plant retirements in the United States. . Environ. Energy Policy Econ. 3::436
    [Google Scholar]
  31. 31.
    Dinh NTT, Tran J, Hensher M. 2024.. Measuring and valuing the health co-benefits of climate change mitigation: a scoping review. . Lancet Planet. Health 8:(6):e4029
    [Google Scholar]
  32. 32.
    Evans S. 2020.. Solar is now ‘cheapest electricity in history’, confirms IEA. . Carbon Brief, Oct. 13. https://www.carbonbrief.org/solar-is-now-cheapest-electricity-in-history-confirms-iea/
    [Google Scholar]
  33. 33.
    Filigrana P, Levy JI, Gauthier J, Batterman S, Adar SD. 2022.. Health benefits from cleaner vehicles and increased active transportation in Seattle, Washington. . J. Expo. Sci. Environ. Epidemiol. 32:(4):53844
    [Google Scholar]
  34. 34.
    Forest V, Pourchez J. 2023.. Biological effects of brake wear particles in mammalian models: a systematic review. . Sci. Total Environ. 905::167266
    [Google Scholar]
  35. 35.
    Fouquet R. 2024.. The digitalisation, dematerialisation and decarbonisation of the global economy in historical perspective: the relationship between energy and information since 1850. . Environ. Res. Lett. 19:(1):014043
    [Google Scholar]
  36. 36.
    Freehafer L, Lazer L, Zepka B. 2024.. The state of electric school bus adoption in the US. . World Resources Institute Insights, Nov. 18. https://www.wri.org/insights/where-electric-school-buses-us
    [Google Scholar]
  37. 37.
    Funke C, Linn J, Robson S, Russell E, Shawhan D, Witkin S. 2023.. What are the climate, air pollution, and health benefits of electric vehicles? Work. Pap., Resour. Futur., Washington, DC:. https://www.rff.org/publications/working-papers/what-are-the-climate-air-pollution-and-health-benefits-of-electric-vehicles/
    [Google Scholar]
  38. 38.
    Garcia-Menendez F, Saari RK, Monier E, Selin NE. 2015.. U.S. air quality and health benefits from avoided climate change under greenhouse gas mitigation. . Environ. Sci. Technol. 49:(13):758088
    [Google Scholar]
  39. 39.
    Gearino D. 2023.. Battery prices are falling again, and that's a good thing. . Inside Climate News, Nov. 30. https://insideclimatenews.org/news/30112023/inside-clean-energy-battery-prices-are-falling/
    [Google Scholar]
  40. 40.
    Gillingham KT, Huang P, Buehler C, Peccia J, Gentner DR. 2021.. The climate and health benefits from intensive building energy efficiency improvements. . Sci. Adv. 7:(34):eabg0947
    [Google Scholar]
  41. 41.
    Goldsmith L, Bell ML. 2022.. Queering environmental justice: unequal environmental health burden on the LGBTQ+ community. . Am. J. Public Health 112:(1):7987
    [Google Scholar]
  42. 42.
    Gore R, Lynch CJ, Jordan CA, Collins A, Robinson RM, et al. 2022.. Estimating the health effects of adding bicycle and pedestrian paths at the census tract level: multiple model comparison. . JMIR Public Health Surveill. 8:(8):e37379
    [Google Scholar]
  43. 43.
    Gould CF, Bejarano ML, De La Cuesta B, Jack DW, Schlesinger SB, et al. 2023.. Climate and health benefits of a transition from gas to electric cooking. . PNAS 120:(34):e2301061120
    [Google Scholar]
  44. 44.
    Grigoratos T, Martini G. 2015.. Brake wear particle emissions: a review. . Environ. Sci. Pollut. Res. 22:(4):2491504
    [Google Scholar]
  45. 45.
    Guo J, Zhou J, Han R, Wang Y, Lian X, et al. 2023.. Association of short-term co-exposure to particulate matter and ozone with mortality risk. . Environ. Sci. Technol. 57:(42):1582534
    [Google Scholar]
  46. 46.
    Guo Y, Gasparrini A, Li S, Sera F, Vicedo-Cabrera AM, et al. 2018.. Quantifying excess deaths related to heatwaves under climate change scenarios: a multicountry time series modelling study. . PLOS Med. 15:(7):e1002629
    [Google Scholar]
  47. 47.
    Hicks W, Green DC, Beevers S. 2023.. Quantifying the change of brake wear particulate matter emissions through powertrain electrification in passenger vehicles. . Environ. Pollut. 336::122400
    [Google Scholar]
  48. 48.
