1932

Abstract

An evolving literature evaluates the inferential and behavioral implications of measurement error (ME) in agricultural data. We synthesize findings on the nature and sources of ME and potential remedies. We provide practical guidance for choosing among alternative approaches for detecting, obviating, or correcting for alternative sources of ME, as these have different behavioral and inferential implications. Some ME biases statistical inference and thus may require econometric correction. Other types of ME may affect (and shed light on) farmers’ decision-making processes even if farmers’ responses are objectively incorrect. Where feasible, collecting both self-reported and objectively measured data for the same variable may enrich understanding of policy-relevant agricultural and behavioral phenomena.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-101422-090049
2023-10-05
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/resource/15/1/annurev-resource-101422-090049.html?itemId=/content/journals/10.1146/annurev-resource-101422-090049&mimeType=html&fmt=ahah

Literature Cited

  1. Abate GT, de Brauw A, Gibson J, Hirvonen K, Wolle A. 2022. Telescoping error in recalled food consumption: evidence from a survey experiment in Ethiopia. World Bank Econ. Rev. 36:4889–908
    [Google Scholar]
  2. Abate GT, de Brauw A, Hirvonen K, Wolle A. 2023. Measuring consumption over the phone: evidence from a survey experiment in urban Ethiopia. J. Dev. Econ. 161:103026
    [Google Scholar]
  3. Abay KA. 2020. Measurement errors in agricultural data and their implications on marginal returns to modern agricultural inputs. Agric. Econ. 51:3323–41
    [Google Scholar]
  4. Abay KA, Abate GT, Barrett CB, Bernard T. 2019. Correlated non-classical measurement errors, “second best” policy inference, and the inverse size-productivity relationship in agriculture. J. Dev. Econ. 139:171–84
    [Google Scholar]
  5. Abay KA, Abay MH, Amare M, Berhane G, Aynekulu E. 2022a. Mismatch between soil nutrient deficiencies and fertilizer applications: implications for yield responses in Ethiopia. Agric. Econ. 53:2215–30
    [Google Scholar]
  6. Abay KA, Barrett CB, Kilic T, Moylan H, Ilukor J, Vundru WD. 2022b. Nonclassical measurement error and farmers’ response to information reveal behavioral anomalies Policy Res. Work. Pap. 9908 World Bank Group New York:
    [Google Scholar]
  7. Abay KA, Berhane G, Hoddinott J, Tafere K. 2022c. Respondent fatigue reduces dietary diversity scores reported from mobile phone surveys in Ethiopia during the COVID-19 pandemic. J. Nutr. 152:102269–76
    [Google Scholar]
  8. Abay KA, Bevis LEM, Barrett CB. 2021. Measurement error mechanisms matter: agricultural intensification with farmer misperceptions and misreporting. Am. J. Agric. Econ. 103:2498–22
    [Google Scholar]
  9. Amaya A, Biemer PP, Kinyon D. 2020. Total error in a big data world: adapting the TSE framework to big data. J. Surv. Stat. Methodol. 8:189–119
    [Google Scholar]
  10. Ambler K, Doss C, Kieran C, Passarelli S. 2021a. He says, she says: spousal disagreement in survey measures of bargaining power. Econ. Dev. Cult. Change 69:2765–88
    [Google Scholar]
  11. Ambler K, Herskowitz S, Maredia MK. 2021b. Are we done yet? Response fatigue and rural livelihoods. J. Dev. Econ. 153:102736
    [Google Scholar]
  12. Arthi V, Beegle K, De Weerdt J, Palacios-López A. 2018. Not your average job: measuring farm labor in Tanzania. J. Dev. Econ. 130:160–72
    [Google Scholar]
  13. Ashour M, Gilligan DO, Hoel JB, Karachiwalla NI. 2019. Do beliefs about herbicide quality correspond with actual quality in local markets? Evidence from Uganda. J. Dev. Stud. 55:61285–1306
    [Google Scholar]
  14. Baird S, Hamory J, Miguel E 2008. Tracking, attrition and data quality in the Kenyan Life Panel Survey Round 1 (KLPS-1) Work. Pap. Cent. Int. Dev. Econ. Res., Univ. Calif. Berkeley:
