1932

Abstract

Infectious diseases pose a persistent challenge to public health worldwide. Recent global health crises, such as the COVID-19 pandemic and Ebola outbreaks, have underscored the vital role of infectious disease modeling in guiding public health policy and response. Infectious disease modeling is a critical tool for society, informing risk mitigation measures, prompting timely interventions, and aiding preparedness for healthcare delivery systems. This article synthesizes the current landscape of infectious disease modeling, emphasizing the integration of statistical methods in understanding and predicting the spread of infectious diseases. We begin by examining the historical context and the foundational models that have shaped the field, such as the SIR (susceptible, infectious, recovered) and SEIR (susceptible, exposed, infectious, recovered) models. Subsequently, we delve into the methodological innovations that have arisen, including stochastic modeling, network-based approaches, and the use of big data analytics. We also explore the integration of machine learning techniques in enhancing model accuracy and responsiveness. The review identifies the challenges of parameter estimation, model validation, and the incorporation of real-time data streams. Moreover, we discuss the ethical implications of modeling, such as privacy concerns and the communication of risk. The article concludes by discussing future directions for research, highlighting the need for data integration and interdisciplinary collaboration for advancing infectious disease modeling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-112723-034351
2024-11-12
2024-12-09
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-statistics-112723-034351
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error