1932

Abstract

Agriculture will play a central role in meeting greenhouse gas (GHG) emission targets, as the sector currently contributes ∼22% of global emissions. Because emissions are directly tied to resources employed in farm production, such as land, fertilizer, and ruminant animals, the productivity of input use tends to be inversely related to emissions intensity. We review evidence on how productivity gains in agriculture have contributed to historical changes in emissions, how they affect land use emissions both locally and globally, and how investments in research and development (R&D) affect productivity and therefore emissions. The world average agricultural emissions intensity fell by more than half since 1990, with a strong correlation between a region's agricultural productivity growth and reduction in emissions intensity. Additional investment in agricultural R&D offers an opportunity for cost-effective (<US$30 per ton carbon dioxide) and large-scale emissions reductions. Innovations that target specific commodities or inputs could even further reduce the cost of climate mitigation in agriculture.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-101323-094349
2024-10-07
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/resource/16/1/annurev-resource-101323-094349.html?itemId=/content/journals/10.1146/annurev-resource-101323-094349&mimeType=html&fmt=ahah

Literature Cited

  1. Acemoglu D. 2023.. Distorted innovation: Does the market get the direction of technology right?. AEA Pap. Proc. 113::128
    [Crossref] [Google Scholar]
  2. Alston JM, Pardey PG, Serfas D, Wang S. 2023.. Slow magic: agricultural versus industrial R&D lag models. . Annu. Rev. Resour. Econ. 15::47193
    [Crossref] [Google Scholar]
  3. Angelsen A, Kaimowitz D. 2001.. Agricultural Technologies and Tropical Deforestation. Wallingford, UK:: CABI
    [Google Scholar]
  4. Armington PS. 1969.. A theory of demand for products distinguished by place of production. . Staff Pap. Int. Monet. Fund 16:(1):15978
    [Crossref] [Google Scholar]
  5. Baldos ULC, Viens FG, Hertel TW, Fuglie KO. 2019.. R&D spending, knowledge capital and agricultural productivity growth: a Bayesian approach. . Am. J. Agric. Econ. 101:(1):291301
    [Crossref] [Google Scholar]
  6. Burney JA, Davis SJ, Lobell DB. 2010.. Greenhouse gas mitigation by agricultural intensification. . PNAS 107:(26):1205257
    [Crossref] [Google Scholar]
  7. Ceddia MG, Sedlacek S, Bardsley NO, Gomez-y-Paloma S. 2013.. Sustainable agricultural intensification or Jevons Paradox? The role of public governance in tropical South America. . Glob. Environ. Change 23:(5):105263
    [Crossref] [Google Scholar]
  8. Cohn AS, Mosnier A, Havlík P, Valin H, Herrero M, et al. 2014.. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. . PNAS 111::723641
    [Crossref] [Google Scholar]
  9. Dittmer KM, Wollenberg E, Cohen M, Egler C. 2023.. How good is the data for tracking countries’ agricultural greenhouse gas emissions? Making use of multiple national greenhouse gas inventories. . Front. Sustain. Food Syst. 7::1156822
    [Crossref] [Google Scholar]
  10. Ewers RM, Scharlemann JPW, Balmford A, Green RE. 2009.. Do increases in agricultural yield spare land for nature?. Glob. Change Biol. 15:(7):171626
    [Crossref] [Google Scholar]
  11. FAO (Food Agric. Organ.). 2023.. FAOSTAT Data. FAOSTAT Database, Food Agric. Organ., Rome:, accessed Aug. 15, 2023. https://www.fao.org/faostat/en/#data
    [Google Scholar]
  12. Fuglie KO. 2018.. R&D capital, R&D spillovers, and productivity growth in world agriculture. . Appl. Econ. Persp. Policy 40:(3):42144
    [Crossref] [Google Scholar]
  13. Fuglie KO, Ray S, Baldos ULC, Hertel TW. 2022a.. The R&D cost of climate mitigation in agriculture. . Appl. Econ. Persp. Policy 44:(4):195574
    [Crossref] [Google Scholar]
  14. Fuglie KO, Wiebe K, Sulser TB, Cenacchi N, Willenbockel D. 2022b.. Multidimensional impacts from international agricultural research: Implications for research priorities. . Front. Sustain. Food Syst. 6::1031562
    [Crossref] [Google Scholar]
  15. Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, et al. 2010.. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. . PNAS 107::1673237
    [Crossref] [Google Scholar]
  16. Gillingham K, Stock JH. 2018.. The cost of reducing greenhouse gas emissions. . J. Econ. Perspect. 32:(4):5372
    [Crossref] [Google Scholar]
  17. Golub AA, Henderson BB, Hertel TW, Gerber PJ, Rose SK, Sohngen B. 2012.. Global climate policy impacts on livestock, land use, livelihoods, and food security. . PNAS 220:(52):2089499
    [Crossref] [Google Scholar]
  18. Harmsen JHM, van Vuuren DP, Nayak DR, Hof AF, Höglund-Isaksson L, et al. 2019.. Long-term marginal abatement cost curves of non-CO2 greenhouse gases. . Environ. Sci. Policy 99::13649
