1932

Abstract

The Hawkes process is a model for counting the number of arrivals to a system that exhibits the self-exciting property—that one arrival creates a heightened chance of further arrivals in the near future. The model and its generalizations have been applied in a plethora of disparate domains, though two particularly developed applications are in seismology and in finance. As the original model is elegantly simple, generalizations have been proposed that track marks for each arrival, are multivariate, have a spatial component, are driven by renewal processes, treat time as discrete, and so on. This article creates a cohesive review of the traditional Hawkes model and the modern generalizations, providing details on their construction and simulation algorithms, and giving key references to the appropriate literature for a detailed treatment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-112723-034304
2025-03-07
2025-04-28
Loading full text...

Full text loading...

/deliver/fulltext/statistics/12/1/annurev-statistics-112723-034304.html?itemId=/content/journals/10.1146/annurev-statistics-112723-034304&mimeType=html&fmt=ahah

Literature Cited

  1. Achab S, Bacry E, Gaiffas S, Mastromatteo I, Muzy JF. 2018.. Uncovering causality from multivariate Hawkes integrated cumulants. . J. Mach. Learn. Res. 18::69987025
    [Google Scholar]
  2. Aït-Sahalia Y, Cacho-Diaz J, Laeven RJ. 2015.. Modeling financial contagion using mutually exciting jump processes. . J. Financ. Econ. 117:(3):585606
    [Crossref] [Google Scholar]
  3. Bacry E, Bompaire M, Gaïffas S, Muzy JF. 2020.. Sparse and low-rank multivariate Hawkes processes. . J. Mach. Learn. Res. 21:(1):181748
    [Google Scholar]
  4. Bacry E, Dayri K, Muzy J. 2012.. Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data. . Eur. Phys. J. B 85::157
    [Crossref] [Google Scholar]
  5. Bacry E, Gaïffas S, Mastromatteo I, Muzy JF. 2016.. Mean-field inference of Hawkes point processes. . J. Phys. A 49:(17):174006
    [Crossref] [Google Scholar]
  6. Bacry E, Mastromatteo I, Muzy JF. 2015.. Hawkes processes in finance. . Market Microstruct. Liquidity 1:(1):1550005
    [Crossref] [Google Scholar]
  7. Bacry E, Muzy JF. 2016.. First- and second-order statistics characterization of Hawkes processes and non-parametric estimation. . IEEE Trans. Inform. Theory 62:(4):2184202
    [Crossref] [Google Scholar]
  8. Billingsley P. 2017.. Probability and Measure. New York:: John Wiley & Sons
    [Google Scholar]
  9. Black F, Karasinski P. 1991.. Bond and option pricing when short rates are lognormal. . Financ. Anal. J. 47:(4):5259
    [Crossref] [Google Scholar]
  10. Böhning D, Schlattmann P, Dietz E. 1996.. Interval censored data: a note on the nonparametric maximum likelihood estimator of the distribution function. . Biometrika 83:(2):46266
    [Crossref] [Google Scholar]
  11. Bonnet A, Herrera MM, Sangnier M. 2021.. Maximum likelihood estimation for Hawkes processes with self-excitation or inhibition. . Stat. Probab. Lett. 179::109214
    [Crossref] [Google Scholar]
  12. Brémaud P, Massoulié L. 1996.. Stability of nonlinear Hawkes processes. . Ann. Probab. 24:(3):156388
    [Crossref] [Google Scholar]
  13. Brémaud P, Massoulié L. 2002.. Power spectra of general shot noises and Hawkes point processes with a random excitation. . Adv. Appl. Probab. 34:(1):20522
    [Crossref] [Google Scholar]
  14. Brown T, Pollett P. 1982.. Some distributional approximations in Markovian networks. . Adv. Appl. Probab. 14::65471
    [Crossref] [Google Scholar]
  15. Brown T, Pollett P. 1991.. Poisson approximations for telecommunications networks. . J. Aust. Math. Soc. Ser. B 32::34864
    [Crossref] [Google Scholar]
  16. Browning R, Sulem D, Mengersen K, Rivoirard V, Rousseau J. 2021.. Simple discrete-time self-exciting models can describe complex dynamic processes: a case study of COVID-19. . PLOS ONE 16:(4):e0250015
    [Crossref] [Google Scholar]
  17. Cai B, Zhang J, Guan Y. 2024.. Latent network structure learning from high-dimensional multivariate point processes. . J. Am. Stat. Assoc. 119::95108
    [Crossref] [Google Scholar]
  18. Chen F, Stindl T. 2018.. Direct likelihood evaluation for the renewal Hawkes process. . J. Comput. Graph. Stat. 27:(1):11931
    [Crossref] [Google Scholar]
  19. Cox DR, Isham V. 1980.. Point Processes. London:: Chapman & Hall
    [Google Scholar]