    IEA (Int. Energy Agency). 2023.. Greenhouse gas emissions from energy, 2023 edition: database documentation. Rep. , IEA, Paris:. https://iea.blob.core.windows.net/assets/e6e332ed-24ab-4977-9ef9-cf3865934d63/Databasedocumentation2023Worldedition.pdf
    [Google Scholar]
  49. 49.
    IPCC (Intergov. Panel Clim. Change). 2022.. Climate Change 2022: Mitigation of Climate Change. Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. PR Shukla, J Skea, R Slade, AA Khourdajie, M Belkacemi, et al . Cambridge, UK:: Cambridge Univ. Press. https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf
    [Google Scholar]
  50. 50.
    IPCC (Intergov. Panel Clim. Change). 2022.. Summary for policymakers. . In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C, ed. V Masson-Delmotte, P Zhai, H-O Pörtner, D Roberts, J Skea, et al. , pp. 324. Cambridge, UK:: Cambridge Univ. Press. https://doi.org/10.1017/9781009157940.001
    [Google Scholar]
  51. 51.
    IPCC (Intergov. Panel Clim. Change). 2023.. Summary for policymakers. . See Ref. 52 , pp. 134
  52. 52.
    IPCC (Intergov. Panel Clim. Change). 2023.. Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. H Lee, J Romero . Geneva:: IPCC. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf
    [Google Scholar]
  53. 53.
    IRENA (Int. Renew. Energy Agency). 2024.. Renewable energy statistics 2024. Rep. , IRENA, Abu Dhabi:. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Jul/IRENA_Renewable_Energy_Statistics_2024.pdf
    [Google Scholar]
  54. 54.
    Jennings V, Bamkole O. 2019.. The relationship between social cohesion and urban green space: an avenue for health promotion. . Int. J. Environ. Res. Public Health 16:(3):452
    [Google Scholar]
  55. 55.
    Jerrett M, Connolly R, Garcia-Gonzales DA, Bekker C, Nguyen JT, et al. 2024.. Climate change and public health in California: a structured review of exposures, vulnerable populations, and adaptation measures. . PNAS 121:(32):e2310081121
    [Google Scholar]
  56. 56.
    Jordan AB, Rodriguez DS, Bennett JA, Sale K, Gilhooley C. 2024.. Quantifying air quality co-benefits to industrial decarbonization: the local Air Emissions Tracking Atlas. . Front. Public Health 12::1394678
    [Google Scholar]
  57. 57.
    Kearns AJ, Bhagat M, Rae D, McGonigle A, Caldow E, et al. 2023.. Health gains from home energy efficiency measures: the missing evidence in the UK net-zero policy debate. . Public Health Pract. 5::100396
    [Google Scholar]
  58. 58.
    Knowlton K, Rosenthal JE, Hogrefe C, Lynn B, Gaffin S, et al. 2004.. Assessing ozone-related health impacts under a changing climate. . Environ. Health Perspect. 112:(15):155763
    [Google Scholar]
  59. 59.
    Lee W, Wu X, Heo S, Kim JM, Fong KC, et al. 2023.. Air pollution and acute kidney injury in the U.S. Medicare population: a longitudinal cohort study. . Environ. Health Perspect. 131:(4):047008
    [Google Scholar]
  60. 60.
    Lempriere M. 2024.. China responsible for 95% of new coal power construction in 2023, report says. . Carbon Brief, April 11. https://www.carbonbrief.org/china-responsible-for-95-of-new-coal-power-construction-in-2023-report-says/
    [Google Scholar]
  61. 61.
    Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Guo Y, et al. 2023.. Interactive effects of ambient fine particulate matter and ozone on daily mortality in 372 cities: two stage time series analysis. . BMJ 383::e075203
    [Google Scholar]
  62. 62.
    Liu J, Banerjee S, Oroumiyeh F, Shen J, del Rosario I, et al. 2022.. Co-kriging with a low-cost sensor network to estimate spatial variation of brake and tire-wear metals and oxidative stress potential in Southern California. . Environ. Int. 168::107481
    [Google Scholar]
  63. 63.
    Liu JC, Mickley LJ, Sulprizio MP, Dominici F, Yue X, et al. 2016.. Particulate air pollution from wildfires in the Western US under climate change. . Clim. Change 138:(3–4):65566
    [Google Scholar]
  64. 64.
    Liu JY, Peng J, Men Z, Fang T, Zhang J, et al. 2023.. Brake wear-derived particles: single-particle mass spectral signatures and real-world emissions. . Environ. Sci. Ecotechnol. 15::100240
    [Google Scholar]
  65. 65.
