1932

Abstract

Rapid advances and diffusion of artificial intelligence (AI) technologies have the potential to transform agriculture globally by improving measurement, prediction, and site-specific management on the farm, enabling autonomous equipment that is trained to mimic human behavior and developing recommendation systems designed to autonomously achieve various tasks. Here, we discuss the applications of AI-enabled technologies in agriculture, including those that are capable of on-farm reinforcement learning and key attributes that distinguish them from precision technologies currently available. We then describe various ways through which AI-driven technologies are likely to change the decision space for farmers and require changes to the theoretical and empirical economic models that seek to understand the incentives for their adoption. We conclude with a discussion of areas for future research on the economic, environmental, and equity implications of AI-enabled technology adoption for the agricultural sector.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-101623-092515
2024-10-07
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/resource/16/1/annurev-resource-101623-092515.html?itemId=/content/journals/10.1146/annurev-resource-101623-092515&mimeType=html&fmt=ahah

Literature Cited

  1. Akanle OM, Zhang DZ. 2008.. Agent-based model for optimising supply-chain configurations. . Int. J. Prod. Econ. 115:(2):44460
    [Crossref] [Google Scholar]
  2. Atallah SS, Gómez MI, Conrad JM. 2017.. Specification of spatial-dynamic externalities and implications for strategic behavior in disease control. . Land Econ. 93:(2):20929
    [Crossref] [Google Scholar]
  3. Atallah SS, Gómez MI, Conrad JM, Nyrop JP. 2015.. A plant-level, spatial, bioeconomic model of plant disease diffusion and control: grapevine leafroll disease. . Am. J. Agric. Econ. 97:(1):199218
    [Crossref] [Google Scholar]
  4. Atallah SS, Gómez MI, Jaramillo J. 2018.. A bioeconomic model of ecosystem services provision: coffee berry borer and shade-grown coffee in Colombia. . Ecol. Econ. 144::12938
    [Crossref] [Google Scholar]
  5. Atik C, Martens B. 2021.. Competition problems and governance of non-personal agricultural machine data: comparing voluntary initiatives in the US and EU. JRC Digit. Econ. Work. Pap. 2020-07 , Eur. Comm., Joint Res. Cent., Seville:
    [Google Scholar]
  6. Baerenklau KA. 2005.. Toward an understanding of technology adoption: risk, learning, and neighborhood effects. . Land Econ. 81:(1):119
    [Crossref] [Google Scholar]
  7. Ben Ayed R, Hanana M. 2021.. Artificial intelligence to improve the food and agriculture sector. . J. Food Q. 2021::5584754
    [Google Scholar]
  8. BenDor T, Scheffran J, Hannon B. 2009.. Ecological and economic sustainability in fishery management: a multi-agent model for understanding competition and cooperation. . Ecol. Econ. 68:(4):106173
    [Crossref] [Google Scholar]
  9. Berger T. 2001.. Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. . Agric. Econ. 25:(2–3):24560
    [Google Scholar]
  10. Boyer CN, Brorsen BW. 2013.. Changes in beef packers’ market power after the livestock mandatory price reporting act: an agent-based auction. . Am. J. Agric. Econ. 95:(4):85976
    [Crossref] [Google Scholar]
  11. Bullock DS, Boerngen M, Tao H, Maxwell B, Luck JD, et al. 2019.. The data-intensive farm management project: changing agronomic research through on-farm precision experimentation. . Agron. J. 111:(6):273646
    [Crossref] [Google Scholar]
  12. Cardona Santos E, Storm H, Rasch S. 2021.. The cost-effectiveness of conservation auctions in the presence of asset specificity: an agent-based model. . Land Use Policy 102::104907
    [Crossref] [Google Scholar]
  13. Caswell MF, Zilberman D. 1986.. The effects of well depth and land quality on the choice of irrigation technology. . Am. J. Agric. Econ. 68:(4):798811
    [Crossref] [Google Scholar]
  14. Chang Y, Wang R. 2023.. Conservatives endorse Fintech? Individual regulatory focus attenuates the algorithm aversion effects in automated wealth management. . Comput. Hum. Behav. 148::107872