    [Google Scholar]
  15. Bardasi E, Beegle K, Serneels PM, Dillon A. 2012. Do labor statistics depend on how and to whom the questions are asked? Results from a survey experiment in Tanzania. World Bank Econ. Rev. 25:3418–47
    [Google Scholar]
  16. Barrett CB, Carter MR. 2014. Retreat from radical skepticism: rebalancing theory, observational data and randomization in development economics. Field Experiments and Their Critics DL Teele 58–77. New Haven, CT: Yale Univ. Press
    [Google Scholar]
  17. Battistin E, De Nadai M, Sianesi B. 2014. Misreported schooling, multiple measures and returns to educational qualifications. J. Econom. 181:2136–50
    [Google Scholar]
  18. Beaman L, Dillon A. 2012. Do household definitions matter in survey design? Results from a randomized survey experiment in Mali. J. Dev. Econ. 98:1124–35
    [Google Scholar]
  19. Beegle K, De Weerdt J, Friedman J, Gibson J. 2012. Methods of household consumption measurement through surveys: experimental results from Tanzania. J. Dev. Econ. 98:13–18
    [Google Scholar]
  20. Berazneva J. 2014. Audio recording of household interviews to ensure data quality. J. Int. Dev. 26:2290–96
    [Google Scholar]
  21. Berazneva J, McBride L, Sheahan M, Güereña D. 2018. Empirical assessment of subjective and objective soil fertility metrics in east Africa: implications for researchers and policy makers. World Dev. 105:367–82
    [Google Scholar]
  22. Berkson J. 1950. Are there two regressions?. J. Am. Stat. Assoc. 45:164–80
    [Google Scholar]
  23. Bevis L, Barrett CB. 2020. Close to the edge: high productivity at plot peripheries and the inverse size-productivity relationship. J. Dev. Econ. 143:102377
    [Google Scholar]
  24. Biemer PP. 2010. Total survey error: design, implementation, and evaluation. Public Opin. Q. 74:5817–48
    [Google Scholar]
  25. Birner R, Daum T, Pray C. 2021. Who drives the digital revolution in agriculture? A review of supply-side trends, players and challenges. Appl. Econ. Perspect. Policy 43:1260–85
    [Google Scholar]
  26. Bold T, Kaizzi KC, Svensson J, Yanagizawa-Drott D. 2017. Lemon technologies and adoption: measurement, theory and evidence from agricultural markets in Uganda. Q. J. Econ. 132:1055–1100
    [Google Scholar]
  27. Bound J, Brown C, Mathiowetz N. 2001. Measurement error in survey data. Handbook of Econometrics, Vol. 5 JJ Heckman, E Leamer 3705–43. Amsterdam: Elsevier
    [Google Scholar]
  28. Bulte E, Di Falco S, Kassie M, Vollenweider X 2023. Low-quality seeds, labor supply and economic returns: experimental evidence from Tanzania. Rev. Econ. Stat. https://doi.org/10.1162/rest_a_01285
    [Crossref] [Google Scholar]
  29. Burke M, Lobell DB. 2017. Satellite-based assessment of yield variation and its determinants in smallholder African systems. PNAS 114:92189–94
    [Google Scholar]
  30. Burke WJ, Morgan S, Namonje T, Muyanga M, Mason NM. 2020. Beyond the “inverse relationship”: area mismeasurement affects actual productivity, not just how we understand it Res. Pap. 159 Feed Fut. Innov. Lab Food Secur. Policy, Mich. State. Univ. Lansing:
    [Google Scholar]
  31. Calvi R, Lewbel A, Tommasi D. 2022. LATE with missing or mismeasured treatment. J. Bus. Econ. Stat. 40:1701–17
    [Google Scholar]
  32. Carletto C, Dillon A, Zezza A. 2021. Agricultural data collection to minimize measurement error and maximize coverage. Handbook of Agricultural Economics, Vol. 5 CB Barrett, DR Just 4407–80. Amsterdam: Elsevier
    [Google Scholar]
  33. Carletto C, Gourlay S, Winters P. 2015. From guesstimates to GPStimates: land area measurement and implications for agricultural analysis. J. Afr. Econ. 24:5593–628
    [Google Scholar]
  34. Carletto C, Savastano S, Zezza A. 2013. Fact or artifact: the impact of measurement errors on the farm size-productivity relationship. J. Dev. 103:254–61
    [Google Scholar]