    Lopez B, Wang X, Chen L-WA, Ma T, Mendez-Jimenez D, et al. 2023.. Metal contents and size distributions of brake and tire wear particles dispersed in the near-road environment. . Sci. Total Environ. 883::163561
    [Google Scholar]
  66. 66.
    MacNaughton P, Cao X, Buonocore J, Cedeno-Laurent J, Spengler J, et al. 2018.. Energy savings, emission reductions, and health co-benefits of the green building movement. . J. Expo. Sci. Environ. Epidemiol. 28:(4):30718
    [Google Scholar]
  67. 67.
    Malanima P. 2020.. Table A4 World consumption per source 1820–2018. . In World Energy Consumption: A Database 1820–2018. Rep. , Cent. Hist. Econ., Cambridge, MA:. https://histecon.fas.harvard.edu/energyhistory/DATABASE%20World%20Energy%20Consumption.pdf
    [Google Scholar]
  68. 68.
    Marshall JD, Brauer M, Frank LD. 2009.. Healthy neighborhoods: walkability and air pollution. . Environ. Health Perspect. 117:(11):175259
    [Google Scholar]
  69. 69.
    McMichael C. 2023.. Climatic and environmental change, migration, and health. . Annu. Rev. Public Health 44::17191
    [Google Scholar]
  70. 70.
    Méndez-Tejeda R, Hernández-Ayala JJ. 2023.. Links between climate change and hurricanes in the North Atlantic. . PLOS Clim. 2:(4):e0000186
    [Google Scholar]
  71. 71.
    Nam YH, Bilker WB, Leonard CE, Bell ML, Alexander LM, Hennessy S. 2019.. Effect of statins on the association between high temperature and all-cause mortality in a socioeconomically disadvantaged population: a cohort study. . Sci. Rep. 9:(1):4685
    [Google Scholar]
  72. 72.
    Natl. Inst. Environ. Health Sci. 2024.. Environmental health disparities and environmental justice. . Your Environment. Your Health. https://www.niehs.nih.gov/research/supported/translational/justice
    [Google Scholar]
  73. 73.
    Natl. Inst. Environ. Health Sci. 2024.. Climate change and health. . Your Environment. Your Health. https://www.niehs.nih.gov/research/programs/climatechange
    [Google Scholar]
  74. 74.
    Negev M, Zea-Reyes L, Caputo L, Weinmayr G, Potter C, de Nazelle A. 2022.. Barriers and enablers for integrating public health cobenefits in urban climate policy. . Annu. Rev. Public Health 43::25570
    [Google Scholar]
  75. 75.
    Nielsen KS, Nicholas KA, Creutzig F, Dietz T, Stern PC. 2021.. The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions. . Nat. Energy 6:(11):101116
    [Google Scholar]
  76. 76.
    Okesanya OJ, Saclolo JMB, Mia KBP, Ntacyabukura B, Corman V, et al. 2024.. Norway's battery electric vehicles and public health—findings from the literature. . Environ. Health Insights 18::11786302241238171
    [Google Scholar]
  77. 77.
    Oroumiyeh F, Jerrett M, Del Rosario I, Lipsitt J, Liu J, et al. 2022.. Elemental composition of fine and coarse particles across the greater Los Angeles area: spatial variation and contributing sources. . Environ. Pollut. 292::118356
    [Google Scholar]
  78. 78.
    Orru H, Andersson C, Ebi KL, Langner J, Aström C, Forsberg B. 2013.. Impact of climate change on ozone-related mortality and morbidity in Europe. . Eur. Respir. J. 41:(2):28594
    [Google Scholar]
  79. 79.
    Oswald Y, Owen A, Steinberger JK. 2020.. Large inequality in international and intranational energy footprints between income groups and across consumption categories. . Nature 5:(3):23139
    [Google Scholar]
  80. 80.
    Owino V, Kumwenda C, Ekesa B, Parker ME, Ewoldt L, et al. 2022.. The impact of climate change on food systems, diet quality, nutrition, and health outcomes: a narrative review. . Front. Clim. 4::941842
    [Google Scholar]
  81. 81.
    Pan X, Zhao L, Luo J, Li Y, Zhang L, et al. 2021.. Access to bike lanes and childhood obesity: a systematic review and meta-analysis. . Obes. Rev. 22:(S1):e13042
    [Google Scholar]
  82. 82.
    Patel A, Aggarwal S, Bard L, Durif O, Introna M, et al. 2024.. Gaseous emissions from brake wear can form secondary particulate matter. . Sci. Rep. 14:(1):23253
    [Google Scholar]
  83. 83.