    [Crossref] [Google Scholar]
  19. Hayami Y, Ruttan VW. 1985.. Agricultural Development: An International Perspective. Baltimore:: Johns Hopkins Univ. Press
    [Google Scholar]
  20. Hertel TW, Baldos ULC, van der Mensbrugghe D. 2016.. Predicting long term food demand, cropland use and prices. . Annu. Rev. Resour. Econ. 8::41741
    [Crossref] [Google Scholar]
  21. Hertel TW, Ramankutty N, Baldos ULC. 2014.. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. . PNAS 111:(38):13799804
    [Crossref] [Google Scholar]
  22. Holden SA, Butler ST. 2018.. Review: applications and benefits of sexed semen in dairy and beef herds. . Animal 12:(Suppl. 1):s97103
    [Crossref] [Google Scholar]
  23. Hong C, Zhao H, Qin Y, Burney JA, Pongratz J, et al. 2022.. Land-use emissions embodied in international trade. . Science 376:(6593):597603
    [Crossref] [Google Scholar]
  24. IPCC (Intergov. Panel Clim. Change). 2023.. Section 2: Current status and trends. . In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. H Lee, J Romero , pp. 35115. Geneva:: IPCC
    [Google Scholar]
  25. Lampe MV, Willenbockel D, Ahammad H, Blanc E, Cai Y, et al. 2014.. Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison. . Agric. Econ. 45:(1):320
    [Crossref] [Google Scholar]
  26. Lobell DB, Baldos ULC, Hertel TW. 2013.. Climate adaptation as mitigation: the case of agricultural investments. . Environ. Res. Lett. 8:(1):015012
    [Crossref] [Google Scholar]
  27. Lobell DB, Villoria NB. 2023.. Reduced benefits of climate-smart agricultural policies from land-use spillovers. . Nat. Sustain. 6::94148
    [Crossref] [Google Scholar]
  28. Ludena C, Hertel TW, Preckel PV, Foster K, Nin A. 2007.. Productivity growth and convergence in crop, ruminant, and nonruminant production: measurement and forecasts. . Agric. Econ. 37::117
    [Crossref] [Google Scholar]
  29. Morris MD. 1991.. Factorial sampling plans for preliminary computational experiments. . Technometrics 33:(2):16174
    [Crossref] [Google Scholar]
  30. NAS (Natl. Acad. Sci. Eng. Med.). 2017.. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  31. Nepstad D, McGrath D, Strickler C, Alenear A, Azevedo A, et al. 2014.. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. . Science 344:(6188):11823
    [Crossref] [Google Scholar]
  32. Reisinger A, Clark H, Cowie AL, Emmet-Booth J, Gonzalez Fischer C, et al. 2021.. How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals?. Phil. Trans. R. Soc. A 379:(2210):20200452
    [Crossref] [Google Scholar]
  33. Roe S, Streck C, Obersteiner M, Frank S, Griscom B, et al. 2019.. Contribution of the land sector to a 1.5°C world. . Nat. Clim. Change 9:(11):81728
    [Crossref] [Google Scholar]
  34. Rudel TK, Schneider L, Uriarte M, Turner BL, DeFries R, et al. 2009.. Agricultural intensification and changes in cultivated areas, 1970–2005. . PNAS 106:(49):2067580
    [Crossref] [Google Scholar]
  35. Smith A, Shah S, Blaustein-Rejto D. 2021.. The case for public investments in alternative proteins. Rep. , Breakthrough Inst., Oakland, CA:. https://thebreakthrough.org/issues/food-agriculture-environment/case-for-public-investment-in-alt-proteins
    [Google Scholar]
  36. USDA-ERS (US Dep. Agric. Econ. Res. Serv.). 2017.. International agricultural productivity. Data Prod. 2017 Release , USDA-ERS, Washington, DC:. https://www.ers.usda.gov/data-products/international-agricultural-productivity
    [Google Scholar]
  37. USDA-ERS (US Dep. Agric. Econ. Res. Serv.). 2022.. International agricultural productivity. Data Prod. 2022 Release , USDA-ERS, Washington, DC:. https://www.ers.usda.gov/data-products/international-agricultural-productivity
    [Google Scholar]
  38. Villoria NB. 2019a.. Consequences of agricultural total factor productivity growth for the sustainability of global farming: accounting for direct and indirect land use effects. . Environ. Res. Lett. 14:(12):125002
    [Crossref] [Google Scholar]
  39. Villoria NB. 2019b.. Technology spillovers and land use change: empirical evidence from global agriculture. . Am. J. Agric. Econ. 101:(3):87093
    [Crossref] [Google Scholar]
  40. Villoria NB, Byerlee B, Stevenson J. 2014.. The effects of agricultural technological progress on deforestation: What do we really know?. Appl. Econ. Persp. Policy 36:(2):21137
    [Crossref] [Google Scholar]
  41. Villoria NB, Hertel TW. 2011.. Geography matters: international trade patterns and the indirect land use effects of biofuels. . Am. J. Agric. Econ. 93:(4):91935
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-resource-101323-094349
Loading
/content/journals/10.1146/annurev-resource-101323-094349
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error