    [Crossref] [Google Scholar]
  15. Chen M, Cui Y, Wang X, Xie H, Liu F, et al. 2021.. A reinforcement learning approach to irrigation decision-making for rice using weather forecasts. . Agric. Water Manag. 250::106838
    [Crossref] [Google Scholar]
  16. Cohen SN, Snow D, Szpruch L. 2021.. Black-box model risk in finance. . arXiv:2102.04757v1 [q-fin.CP]
  17. David PA. 1975.. Technical Choice Innovation and Economic Growth: Essays on American and British Experience in the Nineteenth Century. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  18. Dixit AK, Pindyck RS. 1994.. Investment Under Uncertainty. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  19. Dominici A, Boncinelli F, Marone E. 2019.. Lifestyle entrepreneurs in winemaking: an exploratory qualitative analysis on the non-pecuniary benefits. . Int. J. Wine Bus. Res. 31:(3):385405
    [Crossref] [Google Scholar]
  20. Erickson B, Lowenberg-DeBoer J. 2021.. 2021 Precision agriculture dealership survey confirms a data driven market for retailers. . CropLife News, July 5. https://www.croplife.com/management/2021-precision-agriculture-dealership-survey-confirms-a-data-driven-market-for-retailers/
    [Google Scholar]
  21. Eur. Comm. 2018.. The European Commission's High-Level Expert Group on Artificial Intelligence. A definition of AI: main capabilities and scientific disciplines. Rep., December 18 , Dir.-Gen. Comm., Brussels:
    [Google Scholar]
  22. Fagiolo G, Birchenhall C, Windrum P. 2007.. Empirical validation in agent-based models: introduction to the special issue. . Comput. Econ. 30:(3):18994
    [Crossref] [Google Scholar]
  23. Finger R. 2023.. Digital innovations for sustainable and resilient agricultural systems. . Eur. Rev. Agric. Econ. 50:(4):1277309
    [Crossref] [Google Scholar]
  24. Finger R, Swinton SM, El Benni N, Walter A. 2019.. Precision farming at the nexus of agricultural production and the environment. . Annu. Rev. Resour. Econ. 11::31335
    [Crossref] [Google Scholar]
  25. Foster AD, Rosenzweig MR. 1995.. Learning by doing and learning from others: human capital and technical change in agriculture. . J. Political Econ. 103:(6):1176209
    [Crossref] [Google Scholar]
  26. Gautron R, Maillard O-A, Preux P, Corbeels M, Sabbadin R. 2022.. Reinforcement learning for crop management support: review, prospects and challenges. . Comput. Electron. Agric. 200::107182
    [Crossref] [Google Scholar]
  27. Granco G, Heier Stamm JL, Bergtold JS, Daniels MD, Sanderson MR, et al. 2019.. Evaluating environmental change and behavioral decision-making for sustainability policy using an agent-based model: a case study for the Smoky Hill River Watershed, Kansas. . Sci. Total Environ. 695::133769
    [Crossref] [Google Scholar]
  28. Gregory RW, Henfridsson O, Kaganer E, Kyriakou H. 2021.. The role of artificial intelligence and data network effects for creating user value. . Acad. Manag. Rev. 46:(3):53451
    [Crossref] [Google Scholar]
  29. Gregory RW, Henfridsson O, Kaganer E, Kyriakou H. 2022.. Data network effects: key conditions, shared data, and the data value duality. . Acad. Manag. Rev. 47:(1):18992
    [Crossref] [Google Scholar]
  30. Grêt-Regamey A, Huber SH, Huber R. 2019.. Actors’ diversity and the resilience of social-ecological systems to global change. . Nat. Sustain. 2:(4):29097
    [Crossref] [Google Scholar]
  31. Griliches Z. 1957.. Hybrid corn: an exploration in the economics of technological change. . Econometrica 25:(4):50122
    [Crossref] [Google Scholar]
  32. Grimm V, Railsback SF. 2005.. Individual-Based Modeling and Ecology. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  33. Günder M, Yamati FRI, Alcántara AAB, Mahlein A-K, Sifa R, Bauckhage C. 2024.. SugarViT—multi-objective regression of UAV images with vision transformers and deep label distribution learning demonstrated on disease severity prediction in sugar beet. . arXiv:2311.03076 [cs.CV]