    Patz JA, Frumkin H, Holloway T, Vimont DJ, Haines A. 2014.. Climate change: challenges and opportunities for global health. . JAMA 312:(15):156580
    [Google Scholar]
  84. 84.
    Pennington AF, Cornwell CR, Sircar KD, Mirabelli MC. 2024.. Electric vehicles and health: a scoping review. . Environ. Res. 251:(Pt. 2):118697
    [Google Scholar]
  85. 85.
    Peters DR, Schnell JL, Kinney PL, Naik V, Horton DE. 2020.. Public health and climate benefits and trade-offs of U.S. vehicle electrification. . Geohealth 4:(10):e2020GH000275
    [Google Scholar]
  86. 86.
    Petzold J, Hawxwell T, Jantke K, Gresse EG, Mirbach C, et al. 2023.. A global assessment of actors and their roles in climate change adaptation. . Nat. Clim. Change 13:(11):125057
    [Google Scholar]
  87. 87.
    Ritchie H, Rosado P, Roser M. 2023.. Data page: fossil fuel consumption per capita. . In Statistical Review of World Energy. Dataset, Our World in Data, Global Change Data Lab, Univ. Oxford, Oxford, UK:. https://ourworldindata.org/grapher/fossil-fuels-per-capita
    [Google Scholar]
  88. 88.
    Roca-Barceló A, Rice MB, Nunuz Y, Thurston G, Weinmayr G, et al. 2024.. Climate action has valuable health benefits. . Environ. Epidemiol. 8:(1):e288
    [Google Scholar]
  89. 89.
    Romanello M, Walawender M, Hsu S-C, Moskeland A, Palmeiro-Silva Y, et al. 2024.. The 2024 report of the Lancet Countdown on health and climate change: facing record-breaking threats from delayed action. . Lancet 404::184796
    [Google Scholar]
  90. 90.
    Sakhvidi MJZ, Mehrparvar AH, Sakhvidi FZ, Dadvand P. 2023.. Greenspace and health, wellbeing, physical activity, and development in children and adolescents: an overview of the systematic reviews. . Curr. Opin. Environ. Sci. Health 32::100445
    [Google Scholar]
  91. 91.
    Schepers P, Fishman E, Beelen R, Heinen E, Wijnen W, Parkin J. 2015.. The mortality impact of bicycle paths and lanes related to physical activity, air pollution exposure and road safety. . J. Transp. Health 2:(4):46073
    [Crossref] [Google Scholar]
  92. 92.
    Schmitz S, Caseiro A, Kerschbaumer A, von Schneidemesser E. 2021.. Do new bike lanes impact air pollution exposure for cyclists?—a case study from Berlin. . Environ. Res. Lett. 16:(8):084031
    [Crossref] [Google Scholar]
  93. 93.
    Schwerdtle P, Bowen K, McMichael C. 2017.. The health impacts of climate-related migration. . BMC Med. 16:(1):1
    [Crossref] [Google Scholar]
  94. 94.
    Selley L, Schuster L, Marbach H, Forsthuber T, Forbes B, et al. 2020.. Brake dust exposure exacerbates inflammation and transiently compromises phagocytosis in macrophages. . Metallomics 12:(3):37186
    [Crossref] [Google Scholar]
  95. 95.
    Shen JQ, Taghvaee S, La C, Oroumiyeh F, Liu J, et al. 2022.. Aerosol oxidative potential in the greater Los Angeles area: source apportionment and associations with socioeconomic position. . Environ. Sci. Technol. 56:(24):17795804
    [Crossref] [Google Scholar]
  96. 96.
    Shi L, Liu P, Zanobetti A, Schwartz J. 2019.. Climate penalty: climate driven increases in ozone and PM2.5 levels and mortality. . Environ. Epidemiol. 3::365
    [Google Scholar]
  97. 97.
    Shu EG, Porter JR, Hauer ME, Olascoaga SS, Gourevitch J, et al. 2023.. Integrating climate change induced flood risk into future population projections. . Nat. Commun. 14:(1):7870
    [Crossref] [Google Scholar]
  98. 98.
    Si Y, Desai D, Bozhilova D, Puffer S, Stephens JC. 2023.. Fossil fuel companies’ climate communication strategies: industry messaging on renewables and natural gas. . Energy Res. Soc. Sci. 98::103028
    [Crossref] [Google Scholar]
  99. 99.
