1932

Abstract

The pairing of massive data sets with processes—or algorithms—written in computer code to sort through, organize, extract, or mine them has made inroads in almost every major social institution. This article proposes a reading of the scholarly literature concerned with the social implications of this transformation. First, we discuss the rise of a new occupational class, which we call the coding elite. This group has consolidated power through their technical control over the digital means of production and by extracting labor from a newly marginalized or unpaid workforce, the cybertariat. Second, we show that the implementation of techniques of mathematical optimization across domains as varied as education, medicine, credit and finance, and criminal justice has intensified the dominance of actuarial logics of decision-making, potentially transforming pathways to social reproduction and mobility but also generating a pushback by those so governed. Third, we explore how the same pervasive algorithmic intermediation in digital communication is transforming the way people interact, associate, and think. We conclude by cautioning against the wildest promises of artificial intelligence but acknowledging the increasingly tight coupling between algorithmic processes, social structures, and subjectivities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-soc-090820-020800
2021-07-31
2024-09-08
Loading full text...

Full text loading...

/deliver/fulltext/soc/47/1/annurev-soc-090820-020800.html?itemId=/content/journals/10.1146/annurev-soc-090820-020800&mimeType=html&fmt=ahah

Literature Cited

  1. Agamben G. 2014. What is a destituent power?. Environ. Plan. D 32:65–74
    [Google Scholar]
  2. Agre P 1997. Toward a critical technical practice: lessons learned in trying to reform AI. Social Science, Technical Systems, and Cooperative Work: Beyond the Great Divide GC Bowker, SL Star, W Turner, L Gasser 131–157 Mahwah, NJ: Lawrence Erlbaum Assoc. Inc.
    [Google Scholar]
  3. Ahmed S. 2019. The messy truth about social credit. Logic Magazine May 1. https://logicmag.io/china/the-messy-truth-about-social-credit/
    [Google Scholar]
  4. Alexander M. 2012. The New Jim Crow: Mass Incarceration in the Age of Colorblindness New York: New Press
    [Google Scholar]
  5. Amoore L. 2013. The Politics of Possibility: Risk and Security Beyond Probability Durham, NC: Duke Univ. Press
    [Google Scholar]
  6. Amoore L. 2020. Cloud Ethics: Algorithms and the Attributes of Ourselves and Others Durham, NC: Duke Univ. Press
    [Google Scholar]
  7. Andrejevic M. 2020. Automated Media New York: Routledge
    [Google Scholar]
  8. Aneesh A. 2009. Global labor: algocratic modes of organization. Sociol. Theory 27:4347–70
    [Google Scholar]
  9. Arendt H. 2006. Between Past and Future: Eight Exercises in Political Thought New York: Penguin Books
    [Google Scholar]
  10. Ariely D. 2010. Predictably Irrational: The Hidden Forces That Shape Our Decisions New York: Harper Perennial
    [Google Scholar]
  11. Barbrook R. 1998. The hi-tech gift economy. First Monday 3:12 https://doi.org/10.5210/fm.v3i12.631
    [Crossref] [Google Scholar]
  12. Barbrook R, Cameron A 1996. The California ideology. Sci. Cult. 6:144–72
    [Google Scholar]
  13. Barocas S, Selbst AD. 2016. Big data's disparate impact. Calif. Law Rev. 104:3671–732
    [Google Scholar]
  14. Beniger J. 1989. The Control Revolution: Technological and Economic Origins of the Information Society Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  15. Benjamin R. 2019. Race After Technology: Abolitionist Tools for the New Jim Code Cambridge, UK: Polity
    [Google Scholar]
  16. Birch K, Muniesa F. 2020. Assetization Cambridge, MA: MIT Press
    [Google Scholar]
  17. Bishop S. 2018. Anxiety, panic and self-optimization: inequalities and the YouTube algorithm. Convergence 24:169–84
    [Google Scholar]
  18. Bittner E, Garfinkel H. 1984.. “ Good” organizational reasons for “bad” clinic records. Studies in Ethnomethodology Cambridge, UK: Polity
    [Google Scholar]
  19. Bogost I. 2015. The cathedral of computation. The Atlantic Jan. 15. https://www.theatlantic.com/technology/archive/2015/01/the-cathedral-of-computation/384300/
    [Google Scholar]
  20. Bohn S, Thorman T. 2020. Income inequality in California. Public Policy Institute of California/Just the Facts Blog January. https://www.ppic.org/publication/income-inequality-in-california/
    [Google Scholar]