  34. Hamdan MF, Mohd Noor SN, Abd-Aziz N, Pua T-L, Tan BC. 2022.. Green revolution to gene revolution: technological advances in agriculture to feed the world. . Plants 11:(10):1297
    [Crossref] [Google Scholar]
  35. Hennessy T, Läpple D, Moran B. 2016.. The digital divide in farming: A problem of access or engagement?. Appl. Econ. Perspect. Policy 38:(3):47491
    [Crossref] [Google Scholar]
  36. Holmes EE, Lewis MA, Banks JE, Veit RR. 1994.. Partial differential equations in ecology: spatial interactions and population dynamics. . Ecology 75:(1):1729
    [Crossref] [Google Scholar]
  37. Howley P. 2015.. The happy farmer: the effect of nonpecuniary benefits on behavior. . Am. J. Agric. Econ. 97:(4):107286
    [Crossref] [Google Scholar]
  38. Howley P, Buckley C, Donoghue CO, Ryan M. 2015.. Explaining the economic ‘irrationality' of farmers’ land use behaviour: the role of productivist attitudes and non-pecuniary benefits. . Ecol. Econ. 109::18693
    [Crossref] [Google Scholar]
  39. Isik M, Khanna M. 2003.. Stochastic technology, risk preferences, and adoption of site-specific technologies. . Am. J. Agric. Econ. 85:(2):30517
    [Crossref] [Google Scholar]
  40. Jarrahi MH, Lutz C, Boyd K, Oesterlund C, Willis M. 2023.. Artificial intelligence in the work context. . J. Assoc. Inform. Sci. Technol. 74:(3):30310
    [Crossref] [Google Scholar]
  41. Javaid M, Haleem A, Khan IH, Suman R. 2023.. Understanding the potential applications of artificial intelligence in agriculture sector. . Adv. Agrochem. 2:(1):1530
    [Crossref] [Google Scholar]
  42. Khanna M. 2001.. Sequential adoption of site-specific technologies and its implications for nitrogen productivity: a double selectivity model. . Am. J. Agric. Econ. 83:(1):3551
    [Crossref] [Google Scholar]
  43. Khanna M. 2021.. Digital transformation of the agricultural sector: pathways, drivers and policy implications. . Appl. Econ. Perspect. Policy 43:(4):122142
    [Crossref] [Google Scholar]
  44. Khanna M, Atallah SS, Kar S, Sharma B, Wu L, et al. 2022.. Digital transformation for a sustainable agriculture in the United States: opportunities and challenges. . Agric. Econ. 53:(6):92437
    [Crossref] [Google Scholar]
  45. Khanna M, Isik M, Winter-Nelson A. 2000.. Investment in site-specific crop management under uncertainty: Implications for nitrogen pollution control and environmental policy. . Agric. Econ. 24:(1):912
    [Google Scholar]
  46. Khanna M, Isik M, Zilberman D. 2002.. Cost-effectiveness of alternative green payment policies for conservation technology adoption with heterogeneous land quality. . Agric. Econ. 27::15774
    [Google Scholar]
  47. Khanna M, Millock K, Zilberman D. 1999.. Sustainability, technology and incentives. . In Flexible Incentives for the Adoption of Environmental Technologies in Agriculture, ed. F Casey, A Schmitz, S Swinton, D Zilberman , pp. 97118. New York:: Springer Sci. + Bus.
    [Google Scholar]
  48. Khanna M, Zilberman D. 1997.. Incentives, precision technology and environmental protection. . Ecol. Econ. 23:(1):2543
    [Crossref] [Google Scholar]
  49. Ku YC, Wang HX. 2022.. The factors influencing the willingness of investors to use robo-advisors. . In HCI in Business, Government and Organizations (HCII 2022). Lecture Notes in Computer Science, Vol. 13327, ed. F Fui-Hoon Nah, K Siau , pp. 28699. Cham, Switz:.: Springer
    [Google Scholar]
  50. Kuandykov A, Uskenbayeva R, Cho YI, Kozhamzharova D, Baimuratov O, et al. 2015.. Multi-agent based anti-locust territory protection system. . Proc. Comput. Sci. 56::47783
    [Crossref] [Google Scholar]
  51. Liakos K, Busato P, Moshou D, Pearson S, Bochtis D. 2018.. Machine learning in agriculture: a review. . Sensors 18:(8):2674
    [Crossref] [Google Scholar]
  52. Longoni C, Bonezzi A, Morewedge CK. 2019.. Resistance to medical artificial intelligence. . J. Consum. Res. 46:(4):62950
    [Crossref] [Google Scholar]
  53. Lowenberg-DeBoer J. 2022.. Economics of adoption for digital automated technologies in agriculture. Background paper for the state of food and agriculture 2022. FAO Agric. Dev. Econ. Work. Pap. 22-10 , Food Agric. Organ., Rome:
