1932

Abstract

Functional data analysis (FDA) studies data that include infinite-dimensional functions or objects, generalizing traditional univariate or multivariate observations from each study unit. Among inferential approaches without parametric assumptions, empirical likelihood (EL) offers a principled method in that it extends the framework of parametric likelihood ratio–based inference via the nonparametric likelihood. There has been increasing use of EL in FDA due to its many favorable properties, including self-normalization and the data-driven shape of confidence regions. This article presents a review of EL approaches in FDA, starting with finite-dimensional features, then covering infinite-dimensional features. We contrast smooth and nonsmooth frameworks in FDA and show how EL has been incorporated into both of them. The article concludes with a discussion of some future research directions, including the possibility of applying EL to conformal inference.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-112723-034225
2025-03-07
2025-06-15
Loading full text...

Full text loading...

/deliver/fulltext/statistics/12/1/annurev-statistics-112723-034225.html?itemId=/content/journals/10.1146/annurev-statistics-112723-034225&mimeType=html&fmt=ahah

Literature Cited

  1. Anastasiou A, Reinert G. 2020.. Bounds for the asymptotic distribution of the likelihood ratio. . Ann. Appl. Probab. 30:(2):60843
    [Crossref] [Google Scholar]
  2. Antoniadis A, Gregoire G, McKeague IW. 1994.. Wavelet methods for curve estimation. . J. Am. Stat. Assoc. 89:(428):134053
    [Crossref] [Google Scholar]
  3. Bahadur RR. 1967.. Rates of convergence of estimates and test statistics. . Ann. Math. Stat. 38:(2):30324
    [Crossref] [Google Scholar]
  4. Bai J. 2010.. Common breaks in means and variances for panel data. . J. Econom. 157:(1):7892
    [Crossref] [Google Scholar]
  5. Bélisle P, Joseph L, MacGibbon B, Wolfson DB, du Berger R. 1998.. Change-point analysis of neuron spike train data. . Biometrics 54:(1):11323
    [Crossref] [Google Scholar]
  6. Bravo F. 2003.. Second-order power comparisons for a class of nonparametric likelihood-based tests. . Biometrika 90:(4):88190
    [Crossref] [Google Scholar]
  7. Cai TT, Yuan M. 2011.. Optimal estimation of the mean function based on discretely sampled functional data: phase transition. . Ann. Stat. 39:(5):233055
    [Crossref] [Google Scholar]
  8. Cao G, Yang L, Todem D. 2012.. Simultaneous inference for the mean function based on dense functional data. . J. Nonparametric Stat. 24:(2):35977
    [Crossref] [Google Scholar]
  9. Cao J. 2018.. WEL: weighted empirical likelihood inference for dynamical correlations. . R Package. https://github.com/caojiguo/WEL
    [Google Scholar]
  10. Chang H. 2020.. survELtest: Comparing multiple survival functions with crossing hazards. . R Package, version 2.0.1. https://CRAN.R-project.org/package=survELtest
    [Google Scholar]
  11. Chang H. 2022.. fdEL. . R Package, version 0.0.0.9000. https://github.com/news11/fdEL
    [Google Scholar]
  12. Chang H, McKeague IW. 2022.. Empirical likelihood based inference for functional means with application to wearable device data. . J. R. Stat. Soc. Ser. B 84:(5):194768
    [Crossref] [Google Scholar]
  13. Chang H, Tsai PY, Kao JT, Lan GY. 2021.. Comparing multiple survival functions with crossing hazards in R. . R J. 12:(2):2042
    [Crossref] [Google Scholar]
  14. Chen J, Huang Y. 2013.. Finite-sample properties of the adjusted empirical likelihood. . J. Nonparametric Stat. 25:(1):14759
    [Crossref] [Google Scholar]
  15. Chen SX, Van Keilegom I. 2009.. A review on empirical likelihood methods for regression. . Test 18::41547
    [Crossref] [Google Scholar]