  20. Cramér H. 1930.. On the Mathematical Theory of Risk. Stockholm:: Skandia Jubilee Vol.
    [Google Scholar]
  21. Cseke B, Heskes T. 2011.. Approximate marginals in latent Gaussian models. . J. Mach. Learn. Res. 12::41754
    [Google Scholar]
  22. Cui L, Hawkes A, Yi H. 2020.. An elementary derivation of moments of Hawkes processes. . Adv. Appl. Probab. 52:(1):10237
    [Crossref] [Google Scholar]
  23. Cui L, Wu B, Yin J. 2022.. Moments for Hawkes processes with Gamma decay kernel functions. . Methodol. Comput. Appl. Probab. 24:(3):1565601
    [Crossref] [Google Scholar]
  24. Da Fonseca J, Zaatour R. 2014.. Hawkes process: fast calibration, application to trade clustering, and diffusive limit. . J. Futures Markets 34:(6):54879
    [Crossref] [Google Scholar]
  25. Daley DJ, Vere-Jones D. 2003.. An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods. New York:: Springer. , 2nd ed..
    [Google Scholar]
  26. Daley DJ, Vere-Jones D. 2008.. An Introduction to the Theory of Point Processes, Vol. II: General Theory and Structure. New York:: Springer. , 2nd ed..
    [Google Scholar]
  27. Dassios A, Zhao H. 2011.. A dynamic contagion process. . Adv. Appl. Probab. 43:(3):81446
    [Crossref] [Google Scholar]
  28. Dassios A, Zhao H. 2013.. Exact simulation of Hawkes process with exponentially decaying intensity. . Electron. Commun. Probab. 18:(62):113
    [Google Scholar]
  29. Dempster AP, Laird NM, Rubin DB. 1977.. Maximum likelihood from incomplete data via the EM algorithm. . J. R. Stat. Soc. Ser. B 39:(1):138
    [Crossref] [Google Scholar]
  30. Donnet S, Rivoirard V, Rousseau J. 2020.. Nonparametric Bayesian estimation for multivariate Hawkes processes. . Ann. Stat. 48:(5):2698727
    [Crossref] [Google Scholar]
  31. Feller W. 1951.. Two singular diffusion problems. . Ann. Math. 54::17382
    [Crossref] [Google Scholar]
  32. Gentleman R, Geyer CJ. 1994.. Maximum likelihood for interval censored data: consistency and computation. . Biometrika 81:(3):61823
    [Crossref] [Google Scholar]
  33. Green PJ. 1995.. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. . Biometrika 82:(4):71132
    [Crossref] [Google Scholar]
  34. Gunter T, Lloyd C, Osborne MA, Roberts SJ. 2014.. Efficient Bayesian nonparametric modelling of structured point processes. . In UAI'14: Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, pp. 31019. Arlington, VA:: AUAI
    [Google Scholar]
  35. Guo F, Blundell C, Wallach H, Heller K. 2015.. The Bayesian echo chamber: modeling social influence via linguistic accommodation. . Proc. Mach. Learn. Res. 38::31523
    [Google Scholar]
  36. Hall A. 2004.. Generalized Method of Moments. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  37. Hawkes AG. 1971.. Spectra of some self-exciting and mutually exciting point processes. . Biometrika 58:(1):8390
    [Crossref] [Google Scholar]
  38. Hawkes AG. 2018.. Hawkes processes and their applications to finance: a review. . Quant. Finance 18:(2):19398
    [Crossref] [Google Scholar]
  39. Hawkes AG, Chen J. 2021.. A personal history of Hawkes processes. . Proc. Inst. Stat. Math. 69:(2):12343
    [Google Scholar]
  40. Hawkes AG, Oakes D. 1974.. A cluster process representation of a self-exciting process. . J. Appl. Probab. 11:(3):493503
    [Crossref] [Google Scholar]