  21. Bostrom N. 2014. Superintelligence: Paths, Dangers, Strategies Oxford, UK: Oxford Univ. Press. , 1st ed..
    [Google Scholar]
  22. Bouk D. 2015. How Our Days Became Numbered: Risk and the Rise of the Statistical Individual Chicago: Univ. Chicago Press
    [Google Scholar]
  23. Bowker GC, Star SL. 1999. Sorting Things Out: Classification and Its Consequences Cambridge, MA: MIT Press
    [Google Scholar]
  24. Braverman H. 1974. Labor and Monopoly Capital: The Degradation of Work in the Twentieth Century New York: Mon. Rev.
    [Google Scholar]
  25. Brayne S. 2017. Big data surveillance: the case of policing. Am. Sociol. Rev. 82:5977–1008
    [Google Scholar]
  26. Brayne S. 2020. Predict and Surveil: Data, Discretion, and the Future of Policing Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  27. Broussard M. 2018. Artificial Unintelligence: How Computers Misunderstand the World Cambridge, MA: MIT Press
    [Google Scholar]
  28. Browne S. 2015. Dark Matters: On the Surveillance of Blackness Durham, NC: Duke Univ. Press
    [Google Scholar]
  29. Brubaker R. 2020. Digital hyperconnectivity and the self. Theory Soc. 49:5771–801
    [Google Scholar]
  30. Brynjolfsson E, McAfee A. 2014. The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies New York: W.W. Norton
    [Google Scholar]
  31. Bucher T. 2018. If…Then: Algorithmic Power and Politics Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  32. Buolamwini J, Gebru T. 2018. Gender shades: intersectional accuracy disparities in commercial gender classification. Proc. Mach. Learn. Res. 81:7791
    [Google Scholar]
  33. Burrell J. 2016. How the machine ‘thinks’: understanding opacity in machine learning algorithms. Big Data Soc 3:1 https://doi.org/10.1177/2053951715622512
    [Crossref] [Google Scholar]
  34. Burris B. 1989. Technocratic organization and control. Organ. Stud. 10:11–22
    [Google Scholar]
  35. Burris B. 1993. Technocracy at Work Albany, NY: SUNY Press
    [Google Scholar]
  36. Bush V. 1945. Science, the endless frontier. Rep., Off. Sci. Res. Dev. Washington, DC:
    [Google Scholar]
  37. Campolo A, Crawford K. 2020. Enchanted determinism: power without responsibility in artificial intelligence. Engaging Sci. Technol. Soc. 6:1–19
    [Google Scholar]
  38. Casilli AA 2017. Digital labor studies go global: toward a digital decolonial turn. Int. J. Commun11:3934–54
    [Google Scholar]
  39. Casilli AA, Posada J 2019. The platformization of labor and society. Society and the Internet: How Networks of Information and Communication Are Changing Our Lives ed. M Graham, WH Dutton 293–306 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  40. Chen K. 2009. Enabling Creative Chaos: The Organization Behind the Burning Man Event Chicago: Univ. Chicago Press
    [Google Scholar]
  41. Cheney-Lippold J. 2016. Jus algoritmi: how the National Security Agency remade citizenship. Int. J. Commun. 10:1721–42
    [Google Scholar]
  42. Cheney-Lippold J. 2017. We Are Data: Algorithms and The Making of Our Digital Selves New York: NYU Press
    [Google Scholar]
  43. Christian B, Griffiths T. 2016. Algorithms to Live By: The Computer Science of Human Decisions New York: Holt
    [Google Scholar]
  44. Christin A 2017. Algorithms in practice: comparing web journalism and criminal justice. Big Data Soc 4:21–14
    [Google Scholar]
  45. Christin A 2020. Metrics at Work: Journalism and the Contested Meaning of Algorithms Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  46. Citron DK. 2007. Technological due process. Wash. Univ. Law Rev. 85:61249–314
    [Google Scholar]