  35. Caroli E, Weber-Baghdiguian L. 2016. Self-reported health and gender: the role of social norms. Soc. Sci. Med. 1: 153:220–29
    [Google Scholar]
  36. Chetty R. 2012. Bounds on elasticities with optimization frictions: a synthesis of micro and macro evidence on labor supply. Econometrica 80:3969–18
    [Google Scholar]
  37. Cohen A. 2019. Estimating farm production parameters with measurement error in land area. Econ. Dev. Cult. Change 68:1305–34
    [Google Scholar]
  38. David IP. 1978. Non-sampling errors in agricultural surveys. Review, current findings, and suggestions for future research Paper presented at the Philippine Statistical Association Annual Conference June 19 Manila: https://www.pssc.org.ph/wp-content/pssc-archives/The%20Philippine%20Statistician/1978/Num%201-2/06_Non-Sampling%20Errors%20in%20Agricultural%20Surveys.pdf
    [Google Scholar]
  39. De Nicola F, Giné X. 2014. How accurate are recall data? Evidence from coastal India. J. Dev. Econ. 106:52–65
    [Google Scholar]
  40. Dervisevic E, Goldstein M. 2023. He said, she said: the impact of gender and marriage perceptions on self and proxy reporting of labor. J. Dev. Econ. 161:103028
    [Google Scholar]
  41. Desiere S, Jolliffe D. 2018. Land productivity and plot size: Is measurement error driving the inverse relationship?. J. Dev. Econ. 130:184–98
    [Google Scholar]
  42. De Weerdt J, Beegle K, Friedman J, Gibson J. 2015. What does variation in survey design reveal about the nature of measurement errors in household consumption?. Oxf. Bull. Econ. Stat. 77:3466–74
    [Google Scholar]
  43. De Weerdt J, Gibson J, Beegle K. 2020. What can we learn from experimenting with survey methods?. Annu. Rev. Resour. Econ. 12:431–47
    [Google Scholar]
  44. Dillon A, Bardasi E, Beegle K, Serneels P. 2012. Explaining variation in child labor statistics. J. Dev. Econ. 98:1136–47
    [Google Scholar]
  45. Dillon A, Gourlay S, McGee K, Oseni G. 2019. Land measurement bias and its empirical implications: evidence from a validation exercise. Econ. Dev. Cult. Change 67:3595–624
    [Google Scholar]
  46. Dillon A, Karlan D, Udry C, Zinman J. 2020. Good identification, meet good data. World Dev. 127:104796
    [Google Scholar]
  47. Dillon A, Mensah ER. 2021. Respondent biases in household surveys Glob. Poverty Res. Lab. Work. Pap. 21-103 Kellog Sch. Manag., Northwestern Univ. Chicago:
    [Google Scholar]
  48. Di Maio M, Fiala N. 2019. Be wary of those who ask: a randomized experiment on the size and determinants of the enumerator effect. World Bank Econ. Rev. 34:3654–69
    [Google Scholar]
  49. Di Traglia FJ, García-Jimeno C. 2019. Identifying the effect of a mis-classified, binary, endogenous regressor. J. Econom. 209:2376–90
    [Google Scholar]
  50. Ditto PH, Lopez DF. 1992. Motivated skepticism: use of differential decision criteria for preferred and nonpreferred conclusions. J. Pers. Soc. Psychol. 63:4568–84
    [Google Scholar]
  51. Drerup T, Enke B, von Gaudecker H-M. 2017. The precision of subjective data and the explanatory power of economic models. J. Econom. 200:2378–89
    [Google Scholar]
  52. Feder G. 1980. Farm size, risk aversion and the adoption of new technology under uncertainty. Oxf. Econ. Pap. 32:2263–83
    [Google Scholar]
  53. Fermont A, Benson T. 2011. Estimating yield of food crops grown by smallholder farmers Discuss. Pap. 01097 Int. Food Policy Res. Inst. Washington, DC:
    [Google Scholar]
  54. Foster T, Mieno T, Brozović N. 2020. Satellite-based monitoring of irrigation water use: assessing measurement errors and their implications for agricultural water management policy. Water Resour. Res. 56:11e2020WR028378
    [Google Scholar]
  55. Fowlie M, Rubin E, Walker R. 2019. Bringing satellite-based air quality estimates down to earth. AEA Pap. Proc. 109:283–88
    [Google Scholar]
  56. Gabaix X. 2017. Behavioral inattention NBER Work. Pap. 24096