  41. Hu XJ, Lagakos SW, Lockhart RA. 2009.. Generalized least squares estimation of the mean function of a counting process based on panel counts. . Stat. Sin. 19::56180
    [Google Scholar]
  42. Jalilian A. 2019.. ETAS: an R package for fitting the space-time ETAS model to earthquake data. . J. Stat. Softw. 88:(1):139
    [Google Scholar]
  43. Joseph S, Jain S. 2024.. Non-parametric estimation of multi-dimensional marked Hawkes processes. . arXiv:2402.04740 [stat.ML]
  44. Kloeden PE, Platen E. 1999.. Numerical Solution of Stochastic Differential Equations. New York:: Springer
    [Google Scholar]
  45. Kroese DP, Taimre T, Botev ZI. 2011.. Handbook of Monte Carlo Methods. New York:: Wiley
    [Google Scholar]
  46. Lapham BM. 2014.. Hawkes processes and some financial applications. Master's Thesis , Univ. Cape Town, Cape Town, South Africa:
    [Google Scholar]
  47. Laub PJ, Lee Y, Taimre T. 2022.. The Elements of Hawkes Processes. New York:: Springer
    [Google Scholar]
  48. Laub PJ, Taimre T, Pollett PK. 2015.. Hawkes processes. . arXiv:1507.02822 [math.PR]
  49. Le TM. 2018.. A multivariate Hawkes process with gaps in observations. . IEEE Trans. Inform. Theory 64:(3):180011
    [Crossref] [Google Scholar]
  50. Lee Y, Laub PJ, Taimre T, Zhao H, Zhuang J. 2022.. Exact simulation of extrinsic stress-release processes. . J. Appl. Probab. 59:(1):10517
    [Crossref] [Google Scholar]
  51. Lee Y, Lim KW, Ong CS. 2016.. Hawkes processes with stochastic excitations. . In ICML'16: Proceedings of the 33rd International Conference on International Conference on Machine Learning, Vol. 48:, pp. 7988. N.p.:: JMLR.org
    [Google Scholar]
  52. Lesage L, Deaconu M, Lejay A, Meira JA, Nichil G, State R. 2022.. Hawkes processes framework with a Gamma density as excitation function: application to natural disasters for insurance. . Methodol. Comput. Appl. Probab. 24:(4):250937
    [Crossref] [Google Scholar]
  53. Lewis E, Mohler G, Brantingham PJ, Bertozzi AL. 2012.. Self-exciting point process models of civilian deaths in Iraq. . Secur. J. 25:(3):24464
    [Crossref] [Google Scholar]
  54. Lewis PAW, Shedler GS. 1979.. Simulation of nonhomogeneous Poisson processes by thinning. . Naval Res. Logist. Q. 26:(3):40313
    [Crossref] [Google Scholar]
  55. Linderman SW, Adams RP. 2014.. Discovering latent network structure in point process data. . Proc. Mach. Learn. Res. 32:(2):141321
    [Google Scholar]
  56. Linderman SW, Wang Y, Blei DM. 2017.. Bayesian inference for latent Hawkes processes. Paper presented at Advances in Approximate Bayesian Inference Workshop, 31st Conference on Neural Information Processing Systems (NIPS 2017), Dec. 8 , Long Beach, CA:
    [Google Scholar]
  57. Liniger TJ. 2009.. Multivariate Hawkes processes. PhD Thesis , Dep. Math., ETH Zurich, Zurich, Switz.:
    [Google Scholar]
  58. Liptser RS, Shiryaev AN, eds. 1978.. Statistics of Random Processes, Vol. II: Applications. New York:: Springer-Verlag
    [Google Scholar]
  59. Liu Y, Yan T, Chen H. 2018.. Exploiting graph regularized multi-dimensional Hawkes processes for modeling events with spatio-temporal characteristics. . In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), pp. 247582. N.p.:: IJCAI
    [Google Scholar]
  60. Lundberg F. 1903.. I. Approximerad framställning af sannolikhetsfunktionen, II. Återförsäkring af kollektivrisker. PhD Diss., Univ. Uppsala, Uppsala, Swed:.