    [Google Scholar]
  54. Lowenberg-DeBoer J, Behrendt K, Ehlers M-H, Dillon C, Gabriel A, et al. 2022.. Lessons to be learned in adoption of autonomous equipment for field crops. . Appl. Econ. Perspect. Policy 44:(2):84864
    [Crossref] [Google Scholar]
  55. Ludik J. 2016.. Artificial intelligence in finance, education, healthcare, manufacturing, agriculture, and government. LinkedIn Rep., Sep. 13. https://www.linkedin.com/pulse/artificial-intelligence-finance-education-healthcare-government/
    [Google Scholar]
  56. Ma X, Shi G. 2015.. A dynamic adoption model with Bayesian learning: an application to U.S. soybean farmers. . Agric. Econ. 46:(1):2538
    [Crossref] [Google Scholar]
  57. Magistri F, Weyler J, Gogoll D, Lottes P, Behley J, et al. 2023.. From one field to another—unsupervised domain adaptation for semantic segmentation in agricultural robotics. . Comput. Electron. Agric. 212::108114
    [Crossref] [Google Scholar]
  58. Mahlein A-K, Heim RH-J, Brugger A, Gold K, Li Y, et al. 2022.. Special issue: digital plant pathology for precision agriculture. . J. Plant Dis. Protect. 129:(3):45556
    [Crossref] [Google Scholar]
  59. Mahmud H, Islam AN, Ahmed SI, Smolander K. 2022.. What influences algorithmic decision-making? A systematic literature review on algorithm aversion. . Technol. Forecast. Soc. Change 175::121390
    [Crossref] [Google Scholar]
  60. Meisner MH, Rosenheim JA, Tagkopoulos I. 2016.. A data-driven, machine learning framework for optimal pest management in cotton. . Ecosphere 7:(3):e01263
    [Crossref] [Google Scholar]
  61. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, et al. 2015.. Human-level control through deep reinforcement learning. . Nature 518:(7540):52933
    [Crossref] [Google Scholar]
  62. Montes de Oca Munguia O, Pannell DJ, Llewellyn R, Stahlmann-Brown P. 2021.. Adoption pathway analysis: representing the dynamics and diversity of adoption for agricultural practices. . Agric. Syst. 191::103173
    [Crossref] [Google Scholar]
  63. Niszczota P, Kaszás D. 2020.. Robo-investment aversion. . PLOS ONE 15:(9):e0239277
    [Crossref] [Google Scholar]
  64. Pannell DJ, Claassen R. 2020.. The roles of adoption and behavior change in agricultural policy. . Appl. Econ. Perspect. Policy 42:(1):3141
    [Crossref] [Google Scholar]
  65. Pantazi XE, Moshou D, Oberti R, West J, Mouazen AM, Bochtis D. 2017.. Detection of biotic and abiotic stresses in crops by using hierarchical self organizing classifiers. . Precis. Agric. 18:(3):38393
    [Crossref] [Google Scholar]
  66. Pezzo MV, Beckstead JW. 2020.. Algorithm aversion is too often presented as though it were non-compensatory: a reply to Longoni et al. 2020. . Judgm. Decis. Making 15:(3):44951
    [Crossref] [Google Scholar]
  67. Prokopy LS, Floress K, Klotthor-Weinkauf D, Baumgart-Getz A. 2008.. Determinants of agricultural best management practice adoption: evidence from the literature. . J. Soil Water Conserv. 63:(5):30011
    [Crossref] [Google Scholar]
  68. Rasch S, Heckelei T, Storm H, Oomen R, Naumann C. 2017.. Multi-scale resilience of a communal rangeland system in South Africa. . Ecol. Econ. 131::12938
    [Crossref] [Google Scholar]
  69. Rich KM, Winter-Nelson A. 2007.. An integrated epidemiological-economic analysis of foot and mouth disease: applications to the southern cone of South America. . Am. J. Agric. Econ. 89:(3):68297
    [Crossref] [Google Scholar]
  70. Sanchirico JN, Wilen JE. 1999.. Bioeconomics of spatial exploitation in a patchy environment. . J. Environ. Econ. Manag. 37:(2):12950
    [Crossref] [Google Scholar]
  71. Sanchirico JN, Wilen JE. 2005.. Optimal spatial management of renewable resources: matching policy scope to ecosystem scale. . J. Environ. Econ. Manag. 50:(1):2346
    [Crossref] [Google Scholar]
  72. Schreinemachers P, Berger T, Aune JB. 2007.. Simulating soil fertility and poverty dynamics in Uganda: a bio-economic multi-agent systems approach. . Ecol. Econ. 64:(2):387401