    [Google Scholar]
  57. Gabaix X, Laibson D, Moloche G, Weinberg S 2006. Costly information acquisition: experimental analysis of a boundedly rational model. Am. Econ. Rev. 96:41043–68
    [Google Scholar]
  58. Gaddis I, Oseni G, Palacios-Lopez A, Pieters J. 2021. Measuring farm labor: survey experimental evidence from Ghana. World Bank Econ. Rev. 35:3604–34
    [Google Scholar]
  59. Gaskell GD, Wright DB, O'Muircheartaigh CA 2000. Telescoping of landmark events: implications for survey research. Public Opin Q. 64:177–89
    [Google Scholar]
  60. Gibson J, Olivia S, Boe-Gibson G. 2020. Night lights in economics: sources and uses. J. Econ. Surv. 34:5955–80
    [Google Scholar]
  61. Gibson J, Olivia S, Boe-Gibson G, Li C. 2021. Which night lights data should we use in economics, and where?. J. Dev. Econ. 149:102602
    [Google Scholar]
  62. Gollin D, Udry C. 2021. Heterogeneity, measurement error, and misallocation: evidence from African agriculture. J. Political Econ. 129:11–80
    [Google Scholar]
  63. Gourlay S, Kilic T, Lobell DB. 2019. A new spin on an old debate: errors in farmer-reported production and their implications for inverse scale-productivity relationship in Uganda. J. Dev. Econ. 141:102376
    [Google Scholar]
  64. Greenleaf AR, Gadiaga A, Guiella G, Turke S, Battle N, Ahmed S, Moreau C. 2020. Comparability of modern contraceptive use estimates between a face-to-face survey and a cellphone survey among women in Burkina Faso. PLOS ONE 15:5e0231819
    [Google Scholar]
  65. Hanna R, Mullainathan S, Schwartzstein J. 2014. Learning through noticing: theory and evidence from a field experiment. Q. J. Econ. 129:31311–53
    [Google Scholar]
  66. Hausman JA. 1978. Specification tests in econometrics. Econometrica 46:1251–71
    [Google Scholar]
  67. Hausman JA, Abrevaya J, Scott-Morton FM. 1998. Misclassification of the dependent variable in a discrete-response setting. J. Econom. 87:2239–69
    [Google Scholar]
  68. Himelein K. 2016. Interviewer effects in subjective survey questions: evidence from Timor-Leste. Int. J. Public Opin. Res. 28:4511–33
    [Google Scholar]
  69. Hoderlein S, Winter J. 2010. Structural measurement errors in nonseparable models. J. Econom. 157:432–40
    [Google Scholar]
  70. Hoel J, Michelson H, Norton B. 2022. Misattribution and uncertainty about beliefs prevent learning Work. Pap. Colo. Coll. Colo. Springs: https://www.hopemichelson.org/_files/ugd/bb24e9_86fa26ec96024e03a165cb01134ea96c.pdf
    [Google Scholar]
  71. Hogset H, Barrett CB. 2010. Social learning, social influence, and projection bias: a caution on inferences based on proxy reporting of peer behavior. Econ. Dev. Cult. Change 58:3563–89
    [Google Scholar]
  72. Hu Y. 2008. Identification and estimation of nonlinear models with misclassification error using instrumental variables: a general solution. J. Econom. 144:127–61
    [Google Scholar]
  73. Hu Y, Wansbeek T. 2017. Measurement error models: editors’ introduction. J. Econom. 200:2151–53
    [Google Scholar]
  74. Huntington-Klein N, Arenas A, Beam E, Bertoni M, Bloem J et al. 2021. The influence of hidden researcher decisions in applied microeconomics. Econ. Inq. 59:944–60
    [Google Scholar]
  75. Hyslop DR, Imbens GW. 2001. Bias from classical and other forms of measurement error. J. Bus. Econom. Stat. 19:4475–81
    [Google Scholar]
  76. Imai K, Yamamoto T. 2010. Causal inference with differential measurement error: nonparametric identification and sensitivity analysis. Am. J. Political Sci. 54:2543–60
    [Google Scholar]
  77. Jain M. 2020. The benefits and pitfalls of using satellite data for causal inference. Rev. Environ. Econ. Policy 14:1157–69
    [Google Scholar]
  78. Japec L, Kreuter F, Berg M, Biemer P, Decker P et al. 2015. Big data in survey research. Public Opin. Q. 79:4839–80
    [Google Scholar]