  16. Choi H, Reimherr M. 2018.. A geometric approach to confidence regions and bands for functional parameters. . J. R. Stat. Soc. Ser. B 80:(1):23960
    [Crossref] [Google Scholar]
  17. Cuevas A, Febrero M, Fraiman R. 2004.. An ANOVA test for functional data. . Comput. Stat. Data Anal. 47:(1):11122
    [Crossref] [Google Scholar]
  18. Dabo-Niang S, Guillas S. 2010.. Functional semiparametric partially linear model with autoregressive errors. . J. Multivar. Anal. 101:(2):30715
    [Crossref] [Google Scholar]
  19. Degras DA. 2011.. Simultaneous confidence bands for nonparametric regression with functional data. . Stat. Sin. 21:(4):173565
    [Crossref] [Google Scholar]
  20. Dette H, Kokot K, Aue A. 2020.. Functional data analysis in the Banach space of continuous functions. . Ann. Stat. 48:(2):116892
    [Crossref] [Google Scholar]
  21. Dubin JA, Müller HG. 2005.. Dynamical correlation for multivariate longitudinal data. . J. Am. Stat. Assoc. 100:(471):87281
    [Crossref] [Google Scholar]
  22. Durbin J, Watson GS. 1950.. Testing for serial correlation in least squares regression: I. . Biometrika 37:(3/4):40928
    [Crossref] [Google Scholar]
  23. Dykstra RL. 1982.. Maximum likelihood estimation of the survival functions of stochastically ordered random variables. . J. Am. Stat. Assoc. 77:(379):62128
    [Crossref] [Google Scholar]
  24. Einmahl JHJ, McKeague IW. 2003.. Empirical likelihood based hypothesis testing. . Bernoulli 9:(2):26790
    [Crossref] [Google Scholar]
  25. Fan J. 1992.. Design-adaptive nonparametric regression. . J. Am. Stat. Assoc. 87:(420):9981004
    [Crossref] [Google Scholar]
  26. Fan J. 1993.. Local linear regression smoothers and their minimax efficiencies. . Ann. Stat. 21::196216
    [Google Scholar]
  27. Ferraty F, Mas A, Vieu P. 2007.. Nonparametric regression on functional data: inference and practical aspects. . Aust. N. Z. J. Stat. 49:(3):26786
    [Crossref] [Google Scholar]
  28. Ferraty F, Vieu P. 2004.. Nonparametric models for functional data, with application in regression, time series prediction and curve discrimination. . Nonparametric Stat. 16:(1–2):11125
    [Crossref] [Google Scholar]
  29. Fontana M, Zeni G, Vantini S. 2023.. Conformal prediction: a unified review of theory and new challenges. . Bernoulli 29:(1):123
    [Crossref] [Google Scholar]
  30. Hall P, La Scala B. 1990.. Methodology and algorithms of empirical likelihood. . Int. Stat. Rev./Rev. Int. Stat. 58:(2):10927
    [Crossref] [Google Scholar]
  31. Hjort NL, McKeague IW, Van Keilegom I. 2009.. Extending the scope of empirical likelihood. . Ann. Stat. 37:(3):1079111
    [Crossref] [Google Scholar]
  32. Hu L, Huang T, You J. 2021.. Robust inference in varying-coefficient additive models for longitudinal/functional data. . Stat. Sin. 31:(2):77396
    [Google Scholar]
  33. Hu Y, Xue L, Feng S. 2018.. Empirical likelihood inference for partial functional linear model with missing responses. . Commun. Stat. Theory Methods 47:(19):467391
    [Crossref] [Google Scholar]
  34. Hu YP, Liang HY. 2022.. Empirical likelihood in single-index partially functional linear model with missing observations. . Commun. Stat. Theory Methods 53:(3):882908
    [Crossref] [Google Scholar]
  35. Kim E, MacEachern SN, Peruggia M. 2024.. melt: Multiple empirical likelihood tests in R. . J. Stat. Softw. 108:(5):133
    [Crossref] [Google Scholar]
  36. Kim JS, Staicu AM, Maity A, Carroll RJ, Ruppert D. 2018.. Additive function-on-function regression. . J. Comput. Graph. Stat. 27:(1):23444
    [Crossref] [Google Scholar]