  47. Cohen J. 2019. Between Truth and Power: The Legal Constructions of Informational Capitalism Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  48. Cottom TM 2017. Black cyberfeminism: ways forward for intersectionality and digital sociology. Digital Sociologies J Daniels, K Gregory, TM Cottom 211–31 Bristol, UK: Bristol Univ. Press
    [Google Scholar]
  49. Cottom TM. 2020. Where platform capitalism and racial capitalism meet: the sociology of race and racism in the digital society. Sociol. Race Ethn. 6:4441–49
    [Google Scholar]
  50. Couldry N, Mejias U. 2019. The Costs of Connection: How Data Is Colonizing Human Life and Appropriating It for Capitalism Stanford, CA: Stanford Univ. Press
    [Google Scholar]
  51. Crawford K 2021. Atlas of AI. New Haven, CT: Yale Univ. Press
    [Google Scholar]
  52. Crawford K, Calo R. 2016. There is a blind spot in AI research. Nat. News 538:7625311–13
    [Google Scholar]
  53. Deleuze G. 1992. Postscript on the societies of control. October 593–7
  54. Didier E. 2013. From sensors to sentinel: pressure and depression in crime statistics. Limn June 15. https://limn.it/articles/from-sensors-to-sentinel-pressure-and-depression-in-crime-statistics/
    [Google Scholar]
  55. Donovan KP. 2015. The biometric imaginary: bureaucratic technopolitics in post-apartheid welfare. J. S. Afr. Stud. 41:4815–33
    [Google Scholar]
  56. Dougherty C. 2020. Golden Gates: Fighting for Housing in America New York: Penguin
    [Google Scholar]
  57. Dubal VB. 2017. The drive to precarity: a political history of work, regulation, & labor advocacy in San Francisco's taxi & Uber economics. Berkeley J. Employ. Labor Law 38:173–136
    [Google Scholar]
  58. Duffy B. 2020. Algorithmic precarity in cultural work. Comm. Public 5:3–4103–7
    [Google Scholar]
  59. Ekbia HR, Nardi BA. 2017. Heteromation, and Other Stories of Computing and Capitalism Cambridge, MA: MIT Press
    [Google Scholar]
  60. Eliasoph N. 1998. Avoiding Politics: How Americans Produce Apathy in Everyday Life Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  61. Elish MC, boyd d. 2018. Situating methods in the magic of Big Data and AI. Commun. Monogr. 85:157–80
    [Google Scholar]
  62. Ellul J. 1967. The Technological Society New York: Random House
    [Google Scholar]
  63. Espeland WN, Sauder M. 2016. Engines of Anxiety: Academic Rankings, Reputation, and Accountability New York: Russell Sage Found.
    [Google Scholar]
  64. Espeland WN, Stevens ML. 1998. Commensuration as a social process. Annu. Rev. Sociol. 24:313–43
    [Google Scholar]
  65. Ettlinger N. 2016. The governance of crowdsourcing: rationalities of the new exploitation. Environ. Plan. A 48:112162–80
    [Google Scholar]
  66. Eubanks V. 2017. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor New York: St. Martin's
    [Google Scholar]
  67. Eyal G. 2013. For a sociology of expertise: the social origins of the autism epidemic. Am. J. Sociol. 118:4863–907
    [Google Scholar]
  68. Ford M. 2015. Rise of the Robots: Technology and the Threat of a Jobless Future New York: Basic
    [Google Scholar]
  69. Forsythe D, Hess DJ. 2001. Studying Those Who Study Us: An Anthropologist in the World of Artificial Intelligence Stanford, CA: Stanford Univ. Press
    [Google Scholar]
  70. Fourcade M. 2021. Ordinal citizenship. Br. J. Sociol. 72:15473
    [Google Scholar]
  71. Fourcade M, Gordon J. 2020. Learning like a state: statecraft in the digital age. J. Law Political Econ. 1:78–108
    [Google Scholar]
  72. Fourcade M, Healy K. 2013. Classification situations: life-chances in the neoliberal era. Account. Organ. Soc. 38:8559–72
    [Google Scholar]
  73. Fourcade M, Healy K. 2017. Seeing like a market. Socioecon. Rev. 15:19–29
    [Google Scholar]