  79. Jouvin M. 2021. Addressing social desirability bias in child labor measurement: an application to cocoa farms in Côte d'Ivoire Econ. Work. Pap. 2021-08 Bordeaux Sch. Econ. Fr.:
    [Google Scholar]
  80. Judge G, Schechter L. 2009. Detecting problems in survey data using Benford's law. J. Hum. Resour. 44:11–24
    [Google Scholar]
  81. Kilic T, Koolwal GB, Moylan HG. 2020. Are you being asked? Impacts of respondent selection on measuring employment Policy Res. Work. Pap. 9152 World Bank Dev. Data Group New York:
    [Google Scholar]
  82. Kilic T, Moylan H, Koolwal G. 2021. Getting the (gender-disaggregated) lay of the land: impact of survey respondent selection on measuring land ownership and rights. World Dev. 146:105545
    [Google Scholar]
  83. Kilic T, Sohnesen TP. 2019. Same question but different answer: experimental evidence on questionnaire design's impact on poverty measured by proxies. Rev. Income Wealth 65:1144–65
    [Google Scholar]
  84. Kosmowski F, Aragaw A, Kilian A, Ambel A, Ilukor J, Yigezu B et al. 2019. Varietal identification in household surveys: results from three household-based methods against the benchmark of DNA fingerprinting in southern Ethiopia. Exp. Agric. 55:3371–85
    [Google Scholar]
  85. Kosmowski F, Chamberlin J, Ayalew H, Sida T, Abay K, Craufurd P. 2021. How accurate are yield estimates from crop cuts? Evidence from smallholder maize farms in Ethiopia. Food Policy 102:102122
    [Google Scholar]
  86. Kreider B, Pepper JV, Gundersen C, Jolliffe D. 2012. Identifying the effects of SNAP (food stamps) on child health outcomes when participation is endogenous and misreported. J. Am. Stat. Assoc. 107:499958–75
    [Google Scholar]
  87. Krumpal I. 2013. Determinants of social desirability bias in sensitive surveys: a literature review. Qual. Quant. 47:42025–47
    [Google Scholar]
  88. Laajaj R, Macours K. 2021. Measuring skills in developing countries. J. Hum. Resour. 56:41254–95
    [Google Scholar]
  89. Lamanna C, Hachhethu K, Chesterman S, Singhal G, Mwongela B et al. 2019. Strengths and limitations of computer assisted telephone interviews (CATI) for nutrition data collection in rural Kenya. PLOS ONE 14:1e0210050
    [Google Scholar]
  90. LoPalo M. 2022. Temperature, worker productivity, and adaptation: evidence from survey data production. Am. Econ. J. Appl. Econ. 13:3101–24
    [Google Scholar]
  91. Lavrakas PJ. 2008. Encyclopedia of Survey Research Methods Thousand Oaks, CA: Sage
    [Google Scholar]
  92. Lee YJ, Wilhelm D. 2020. Testing for the presence of measurement error in Stata. Stata J. 20:2382–404
    [Google Scholar]
  93. Lewbel A. 2007. Estimation of average treatment effects with misclassification. Econometrica 75:2537–551
    [Google Scholar]
  94. Li Z, Ortiz-Bobea A. 2022. On the timing of relevant weather conditions in agriculture. J. Agric. Appl. Econ. Assoc. 1:2180–95
    [Google Scholar]
  95. Lobell DB, Azzari G, Burke M, Gourlay S, Jin Z, Kilic T, Murray S 2019. Eyes in the sky, boots on the ground: assessing satellite- and ground-based approaches to crop yield measurement and analysis. Am. J. Agric. Econ. 102:1202–19
    [Google Scholar]
  96. Lobell DB, Ortiz-Monasterio JI, Falcon WP. 2007. Yield uncertainty at the field scale evaluated with multi-year satellite data. Agric. Syst. 92:1–376–90
    [Google Scholar]
  97. Maertens A, Magomba C, Michelson H. 2022. Restoring trust: evidence from the fertilizer market in Tanzania Work. Pap. Univ. Sussex UK: https://www.hopemichelson.org/_files/ugd/bb24e9_1394339f607d45219ffd678c208c33c1.pdf
    [Google Scholar]
  98. Mahajan A. 2006. Identification and estimation of regression models with misclassification. Econometrica 74:3631–65
    [Google Scholar]
  99. Mallia P. 2022. You reap what (you think) you sow? Evidence on farmers’ behavioral adjustments in the case of correct crop varietal identification Work. Pap. Paris Sch. Econ.