  37. Kitamura Y. 2007.. Empirical likelihood methods in econometrics: theory and practice. . In Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress, Vol. III, ed. R Blundell, W Newey, T Persson , pp. 174237. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  38. Kitamura Y, Santos A, Shaikh AM. 2012.. On the asymptotic optimality of empirical likelihood for testing moment restrictions. . Econometrica 80:(1):41323
    [Crossref] [Google Scholar]
  39. Koner S, Staicu AM. 2023.. Second-generation functional data. . Annu. Rev. Stat. Appl. 10::54772
    [Crossref] [Google Scholar]
  40. Laib N, Louani D. 2010.. Nonparametric kernel regression estimation for functional stationary ergodic data: asymptotic properties. . J. Multivar. Anal. 101:(10):226681
    [Crossref] [Google Scholar]
  41. Lazar NA. 2021.. A review of empirical likelihood. . Annu. Rev. Stat. Appl. 8::32944
    [Crossref] [Google Scholar]
  42. Lei J, G'Sell M, Rinaldo A, Tibshirani RJ, Wasserman L. 2018.. Distribution-free predictive inference for regression. . J. Am. Stat. Assoc. 113:(523):1094111
    [Crossref] [Google Scholar]
  43. Li J, Huang C, Zhu H. 2017.. A functional varying-coefficient single-index model for functional response data. . J. Am. Stat. Assoc. 112:(519):116981
    [Crossref] [Google Scholar]
  44. Li Q, Tan X, Wang L. 2021.. Testing for error correlation in partially functional linear regression models. . Commun. Stat. Theory Methods 50:(3):74761
    [Crossref] [Google Scholar]
  45. Lian H. 2012.. Empirical likelihood confidence intervals for nonparametric functional data analysis. . J. Stat. Plan. Inference 142:(7):166977
    [Crossref] [Google Scholar]
  46. Ljung GM, Box GE. 1978.. On a measure of lack of fit in time series models. . Biometrika 65:(2):297303
    [Crossref] [Google Scholar]
  47. Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, et al. 2008.. Amount of time spent in sedentary behaviors in the United States, 2003–2004. . Am. J. Epidemiol. 167:(7):87581
    [Crossref] [Google Scholar]
  48. Morris JS. 2015.. Functional regression. . Annu. Rev. Stat. Appl. 2::32159
    [Crossref] [Google Scholar]
  49. Mukerjee R. 1994.. Comparison of tests in their original forms. . Sankhyā Ser. A 56:(1):11827
    [Google Scholar]
  50. Nordman DJ, Lahiri SN. 2014.. A review of empirical likelihood methods for time series. . J. Stat. Plan. Inference 155::118
    [Crossref] [Google Scholar]
  51. Otsu T. 2010.. On Bahadur efficiency of empirical likelihood. . J. Econom. 157:(2):24856
    [Crossref] [Google Scholar]
  52. Owen AB. 1988.. Empirical likelihood ratio confidence intervals for a single functional. . Biometrika 75:(2):23749
    [Crossref] [Google Scholar]
  53. Owen AB. 2001.. Empirical Likelihood. Boca Raton, FL:: Chapman and Hall/CRC
    [Google Scholar]
  54. Parente PM, Smith RJ. 2014.. Recent developments in empirical likelihood and related methods. . Annu. Rev. Econ. 6::77102
    [Crossref] [Google Scholar]
  55. Park Y, Kalbfleisch JD, Taylor JMG. 2012.. Constrained nonparametric maximum likelihood estimation of stochastically ordered survivor functions. . Can. J. Stat. 40:(1):2239
    [Crossref] [Google Scholar]
  56. Petersen A, Müller HG. 2016.. Functional data analysis for density functions by transformation to a Hilbert space. . Ann. Stat. 41:(1):183218
    [Google Scholar]
  57. Petersen A, Müller HG. 2019.. Fréchet regression for random objects with Euclidean predictors. . Ann. Stat. 47:(2):691719
    [Crossref] [Google Scholar]
  58. Presseau J, Tait RI, Johnston DW, Francis JJ, Sniehotta FF. 2013.. Goal conflict and goal facilitation as predictors of daily accelerometer-assessed physical activity. . Health Psychol. 32:(12):1179
    [Crossref] [Google Scholar]
  59. Qin J, Lawless J. 1994.. Empirical likelihood and general estimating equations. . Ann. Stat. 22:(1):30025
    [Crossref] [Google Scholar]