  74. Fourcade M, Johns F. 2020. Loops, links and ladders: the recursivity of social and machine learning. Theory Soc 49:803–32
    [Google Scholar]
  75. Fourcade M, Kluttz DN. 2020. A Maussian bargain: accumulation by gift in the digital economy. Big Data Soc 7:1 https://doi.org/10.1177/2053951719897092
    [Crossref] [Google Scholar]
  76. Gabriel I. 2020. Artificial intelligence, values and alignment. arXiv:2001.09768 [cs]
  77. Gandy OH. 1993. The Panoptic Sort: A Political Economy Of Personal Information Boulder, CO: Westview
    [Google Scholar]
  78. Gandy OH. 2016. Coming to Terms with Chance: Engaging Rational Discrimination and Cumulative Disadvantage New York: Routledge
    [Google Scholar]
  79. Gebru T, Morgenstern J, Vecchione B, Vaughan JW, Wallach H et al. 2018. Datasheets for datasets. arXiv:1803.09010 [cs.DB]
  80. Gillespie T. 2018. Custodians of the Internet: Platforms, Content Moderation, and the Hidden Decisions That Shape Social Media New Haven, CT: Yale Univ. Press
    [Google Scholar]
  81. Gillespie T, Boczkowski PJ, Foot KA 2014. Media Technologies: Essays on Communication, Materiality, and Society Cambridge, MA: MIT Press
    [Google Scholar]
  82. Giridharadas A. 2018. Winners Take All: The Elite Charade of Changing the World New York: Knopf
    [Google Scholar]
  83. Golumbia D. 2009. The Cultural Logic of Computation Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  84. Grace K, Salvatier J, Dafoe A, Zhang B, Evans O. 2018. When will AI exceed human performance?. Evidence from AI experts arXiv:1705.08807 [cs]
    [Google Scholar]
  85. Gray M, Suri S. 2019. Ghost Work: How to Stop Silicon Valley from Building a New Global Underclass Boston: Houghton Mifflin Harcourt
    [Google Scholar]
  86. Green B. 2019. The Smart Enough City: Putting Technology in Its Place to Reclaim Our Urban Future Cambridge, MA: MIT Press
    [Google Scholar]
  87. Gregg M. 2018. Counterproductive: Time Management in the Knowledge Economy Durham, NC: Duke Univ. Press
    [Google Scholar]
  88. Guseva A, Rona-Tas A. 2001. Uncertainty, risk, and trust: Russian and American credit card markets compared. Am. Sociol. Rev. 66:5623–46
    [Google Scholar]
  89. Haggerty K, Ericson R. 2000. The surveillant assemblage. Br. J. Sociol. 51:4605–22
    [Google Scholar]
  90. Hancock JT, Naaman M, Levy K. 2020. AI-mediated communication: definition, research agenda, and ethical considerations. J. Comput. Mediated Commun. 25:189–100
    [Google Scholar]
  91. Hanna A, Denton E, Amironesei R, Smart A, Nicole H. 2020. Lines of sight. Logic Magazine Dec. 20. https://logicmag.io/commons/lines-of-sight/
    [Google Scholar]
  92. Harari YN. 2017. Homo Deus: A Brief History of Tomorrow New York: Harper
    [Google Scholar]
  93. Haraway D. 1990. Simians, Cyborgs, and Women: The Reinvention of Nature New York: Routledge
    [Google Scholar]
  94. Harcourt BE. 2007. Against Prediction: Profiling, Policing, and Punishing in an Actuarial Age Chicago: Univ. Chicago Press
    [Google Scholar]
  95. Harcourt BE. 2015. Exposed: Desire and Disobedience in the Digital Age Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  96. Hawgood A. 2020. Everyone is gay on TikTok. The New York Times Oct. 24. https://www.nytimes.com/2020/10/24/style/tiktok-gay-homiesexuals.html
    [Google Scholar]
  97. Herring C. 2014. The new logics of homeless seclusion: homeless encampments in America's West Coast cities. City Community 13:4285–309
    [Google Scholar]
  98. Hilbert M, López P. 2011. The world's technological capacity to store, communicate, and compute information. Science 332:602560–65
    [Google Scholar]
  99. Hofman JM, Sharma A, Watts DJ. 2017. Prediction and explanation in social systems. Science 355:6324486–88