    [Google Scholar]
  100. Maredia MK, Bartle B. 2023. Excess demand amid quality misperceptions: the case for low-cost seed quality signalling strategies. Eur. Rev. Agric. Econ. 50:360–94
    [Google Scholar]
  101. Marenya P, Barrett CB, Gulick T. 2008. Farmers’ perceptions of soil fertility and fertilizer yield response in Kenya Work. Pap. Cornell Univ. Ithaca, NY:
    [Google Scholar]
  102. Mehrabi Z, McDowell MJ, Ricciardi V, Levers C, Diego C et al. 2021. The global divide in data-driven farming. Nat. Sustain. 4:54–160
    [Google Scholar]
  103. Meyer BD, Mittag N. 2017. Misclassification in binary choice models. J. Econom. 200:2295–311
    [Google Scholar]
  104. Michelson H, Fairbairn A, Ellison B, Maertens A, Manyong V. 2021. Misperceived quality: fertilizer in Tanzania. J. Dev. Econ. 148:102579
    [Google Scholar]
  105. Michler JD, Josephson A, Kilic T, Murray S. 2022. Privacy protection, measurement error, and the integration of remote sensing and socioeconomic survey data. J. Dev. Econ. 158:102927
    [Google Scholar]
  106. Moore HE, Rutherfurd ID. 2020. Researching agricultural environmental behaviour: improving the reliability of self-reporting. J. Rural Stud. 76:296–304
    [Google Scholar]
  107. Mullally C. 2012. Perceptions and participation: research design with low program enrollment and heterogeneous impacts in development Work. Pap. Dep. Agric. Resour. Econ., Univ. Calif. Davis:
    [Google Scholar]
  108. Norwood FB, Lusk JL. 2011. Social desirability bias in real, hypothetical, and inferred valuation experiments. Am. J. Agric. Econ. 93:2528–34
    [Google Scholar]
  109. Nyhan B. 2020. Facts and myths about misperceptions. J. Econ. Perspect. 34:3220–36
    [Google Scholar]
  110. Phung TD, Hardeweg B, Praneetvatakul S, Waibel H. 2015. Non-sampling error and data quality: What can we learn from surveys to collect data for vulnerability measurements?. World Dev. 71:25–35
    [Google Scholar]
  111. Rabin M, Schrag JL. 1999. First impressions matter: a model of confirmatory bias. Q. J. Econ. 114:137–82
    [Google Scholar]
  112. Schennach SM. 2016. Recent advances in the measurement error literature. Annu. Rev. Econ. 8:341–77
    [Google Scholar]
  113. Schennach SM 2020. Mismeasured and unobserved variables. Handbook of Econometrics, Vol. 7A S Durlauf, L Hansen, J Heckman, R Matzkin 487–565. Amsterdam: Elsevier
    [Google Scholar]
  114. Schennach SM, Hu Y. 2013. Nonparametric identification and semiparametric estimation of classical measurement error models without side information. J. Am. Stat. Assoc. 108:177–86
    [Google Scholar]
  115. Schwarz N, Knäuper B, Hippler HJ, Noelle-Neumann E, Clark L. 1991. Rating scales: numeric values may change the meaning of scale labels. Public Opin. Q. 55:4570–82
    [Google Scholar]
  116. Schwartzstein J. 2014. Selective attention and learning. J. Eur. Econ. Assoc. 12:61423–52
    [Google Scholar]
  117. Schündeln M. 2018. Multiple visits and data quality in household surveys. Oxf. Bull. Econ. Stat. 80:2380–405
    [Google Scholar]