    Sparling TM, Offner C, Deeney M, Denton P, Bash K, et al. 2024.. Intersections of climate change with food systems, nutrition, and health: an overview and evidence map. . Adv. Nutr. 15:(1):100274
    [Crossref] [Google Scholar]
  100. 100.
    Stanway D. 2024.. China 2023 coal power approvals rose, putting climate targets at risk. . Reuters, Feb. 22. https://www.reuters.com/sustainability/climate-energy/china-2023-coal-power-approvals-rose-putting-climate-targets-risk-2024-02-22
    [Google Scholar]
  101. 101.
    Stein PJS, Stein MA, Groce N, Kett M, Akyeampong EK, et al. 2024.. Advancing disability-inclusive climate research and action, climate justice, and climate-resilient development. . Lancet Planet. Health 8:(4):e24255
    [Crossref] [Google Scholar]
  102. 102.
    Thurston GD, Bell ML. 2021.. The human health co-benefits of air quality improvements associated with climate change mitigation. . In Climate Change and Global Public Health, ed. KE Pinkerton, WN Rom , pp. 181202. Cham, Switz:.: Humana Press
    [Google Scholar]
  103. 103.
    Tyson A, Kennedy B. 2020.. Two-thirds of Americans think government should do more on climate: bipartisan backing for carbon capture tax credits, extensive tree-planting efforts. Rep., Pew Res. Cent., Washington, DC:. https://www.pewresearch.org/wp-content/uploads/sites/20/2020/06/PS_2020.06.23_government-climate_REPORT.pdf
    [Google Scholar]
  104. 104.
    UN Popul. Fund. 2024.. The world is aging rapidly. . United Nations Population Fund. https://www.unfpa.org/ageing#readmore-expand
    [Google Scholar]
  105. 105.
    Unter KMM, Park S, Rivera J. 2024.. Business response strategies to climate change: an integrative and research frontiers outlook. . Organ. Environ. 37:(2):32557
    [Crossref] [Google Scholar]
  106. 106.
    US EIA (Energy Inf. Adm.). 2024.. China continues rapid growth of nuclear power capacity. . Today in Energy, May 6. https://www.eia.gov/todayinenergy/detail.php?id=61927
    [Google Scholar]
  107. 107.
    US EIA (Energy Inf. Adm.). 2024.. Solar and battery storage to make up 81% of new U.S. electric-generating capacity in 2024. . Today in Energy, Feb. 15. https://www.eia.gov/todayinenergy/detail.php?id=61424
    [Google Scholar]
  108. 108.
    US EIA (Energy Inf. Adm.). 2024.. U.S. battery storage capacity expected to nearly double in 2024. . Today in Energy, Jan. 9. https://www.eia.gov/todayinenergy/detail.php?id=61202
    [Google Scholar]
  109. 109.
    Vicedo-Cabrera AM, Scovronick N, Sera F, Royé D, Schneider R, et al. 2021.. The burden of heat-related mortality attributable to recent human-induced climate change. . Nat. Clim. Change 11:(6):492500
    [Crossref] [Google Scholar]
  110. 110.
    Westaway K, Frank O, Husband A, McClure A, Shute R, et al. 2015.. Medicines can affect thermoregulation and accentuate the risk of dehydration and heat-related illness during hot weather. . J. Clin. Pharm. Ther. 40:(4):36367
    [Crossref] [Google Scholar]
  111. 111.
    Wolfram P, Weber S, Gillingham K, Hertwich EG. 2021.. Pricing indirect emissions accelerates low-carbon transition of US light vehicle sector. . Nat. Commun. 12:(1):7121
    [Crossref] [Google Scholar]
  112. 112.
    Woo S-H, Jang H, Lee S-B, Lee S. 2022.. Comparison of total PM emissions emitted from electric and internal combustion engine vehicles: an experimental analysis. . Sci. Total Environ. 842::156961
    [Crossref] [Google Scholar]
  113. 113.
    Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashiru O, et al. 2009.. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. . Lancet 374:(9705):193043
    [Crossref] [Google Scholar]
  114. 114.
    Xia T, Zhang Y, Crabb S, Shah P. 2013.. Cobenefits of replacing car trips with alternative transportation: a review of evidence and methodological issues. . J. Environ. Public Health 2013::797312
    [Crossref] [Google Scholar]
  115. 115.
    Xu R, Yu P, Abramson MJ, Johnston FH, Samet JM, et al. 2020.. Wildfires, global climate change, and human health. . N. Engl. J. Med. 383:(22):217381
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-publhealth-071723-024649
Loading
/content/journals/10.1146/annurev-publhealth-071723-024649
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error