  60. Ramsay JO, Silverman BW. 2005.. Functional Data Analysis. New York:: Springer. , 2nd ed..
    [Google Scholar]
  61. Ratcliffe SJ, Leader LR, Heller GZ. 2002.. Functional data analysis with application to periodically stimulated foetal heart rate data. I: Functional regression. . Stat. Med. 21:(8):110314
    [Crossref] [Google Scholar]
  62. Reiss PT, Huang L, Mennes M. 2010.. Fast function-on-scalar regression with penalized basis expansions. . Int. J. Biostat. 6:(1):28
    [Crossref] [Google Scholar]
  63. Sang P, Wang L, Cao J. 2019.. Weighted empirical likelihood inference for dynamical correlations. . Comput. Stat. Data Anal. 131::194206
    [Crossref] [Google Scholar]
  64. Shin H. 2009.. Partial functional linear regression. . J. Stat. Plan. Inference 139:(10):340518
    [Crossref] [Google Scholar]
  65. Ullah S, Finch CF. 2013.. Applications of functional data analysis: a systematic review. . BMC Med. Res. Methodol. 13::43
    [Crossref] [Google Scholar]
  66. US Natl. Cent. Health Stat. 2006.. National health and nutrition examination survey data. Dataset, US Cent. Dis. Control Prev., Atlanta, GA:. https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2005
    [Google Scholar]
  67. van der Vaart AW. 2000.. Asymptotic Statistics. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  68. Wang H, Zhong PS, Cui Y, Li Y. 2018.. Unified empirical likelihood ratio tests for functional concurrent linear models and the phase transition from sparse to dense functional data. . J. R. Stat. Soc. Ser. B 80:(2):34364
    [Crossref] [Google Scholar]
  69. Wang JL, Chiou JM, Müller HG. 2016.. Functional data analysis. . Annu. Rev. Stat. Appl. 3::25795
    [Crossref] [Google Scholar]
  70. Wilks SS. 1938.. The large-sample distribution of the likelihood ratio for testing composite hypotheses. . Ann. Math. Stat. 9:(1):6062
    [Crossref] [Google Scholar]
  71. Wu CO, Chiang CT, Hoover DR. 1998.. Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data. . J. Am. Stat. Assoc. 93:(444):1388402
    [Crossref] [Google Scholar]
  72. Xi D, Pang T. 2021.. Common breaks in means for panel data under short-range dependence. . Commun. Stat. Theory Methods 50:(2):486505
    [Crossref] [Google Scholar]
  73. Xiong X, Lin Z. 2013.. Empirical likelihood inference for nonparametric regression functions with functional stationary ergodic data. . Commun. Stat. Theory Methods 42:(19):342131
    [Crossref] [Google Scholar]
  74. Xue L, Zhu L. 2007.. Empirical likelihood for a varying coefficient model with longitudinal data. . J. Am. Stat. Assoc. 102:(478):64254
    [Crossref] [Google Scholar]
  75. Yang B, Chen M, Zhou J. 2023.. Testing for error correlation in semi-functional linear models. . J. Syst. Sci. Complex. 36::1697716
    [Crossref] [Google Scholar]
  76. Yang H, Zhu H, Ahn M, Ibrahim JG. 2021.. Weighted functional linear Cox regression model. . Stat. Methods Med. Res. 30:(8):191731
    [Crossref] [Google Scholar]
  77. Yao F, Müller HG. 2010.. Functional quadratic regression. . Biometrika 97:(1):4964
    [Crossref] [Google Scholar]
  78. You J, Chen G, Zhou Y. 2006.. Block empirical likelihood for longitudinal partially linear regression models. . Can. J. Stat. 34:(1):7996
    [Crossref] [Google Scholar]
  79. Yuan A, Fang HB, Li H, Wu CO, Tan MT. 2020.. Hypothesis testing for multiple mean and correlation curves with functional data. . Stat. Sin. 30::1095116
    [Google Scholar]
  80. Zhang JT, Chen J. 2007.. Statistical inferences for functional data. . Ann. Stat. 35:(3):105279
    [Google Scholar]
  81. Zhang JT, Cheng MY, Wu HT, Zhou B. 2019.. A new test for functional one-way ANOVA with applications to ischemic heart screening. . Comput. Stat. Data Anal. 132::317
    [Crossref] [Google Scholar]
  82. Zhou XC, Lin JG. 2014.. Empirical likelihood inference in mixture of semiparametric varying-coefficient models for longitudinal data with non-ignorable dropout. . Statistics 48:(3):66884
    [Crossref] [Google Scholar]
  83. Zhou Z, Lin Z. 2016.. Asymptotic normality of locally modelled regression estimator for functional data. . J. Nonparametric Stat. 28:(1):11631
    [Crossref] [Google Scholar]
  84. Zhu H, Fan J, Kong L. 2014.. Spatially varying coefficient model for neuroimaging data with jump discontinuities. . J. Am. Stat. Assoc. 109:(507):108498
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-statistics-112723-034225
Loading
/content/journals/10.1146/annurev-statistics-112723-034225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error