  118. Sharma H, Gibson J. 2019. Civil war and international migration from Nepal: evidence from a spatial durbin model Work. Pap. Econ. 6/19 Univ. Waikato Hamilton, NZ:
    [Google Scholar]
  119. Spielman D, Lecoutere E, Makhija S, Van Campenhout B. 2021. Information and communications technology (ICT) and agricultural extension in developing countries. Annu. Rev. Resour. Econ. 13:177–201
    [Google Scholar]
  120. Sudman S, Bradburn NM. 1973. Effects of time and memory factors on response in surveys. J. Am. Stat. Assoc. 68:344805–15
    [Google Scholar]
  121. Tamim A, Harou A, Burke M, Lobell D, Madajewicz M et al. 2022. Relaxing credit and information constraints: 5-year experimental evidence from Tanzanian agriculture Work. Pap. Dep. Econ., Univ. Calif. Berkeley:
    [Google Scholar]
  122. Tittonell P, Muriuki A, Klapwijk CJ, Shepherd KD, Coe R, Vanlauwe B. 2013. Soil heterogeneity and soil fertility gradients in smallholder farms of the East African highlands. Soil Sci. Soc. Am. J. 77:2524–38
    [Google Scholar]
  123. Tittonell P, Vanlauwe B, Leffelaar PA, Shepherd KD, Giller KE. 2005. Exploring diversity in soil fertility management of smallholder farms in western Kenya: II. Within-farm variability in resource allocation, nutrient flows and soil fertility status. Agric. Ecosyst. Environ. 110:3–4166–84
    [Google Scholar]
  124. Vanlauwe B, Coe R, Giller KE. 2019. Beyond averages: new approaches to understand heterogeneity and risk of technology success or failure in smallholder farming. Exp. Agric. 55:S184–106
    [Google Scholar]
  125. Wilhelm D. 2019. Testing for the presence of measurement error Cemmap Work. Pap. CWP45/18 Inst. Fiscal Stud., Dep. Econ. Univ. Coll. London:
    [Google Scholar]
  126. Wineman A, Njagi T, Anderson CL, Reynolds TW, Alia DY et al. 2020. A case of mistaken identity? Measuring rates of improved seed adoption in Tanzania using DNA fingerprinting. J. Agric. Econ. 71:3719–41
    [Google Scholar]
  127. Wollburg P, Tiberti M, Zezza A. 2021. Recall length and measurement error in agricultural surveys. Food Policy 100:102003
    [Google Scholar]
  128. Wossen T, Abay KA, Abdoulaye T. 2022. Misperceiving and misreporting input quality: Implications for input use and productivity. J. Dev. Econ. 157:102869
    [Google Scholar]
  129. Wossen T, Abdoulaye T, Alene A, Nguimkeu P, Feleke S et al. 2019a. Estimating the productivity impacts of technology adoption in the presence of misclassification. Am. J. Agric. Econ. 101:11–16
    [Google Scholar]
  130. Wossen T, Alene A, Abdoulaye T, Feleke S, Rabbi IY, Manyong V 2019b. Poverty reduction effects of agricultural technology adoption: the case of improved cassava varieties in Nigeria. J. Agric. Econ. 70:2392–407
    [Google Scholar]
  131. Yeh C, Perez A, Driscoll A, Azzari G, Tang Z et al. 2020. Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nat. Commun. 11:12583
    [Google Scholar]
/content/journals/10.1146/annurev-resource-101422-090049
Loading
/content/journals/10.1146/annurev-resource-101422-090049
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error