    [Google Scholar]
  100. Hong S. 2016. Data's intimacy: machinic sensibility and the quantified self. Communication +1 5:3
    [Google Scholar]
  101. Hong S. 2020. Technologies of Speculation: The Limits of Knowledge in a Data-Driven Society New York: NYU Press
    [Google Scholar]
  102. Huws U. 2014. Labor in the Global Digital Economy: The Cybertariat Comes of Age New York: NYU Press
    [Google Scholar]
  103. Hwang T. 2020. Subprime Attention Crisis: Advertising and the Time Bomb at the Heart of the Internet New York: Farrar, Straus and Giroux:
    [Google Scholar]
  104. Irani LC, Silberman MS. 2013. Turkopticon: interrupting worker invisibility in Amazon Mechanical Turk. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems611–20 New York: ACM
    [Google Scholar]
  105. Jefferson B. 2020. Digitize and Punish: Racial Criminalization in the Digital Age Minneapolis: Univ. Minn. Press
    [Google Scholar]
  106. Johns F. 2021. Governance by data. Annu. Rev. Law Soc. Sci. 17: In press
    [Google Scholar]
  107. Jonas A, Burrell J 2019. Friction, snake oil, and weird countries: cybersecurity systems could deepen global inequality through regional blocking. Big Data Soc 6:1 https://doi.org/10.1177/2053951719835238
    [Crossref] [Google Scholar]
  108. Jones ML. 2017. The right to a human in the loop: political constructions of computer automation and personhood. Soc. Stud. Sci. 47:2216–39
    [Google Scholar]
  109. Kahneman D. 2013. Thinking, Fast and Slow New York: Farrar, Straus and Giroux
    [Google Scholar]
  110. Kalleberg AL, Vallas SP. 2018. Probing precarious work: theory, research, and politics. Research in the Sociology of Work, Vol. 31 ed. S Vallas 1–30 Bingley, UK: Emerald
    [Google Scholar]
  111. Kapczynski A. 2020. The law of informational capitalism. Yale Law J1291460–515
    [Google Scholar]
  112. Kellogg KC, Valentine MA, Christin A 2020. Algorithms at work: the new contested terrain of control. ANNALS 14:1366–410
    [Google Scholar]
  113. Kiviat B. 2019a. The art of deciding with data: evidence from how employers translate credit reports into hiring decisions. Socioecon. Rev. 17:2283–309
    [Google Scholar]
  114. Kiviat B. 2019b. The moral limits of predictive practices: the case of credit-based insurance scores. Am. Sociol. Rev. 84:61134–58
    [Google Scholar]
  115. Komisar R. 2000. The Monk and the Riddle: The Education of a Silicon Valley Entrepreneur. Boston: Harv. Bus. Sch. Press
    [Google Scholar]
  116. Koopman C. 2019. How We Became Our Data: A Genealogy of the Informational Person Chicago: Univ. Chicago Press
    [Google Scholar]
  117. Krippner GR. 2017. Democracy of credit: ownership and the politics of credit access in late twentieth-century America. Am. J. Sociol. 123:11–47
    [Google Scholar]
  118. Lande B, Mangels L. 2017. The value of the arrest: the symbolic economy of policing. Eur. J. Sociol. 58:173–112
    [Google Scholar]
  119. Lauer J. 2017. Creditworthy: A History of Consumer Surveillance and Financial Identity in America New York: Columbia Univ. Press
    [Google Scholar]
  120. Lessig L. 2000. Code: And Other Laws of Cyberspace New York: Basic
    [Google Scholar]
  121. Levy K, Barocas S. 2018. Refractive surveillance: monitoring customers to manage workers. Int. J. Commun. 12:1166–88
    [Google Scholar]
  122. Liu C. 2019. Multiple social credit systems in China. Eur. Econ. Sociol. Newsl. 21:122–32
    [Google Scholar]
  123. Lyon D. 2009. Identifying Citizens: ID Cards as Surveillance Cambridge, UK: Polity
    [Google Scholar]
  124. Lyon D. 2015. Surveillance After Snowden New York: Wiley
    [Google Scholar]
