1932

Abstract

The 2012–2013 discovery of a Higgs boson appears to have filled the final missing gap in the Standard Model of particle physics and was greeted with fanfare by the scientific community and by the public at large. Particle physicists have developed and rigorously tested a specialized statistical tool kit that is designed for the search for new physics. This tool kit was put to the test in a 40-year search that culminated in the discovery of a Higgs boson. This article reviews these statistical methods, the controversies that surround them, and how they led to this historic discovery.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-062713-085841
2014-01-03
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/statistics/1/1/annurev-statistics-062713-085841.html?itemId=/content/journals/10.1146/annurev-statistics-062713-085841&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson PW. 1992. The Reverend Thomas Bayes, needles in haystacks, and the fifth force. Phys. Today 45:9–11 [Google Scholar]
  2. Am. Assoc. Adv. Sci 2012. The Higgs boson. Science 338:1558–59 [Google Scholar]
  3. ATLAS Collab 2008. Expected Performance of the ATLAS Experiment: Detector, Trigger and Physics. CERN-OPEN-2008-020 Geneva, Switz.: CERN [Google Scholar]
  4. ATLAS Collab 2012a. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716:1–29 [Google Scholar]
  5. ATLAS Collab 2012b. Observation of an Excess of Events in the Search for the Standard Model Higgs Boson in the γγ Channel with the ATLAS Detector. ATLAS-CONF-2012-091 Geneva, Switz.: CERN [Google Scholar]
  6. ATLAS Collab 2012c. A particle consistent with the Higgs boson observed with the ATLAS detector at the Large Hadron Collider. Science 338:1576–82 [Google Scholar]
  7. Berger J. 2008. A comparison of testing methodologies. See Lyons et al. 2008 8–19
  8. Berger JO, Delampady M. 1987. Testing precise hypotheses (with discussion). Stat. Sci. 2:317–52 [Google Scholar]
  9. Campagnari C, Franklin M. 1997. The discovery of the top quark. Rev. Mod. Phys. 69:137–211 [Google Scholar]
  10. Chernoff H. 1954. On the distribution of the likelihood ratio. Ann. Math. Stat. 25:573–78 [Google Scholar]
  11. CLAS Collab 2003. Observation of an exotic S = +1 baryon in exclusive photoproduction from the deuteron. Phys. Rev. Lett. 91:252001 [Google Scholar]
  12. CLAS Collab 2006. Search for the θ+ pentaquark in the reaction γdpkk+n. Phys. Rev. Lett 96:212001 [Google Scholar]
  13. CLAS Collab 2008. Bayesian analysis of pentaquark signals from CLAS data. Phys. Rev. Lett. 100:052001 [Google Scholar]
  14. CMS Collab 2007. CMS physics technical design report. Volume II: Physics performance. J. Phys. G 34:995–1579 [Google Scholar]
  15. CMS Collab 2012a. A new boson with a mass of 125 GeV observed with the CMS experiment at the Large Hadron Collider. Science 338:1569–75 [Google Scholar]
  16. CMS Collab 2012b. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716:30–61 [Google Scholar]
  17. Cousins RD. 1995. Why isn't every physicist a Bayesian?. Am. J. Phys. 63:398–410 [Google Scholar]
  18. Cousins RD. 2008. Comment on “Bayesian analysis of pentaquark signals from CLAS data. Phys. Rev. Lett. 101:029101 [Google Scholar]
  19. Cousins RD, Highland VL. 1992. Incorporating systematic uncertainties into an upper limit. Nucl. Instrum. Methods A 320:331–35 [Google Scholar]
  20. Cowan G, Cranmer K, Gross E, Vitells O. 2011a. Asymptotic formulae for likelihood-based tests for new physics. Eur. Phys. J. C 71:1554 [Google Scholar]
  21. Cowan G, Cranmer K, Gross E, Vitells O. 2011b. Power-constrained limits. arXiv:1105.3166 [physics.data-an]
  22. Cox DR. 2011. Discovery: a statistical perspective. See Prosper & Lyons 2011, pp. 12–16
  23. Davies RB. 1987. Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 74:33–43 [Google Scholar]
  24. Del Rosso A. 2012. Higgs: the beginning of the exploration. CERN Wkly. Bull.47–48/2012
  25. Della Negra M, Jenni P, Virdee TS. 2012. Journey in the search for the Higgs boson: the ATLAS and CMS experiments at the Large Hadron Collider. Science 338:1560–68 [Google Scholar]
  26. Demortier L. 2008. P values and nuisance parameters. See Lyons et al. 2008 23–33
  27. Ellis J, Gaillard MK, Nanopoulos DV. 2012. A historical profile of the Higgs boson. arXiv:1201.6045v1 [hep-ph]
  28. Feldman GJ, Cousins RD. 1998. Unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57:3873–89 [Google Scholar]
  29. Friedman JH. 2005. Separating signal from background using ensembles of rules. See Lyons & Unel 2005 10