    [Google Scholar]
  61. Medvegyev P. 2007.. Stochastic Integration Theory. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  62. Mei H, Eisner JM. 2017.. The neural Hawkes process: a neurally self-modulating multivariate point process. . In NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 675767. Red Hook, NY:: Curran
    [Google Scholar]
  63. Mohler G. 2013.. Modeling and estimation of multi-source clustering in crime and security data. . Ann. Appl. Stat. 7:(3):152539
    [Crossref] [Google Scholar]
  64. Møller J, Rasmussen JG. 2006.. Approximate simulation of Hawkes processes. . Methodol. Comput. Appl. Probab. 8:(1):5364
    [Crossref] [Google Scholar]
  65. Møller J, Syversveen AR, Waagepetersen RP. 1998.. Log Gaussian Cox processes. Scand. . J. Stat. 25:(3):45182
    [Google Scholar]
  66. Nelder JA, Mead R. 1965.. A simplex method for function minimization. . Comput. J. 7:(4):30813
    [Crossref] [Google Scholar]
  67. Ogata Y. 1978.. The asymptotic behaviour of maximum likelihood estimators for stationary point processes. . Ann. Inst. Stat. Math. 30:(1):24361
    [Crossref] [Google Scholar]
  68. Ogata Y. 1981.. On Lewis' simulation method for point processes. . IEEE Trans. Inform. Theory 27:(1):2331
    [Crossref] [Google Scholar]
  69. Ogata Y. 1988.. Statistical models for earthquake occurrences and residual analysis for point processes. . J. Am. Stat. Assoc. 83:(401):927
    [Crossref] [Google Scholar]
  70. Ogata Y. 1998.. Space-time point-process models for earthquake occurrences. . Ann. Inst. Stat. Math. 50::379402
    [Crossref] [Google Scholar]
  71. Øksendal B, Sulem A. 2007.. Applied Stochastic Control of Jump Diffusions. New York:: Springer. , 2nd ed..
    [Google Scholar]
  72. Omori F. 1894.. On after-shocks of earthquakes. . J. Coll. Sci. Imp. Univ. Tokyo 7::11120
    [Google Scholar]
  73. Ozaki T. 1979.. Maximum likelihood estimation of Hawkes' self-exciting point processes. . Ann. Inst. Stat. Math. 31:(1):14555
    [Crossref] [Google Scholar]
  74. Ozaki T, Akaike H. 1979.. On a generalized parametric model for Hawkes' self-exciting point processes. Res. Memo 149 , Inst. Stat. Math., Tokyo:
    [Google Scholar]
  75. Pai JS. 1997.. Generating random variates with a given force of mortality and finding a suitable force of mortality by theoretical quantile-quantile plots. . Actuar. Res. Clear. House 1::293312
    [Google Scholar]
  76. Peto R. 1973.. Experimental survival curves for interval-censored data. . J. R. Stat. Soc. Ser. C 22:(1):8691
    [Google Scholar]
  77. Porter MD, White G. 2012.. Self-exciting hurdle models for terrorist activity. . Ann. Appl. Stat. 6:(1):10624
    [Crossref] [Google Scholar]
  78. Rasmussen JG. 2013.. Bayesian inference for Hawkes processes. . Methodol. Comput. Appl. Probab. 15:(3):62342
    [Crossref] [Google Scholar]
  79. Reinhart A. 2018.. A review of self-exciting spatio-temporal point processes and their applications. . Stat. Sci. 33:(3):299318
    [Google Scholar]
  80. Shang J, Sun M. 2019.. Geometric Hawkes processes with graph convolutional recurrent neural networks. . In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, pp. 487885. Washington, DC:: AAAI