  125. MacKenzie D. 2018. ‘Making’, ‘taking’ and the material political economy of algorithmic trading. Econ. Soc. 47:4501–23
    [Google Scholar]
  126. Marron D. 2009. Consumer Credit in the United States: A Sociological Perspective from the 19th Century to the Present New York: Palgrave Macmillan
    [Google Scholar]
  127. Marsh S. 2020. Councils scrapping use of algorithms in benefit and welfare decisions. The Guardian Aug. 24. https://www.theguardian.com/society/2020/aug/24/councils-scrapping-algorithms-benefit-welfare-decisions-concerns-bias
    [Google Scholar]
  128. Marx K. 1920. The Poverty of Philosophy Chicago: Charles H. Kerr
    [Google Scholar]
  129. Mills CW. 2000. The Power Elite. Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  130. Morozov E. 2013. To Save Everything, Click Here: The Folly of Technological Solutionism New York: PublicAffairs
    [Google Scholar]
  131. Morozov E. 2015. Socialize the data centres!. New Left Review Jan./Feb. https://newleftreview.org/issues/ii91/articles/evgeny-morozov-socialize-the-data-centres
    [Google Scholar]
  132. Narayanan A 2019. 21 fairness definitions and their politics. Fairness and Machine Learning ed. S Barocas, M Hardt, A Narayanan. https://fairmlbook.org/
    [Google Scholar]
  133. Neff G, Nafus D. 2016. Self-Tracking Cambridge, MA: MIT Press
    [Google Scholar]
  134. Nelson A. 2016. The Social Life of DNA: Race, Reparations, and Reconciliation After the Genome Boston: Beacon
    [Google Scholar]
  135. Nissenbaum H. 2009. Privacy in Context: Technology, Policy, and the Integrity of Social Life Stanford, CA: Stanford Law
    [Google Scholar]
  136. Noble SU. 2018. Algorithms of Oppression: How Search Engines Reinforce Racism New York: NYU Press
    [Google Scholar]
  137. Obermeyer Z, Emanuel EJ. 2016. Predicting the future—big data, machine learning, and clinical medicine. N. Engl. J. Med. 375:131216–19
    [Google Scholar]
  138. Obermeyer Z, Lee TH. 2017. Lost in thought—the limits of the human mind and the future of medicine. N. Engl. J. Med. 377:131209–11
    [Google Scholar]
  139. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. 2019. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366:6464447–53
    [Google Scholar]
  140. Ohlberg M, Ahmed S, Lang B. 2017. Central planning, local experiments: the complex implementation of China's social credit system. Merics China Monitor Dec. 12. https://merics.org/en/report/central-planning-local-experiments
    [Google Scholar]
  141. O'Mara M. 2019. The Code: Silicon Valley and the Remaking of America New York: Penguin
    [Google Scholar]
  142. O'Neill C. 2016. Weapons of Math Destruction New York: Crown
    [Google Scholar]
  143. O'Reilly T 2010. Government as a platform. Open Government: Collaboration, Transparency, And Participation In Practice ed. D Lathrop, L Ruma 11–40 Sebastopol, CA: O'Reilly
    [Google Scholar]
  144. Pardo-Guerra JP. 2019. Automating Finance: Infrastructures, Engineers, and the Making of Electronic Markets Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  145. Pasquale F. 2015. The Black Box Society Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  146. Pasquale F. 2019. A rule of persons, not machines: the limits of legal automation. George Wash. Law Rev. 87:11–55
    [Google Scholar]
  147. Pistor K. 2019. The Code of Capital: How the Law Creates Wealth and Inequality Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  148. Poon M. 2009. From new deal institutions to capital markets: commercial consumer risk scores and the making of subprime mortgage finance. Account. Organ. Soc. 34:5654–74
    [Google Scholar]