  30. Gross E, Vitells O. 2010. Trial factors for the look elsewhere effect in high energy physics. Eur. Phys. J. C 70:525–30 [Google Scholar]
  31. Heinrich J, Blocker C, Conway J, Demortier L, Lyons L. et al. 2004. Interval Estimation in the Presence of Nuisance Parameters. 1. Bayesian Approach. CDF note 7117. Batavia, IL: Fermilab30
  32. Higgs PW. 1964. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13:508–9 [Google Scholar]
  33. Junk T. 1999. Confidence level computation for combining searches with small statistics. Nucl. Instrum. Methods A 434:435–43 [Google Scholar]
  34. Kashyap VL, van Dyk DA, Connors A, Freeman PE, Siemiginowska A. et al. 2010. On computing upper limits to source intensities. Astrophys. J. 719:900–14 [Google Scholar]
  35. Lederman LM. 1993. The God Particle: If the Universe Is the Answer, What Is the Question? Boston: Houghton Mifflin
  36. Lyons L. 2008. Open statistical issues in particle physics. Ann. Appl. Stat. 2:887–915 [Google Scholar]
  37. Lyons L. 2012. Discovery or fluke: statistics in particle physics. Phys. Today 65:45–51 [Google Scholar]
  38. Lyons L. 2013. Bayes and frequentism: a particle physicist's perspective. Contemp. Phys. 54:1–16 [Google Scholar]
  39. Lyons L, Mount R, Reitmeyer R. 2004. Proceedings of the Conference on Statistical Problems in Particle Physics, Astrophysics, and Cosmology (PHYSTAT 2003), Stanford Linear Accelerator Center, Stanford, California September 8–11, 2003 Menlo Park, CA: SLAC Tech. Publ. [Google Scholar]
  40. Lyons L, Prosper HB, de Roeck A. 2008. Proceedings of the PHYSTAT 2007 Workshop on Statistical Issues for LHC Physics, CERN, Geneva, Switzerland, 27–29 June 2007. CERN-2008-001 Geneva, Switz.: CERN
  41. Lyons L, Unel MK. 2005. Proceedings of the PHYSTAT 2005 Workshop on Statistical Problems in Particle Physics, Astrophysics and Cosmology, Oxford, UK, 12–15 September 2005 London: Imperial Coll. Press
  42. Mandelkern M. 2002. Setting confidence intervals for bounded parameters (with discussion). Stat. Sci. 17:149–72 [Google Scholar]
  43. Park T, van Dyk DA, Siemiginowska A. 2008. Searching for narrow emission lines in X-ray spectra: computation and methods. Astrophys. J. 688:807–25 [Google Scholar]
  44. Part. Data Group 2006. Review of particle physics. J. Phys. G 33:1–1232 [Google Scholar]
  45. Part. Data Group 2008. Review of particle physics. Phys. Lett. B 667:1–1340 [Google Scholar]
  46. Prosper HB, Lyons L. 2011. Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN, Geneva, Switzerland, 17–20 January 2011. CERN-2011-006 Geneva, Switz.: CERN
  47. Protassov R, van Dyk DA, Connors A, Kashyap V, Siemiginowska A. 2002. Statistics: Handle with care—detecting multiple model components with the likelihood ratio test. Astrophys. J. 571:545–59 [Google Scholar]
  48. Punzi G. 2004. Sensitivity of searches for new signals and its optimization. See Lyons et al. 2004 79–83
  49. Read AL. 2000. Modified frequentist analysis of search results (the CLs method). http://cds.cern.ch/record/451614
  50. Read AL. 2002. Presentation of search results: the CLS technique. J. Phys. G 10:2693–704 [Google Scholar]
  51. Roe BP, Woodroofe MB. 1999. Improved probability method for estimating signal in the presence of background. Phys. Rev. D 60:053009 [Google Scholar]
  52. Roe BP, Yang H-J, Zhu J, Liu Y, Stancu I, McGregor G. 2005. Boosted decision trees as an alternative to artificial neural networks for particle identification. Nucl. Instrum. Methods A 543:577–84 [Google Scholar]
  53. Rolke WA, Lopez AM, Conrad J. 2005. Limits and confidence intervals in the presence of nuisance parameters. Nucl. Instrum. Methods A 551:493–503 [Google Scholar]
  54. Salam A. 1968. Weak and electromagnetic interactions. Proceedings of the Eighth Nobel Symposium, Lerum, Sweden, 19–25 May 1968 N Svartholm 367–77 Stockholm: Almqvist & Wiksell [Google Scholar]
  55. van Dyk DA. 2011. Setting limits, computing intervals, and detection. See Prosper & Lyons 2011 149–57
  56. Vitells O. 2011. Estimating the “look elsewhere effect” when searching for a signal. See Prosper & Lyons 2011 183–89
  57. Weinberg S. 1967. A model of leptons. Phys. Rev. Lett. 19:1264–66 [Google Scholar]
  58. Weniger C. 2012. A tentative γ-ray line from dark matter annihilation at the Fermi Large Area Telescope. J. Cosmol. Astropart. Phys. 1208:007 [Google Scholar]
/content/journals/10.1146/annurev-statistics-062713-085841
Loading
/content/journals/10.1146/annurev-statistics-062713-085841
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error