    [Google Scholar]
  81. Shlomovich L, Cohen EAK, Adams N, Patel L. 2022.. Parameter estimation of binned Hawkes processes. . J. Comput. Graph. Stat. 31:(4):9901000
    [Crossref] [Google Scholar]
  82. Simma A, Jordan MI. 2010.. Modeling events with cascades of Poisson processes. . In UAI'10: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, pp. 54655. Arlington, VA:: AUAI Press
    [Google Scholar]
  83. Stindl T, Chen F. 2018.. Likelihood based inference for the multivariate renewal Hawkes process. . Comput. Stat. Data Anal. 123::13145
    [Crossref] [Google Scholar]
  84. Teh YW, Rao V. 2011.. Gaussian process modulated renewal processes. . In Advances in Neural Information Processing Systems 24 (NIPS 2011), pp. 247482. Red Hook, NY:: Curran
    [Google Scholar]
  85. Turnbull BW. 1976.. The empirical distribution function with arbitrarily grouped, censored and truncated data. . J. R. Stat. Soc. Ser. B 38:(3):29095
    [Crossref] [Google Scholar]
  86. Utsu T. 1961.. A statistical study on the occurrence of aftershocks. . Geophys. Mag. 30::521605
    [Google Scholar]
  87. Utsu T. 1969.. Aftershocks and earthquake statistics I: some parameters which characterize an aftershock sequence and their interrelations. . J. Faculty Sci. Hokkaido Univ. 3::12995
    [Google Scholar]
  88. Utsu T, Ogata Y, Matsu'ura RS. 1995.. The centenary of the Omori formula for a decay law of aftershock activity. . J. Phys. Earth 43:(1):133
    [Crossref] [Google Scholar]
  89. Veen A, Schoenberg FP. 2008.. Estimation of space-time branching process models in seismology using an EM-type algorithm. . J. Am. Stat. Assoc. 103:(482):61424
    [Crossref] [Google Scholar]
  90. Wheatley S, Filimonov V, Sornette D. 2016.. The Hawkes process with renewal immigration & its estimation with an EM algorithm. . Comput. Stat. Data Anal. 94::12035
    [Crossref] [Google Scholar]
  91. White G, Porter MD, Mazerolle L. 2013.. Terrorism risk, resilience and volatility: a comparison of terrorism patterns in three Southeast Asian countries. . J. Quant. Criminol. 29:(2):295320
    [Crossref] [Google Scholar]
  92. Worrall J, Browning R, Wu P, Mengersen K. 2022.. Fifty years later: new directions in Hawkes processes. . SORT 46:(1):338
    [Google Scholar]
  93. Zammit Mangion A, Yuan K, Kadirkamanathan V, Niranjan M, Sanguinetti G. 2011.. Online variational inference for state-space models with point-process observations. . Neural Comput. 23:(8):196799
    [Crossref] [Google Scholar]
  94. Zhang Q, Lipani A, Kirnap O, Yilmaz E. 2020.. Self-attentive Hawkes process. . Proc. Mach. Learn. Res. 119::1118393
    [Google Scholar]
  95. Zhuang J, Ogata Y, Vere-Jones D. 2002.. Stochastic declustering of space-time earthquake occurrences. . J. Am. Stat. Assoc. 97:(458):36980
    [Crossref] [Google Scholar]
  96. Zuo S, Jiang H, Li Z, Zhao T, Zha H. 2020.. Transformer Hawkes process. . Proc. Mach. Learn. Res. 119::11692702
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-112723-034304
Loading
/content/journals/10.1146/annurev-statistics-112723-034304
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error