  149. Porter TM. 1996. Trust in Numbers Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  150. Rachlinski JJ, Wistrich AJ. 2017. Judging the judiciary by the numbers: empirical research on judges. Annu. Rev. Law Soc. Sci. 13:203–29
    [Google Scholar]
  151. Radin MJ. 2013. Boilerplate: The Fine Print, Vanishing Rights, and the Rule of Law Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  152. Rafalow MH. 2020. Digital Divisions: How Schools Create Inequality in the Tech Era Chicago: Univ. Chicago Press
    [Google Scholar]
  153. Rao U, Nair V. 2019. Aadhaar: governing with biometrics. South Asia J. South Asian Stud. 42:3469–81
    [Google Scholar]
  154. Rheingold H. 1993. The Virtual Community: Homesteading on the Electronic Frontier Reading, MA: Addison-Wesley
    [Google Scholar]
  155. Ribes D, Hoffman AS, Slota SC, Bowker GC. 2019. The logic of domains. Soc. Stud. Sci. 49:3281–309
    [Google Scholar]
  156. Roberts ST. 2019. Behind the Screen: Content Moderation in the Shadows of Social Media New Haven, CT: Yale Univ. Press
    [Google Scholar]
  157. Rona-Tas A. 2017. The off-label use of consumer credit ratings. Historical Soc. Res. 42:52–76
    [Google Scholar]
  158. Rosenblat A. 2019. Uberland: How Algorithms Are Rewriting the Rules of Work Berkeley: Univ. Calif. Press
    [Google Scholar]
  159. Rosental C. 2013. Toward a sociology of public demonstrations. Sociol. Theory 31:4343–65
    [Google Scholar]
  160. Russell S. 2019. Human Compatible: Artificial Intelligence and the Problem of Control New York: Viking:
    [Google Scholar]
  161. Sadowski J. 2020. Too Smart: How Digital Capitalism Is Extracting Data, Controlling Our Lives, and Taking Over the World Cambridge, MA: MIT Press
    [Google Scholar]
  162. Salehi N, Irani LC, Bernstein MS, Alkhatib A, Ogbe E et al. 2015. We are dynamo: overcoming stalling and friction in collective action for crowd workers. CHI ’15: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems1621–30 New York: ACM
    [Google Scholar]
  163. Salganik MJ, Lundberg I, Kindel AT, Ahearn CE, Al-Ghoneim K et al. 2020. Measuring the predictability of life outcomes with a scientific mass collaboration. PNAS 117:158398
    [Google Scholar]
  164. Sampson RJ. 2016. The characterological imperative: on Heckman, Humphries, and Kautz's The Myth of Achievement Tests: The GED and the Role of Character in American Life. J. Econ. Lit. 54:2493–513
    [Google Scholar]
  165. Schneider D, Harknett K. 2019. Consequences of routine work-schedule instability for worker health and well-being. Am. Sociol. Rev. 84:182–114
    [Google Scholar]
  166. Scholz T, Schneider N 2016. Ours to Hack and to Own: The Rise of Platform Cooperativism, a New Vision for the Future of Work and a Fairer Internet New York: OR Books
    [Google Scholar]
  167. Schor J. 2020. After the Gig: How the Sharing Economy Got Hijacked and How to Win It Back Berkeley: Univ. Calif. Press
    [Google Scholar]
  168. Schradie J. 2019. The Revolution that Wasn't: How Digital Activism Favors Conservatives Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  169. Schüll N. 2012. Addiction by Design: Machine Gambling in Las Vegas Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  170. Schüll N. 2016. Data for life: wearable technology and the design of self-care. BioSocieties 11:3317–33
    [Google Scholar]
  171. Scott JC. 1999. Seeing Like a State: How Certain Schemes to Improve the Human Condition Have Failed New Haven, CT: Yale Univ. Press
    [Google Scholar]
  172. Shestakofsky B. 2017. Working algorithms: software automation and the future of work. Work Occup 44:4376–423
    [Google Scholar]
  173. Simon J. 1988. The ideological effects of actuarial practices. Law Soc. Rev. 22:4771–800
    [Google Scholar]