    [Crossref] [Google Scholar]
  73. Shang L, Heckelei T, Gerullis MK, Börner J, Rasch S. 2021.. Adoption and diffusion of digital farming technologies—integrating farm-level evidence and system interaction. . Agric. Syst. 190::103074
    [Crossref] [Google Scholar]
  74. Sharma R, Kamble SS, Gunasekaran A, Kumar V, Kumar A. 2020.. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. . Comput. Operat. Res. 119::104926
    [Crossref] [Google Scholar]
  75. Siddique T. 2019.. Agrobiodiversity for pest management: an integrated bioeconomic simulation and machine learning approach. MA Thesis , Dep. Nat. Resourc. Environ., Univ. NH, Durham:
    [Google Scholar]
  76. Siddique T, Hau JL, Atallah S, Petrik M. 2019.. Robust pest management using reinforcement learning. Presented at The Multi-Disciplinary Conference on Reinforcement Learning and Decision Making, Montreal, Can.:, July 7–10. https://www.cs.unh.edu/∼mpetrik/pub/Siddique2019.pdf
    [Google Scholar]
  77. Smith MD, Sanchirico JN, Wilen JE. 2009.. The economics of spatial-dynamic processes: applications to renewable resources. . J. Environ. Econ. Manag. 57:(1):10421
    [Crossref] [Google Scholar]
  78. Smith MJ. 2020.. Getting value from artificial intelligence in agriculture. . Anim. Prod. Sci. 60:(1):46
    [Crossref] [Google Scholar]
  79. Sparrow R, Howard M, Degeling C. 2021.. Managing the risks of artificial intelligence in agriculture. . NJAS Impact Agric. Life Sci. 93:(1):17296
    [Google Scholar]
  80. Streletskaya NA, Bell SD, Kecinski M, Li T, Banerjee S, et al. 2020.. Agricultural adoption and behavioral economics: bridging the gap. . Appl. Econ. Perspect. Policy 42:(1):5466
    [Crossref] [Google Scholar]
  81. Talaviya T, Shah D, Patel N, Yagnik H, Shah M. 2020.. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. . Artif. Intel. Agric. 4::5873
    [Google Scholar]
  82. Tesfatsion L. 2006.. Agent-based computational economics: a constructive approach to economic theory. . In Handbook of Computational Economics, Vol. 2, ed. L Tesfatsion, KL Judd , pp. 83180. Amsterdam:: North-Holland
    [Google Scholar]
  83. Tzachor A, Devare M, King B, Avin S, hÉigeartaigh SÓ. 2022.. Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. . Nat. Mach. Intel. 4:(2):1049
    [Crossref] [Google Scholar]
  84. Vinyals M, Sabbadin R, Couture S, Sadou L, Thomopoulos R, et al. 2023.. Toward AI-designed innovation diffusion policies using agent-based simulations and reinforcement learning: the case of digital tool adoption in agriculture. . Front. Appl. Math. Stat. 9::1000785
    [Crossref] [Google Scholar]
  85. Walter A, Finger R, Huber R, Buchmann N. 2017.. Smart farming is key to developing sustainable agriculture. . PNAS 114:(24):614850
    [Crossref] [Google Scholar]
  86. Weersink A, Fulton M. 2020.. Limits to profit maximization as a guide to behavior change. . Appl. Econ. Perspect. Policy 42:(1):6779
    [Crossref] [Google Scholar]
  87. Wilen JE. 2007.. Economics of spatial-dynamic processes. . Am. J. Agric. Econ. 89:(5):113444
    [Crossref] [Google Scholar]
  88. Wu L, Atallah SS, Krupke C, Ingwell L. 2023.. Mitigating the tradeoff between pest management and pollination: a bioeconomic model. . Work. Pap., Dep. Agric. Consum. Econ., Univ. Ill. Urbana-Champaign. http://dx.doi.org/10.2139/ssrn.4601766
    [Google Scholar]
  89. Wuepper D, Bukchin-Peles S, Just D, Zilberman D. 2023.. Behavioral agricultural economics. . Appl. Econ. Perspect. Policy 45:(4):2094105
    [Crossref] [Google Scholar]
  90. Yu C, Khanna M, Atallah SS, Kar S, Bagavathiannan M, Chowdhary G. 2024.. Herbicide-resistant weed management with robots: a weed ecological-economic model. . Agric. Econ. In press
    [Google Scholar]
  91. Zilberman D, Khanna M, Lipper L. 1997.. Economics of new technologies for sustainable agriculture. . Aust. J. Agric. Resour. Econ. 41:(1):6380
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-resource-101623-092515
Loading
/content/journals/10.1146/annurev-resource-101623-092515
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error