  174. Sommelier E, Price M. 2018. The new gilded age: income inequality in the U.S. by state, metropolitan area, and county Rep., Econ. Policy Inst. Washington, DC: https://www.epi.org/publication/the-new-gilded-age-income-inequality-in-the-u-s-by-state-metropolitan-area-and-county/
    [Google Scholar]
  175. Stark L 2018. Algorithmic psychometrics and the scalable subject. Soc. Stud. Sci. 48:220431
    [Google Scholar]
  176. Stuart F. 2020. Ballad of the Bullet: Gangs, Drill Music, and the Power of Online Infamy Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  177. Suchman L. 2020. Algorithmic warfare and the reinvention of accuracy. Crit. Stud. Secur. 8:175–87
    [Google Scholar]
  178. Suchman LA. 2007. Human-Machine Reconfigurations Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  179. Sweeney L. 2013. Discrimination in online ad delivery. ACM Queue 11:31–19
    [Google Scholar]
  180. Tegmark M. 2017. Life 3.0: Being Human in the Age of Artificial Intelligence New York: Knopf
    [Google Scholar]
  181. Thompson C. 2020. Coders: The Making of a New Tribe and the Remaking of the World New York: Penguin
    [Google Scholar]
  182. Thrift N. 2000.. “ It's the romance, not the finance, that makes the business worth pursuing”: disclosing a new market culture. Econ. Soc. 30:4412–32
    [Google Scholar]
  183. Tomaskovic-Devey D, Han J 2018. Is Silicon Valley tech diversity possible now? Cent. Employ. Equity, Univ. Mass. Amherst, MA:
    [Google Scholar]
  184. Tufekci Z. 2017. Twitter and Tear Gas: The Power and Fragility of Networked Protest New Haven, CT: Yale Univ. Press
    [Google Scholar]
  185. Turner F. 2006. From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network, and the Rise of Digital Utopianism Chicago: Univ. Chicago Press
    [Google Scholar]
  186. Turner F. 2009. Burning Man at Google: a cultural infrastructure for new media production. New Media Soc 11:1–273–94
    [Google Scholar]
  187. Uliasz R. 2020. Seeing like an algorithm: operative images and emergent subjects. AI Soc. https://doi.org/10.1007/s00146-020-01067-y
    [Crossref] [Google Scholar]
  188. Vaidhyanathan S. 2018. Antisocial Media: How Facebook Disconnects Us and Undermines Democracy Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  189. Vertesi J, Goldstein A, Enriquez D, Liu L, Miller K. 2020. Pre-automation: labor in the era of platform monopolies. Sociologica 14:3167–93
    [Google Scholar]
  190. Volokh E. 2019. Chief Justice Robots. Duke Law J 68:61135–92
    [Google Scholar]
  191. von Hayek FA. 1989. The pretence of knowledge. Am. Econ. Rev. 79:63–7
    [Google Scholar]
  192. Walker RA. 2018. Pictures of a Gone City: Tech and the Dark Side of Prosperity in the San Francisco Bay Area Oakland, CA: PM
    [Google Scholar]
  193. Watts DJ. 2011. Everything Is Obvious: How Common Sense Fails Us New York: Crown Bus.
    [Google Scholar]
  194. Watts DJ. 2014. Common sense and sociological explanations. Am. J. Sociol. 120:2313–51
    [Google Scholar]
  195. Weber M. 1978. Economy and Society: An Outline of Interpretive Sociology Berkeley: Univ. Calif. Press
    [Google Scholar]
  196. Weinberger D. 2019. How machine learning pushes us to define fairness. Harvard Business Review Nov. 6. https://hbr.org/2019/11/how-machine-learning-pushes-us-to-define-fairness
    [Google Scholar]
  197. Ziewitz M. 2019. Rethinking gaming: the ethical work of optimization in web search engines. Soc. Stud. Sci. 49:5707–31
    [Google Scholar]
  198. Zuboff S. 2019. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power New York: PublicAffairs
    [Google Scholar]
/content/journals/10.1146/annurev-soc-090820-020800
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error