1932

Abstract

Autophagy is a conserved vacuole/lysosome-mediated degradation pathway for clearing and recycling cellular components including cytosol, macromolecules, and dysfunctional organelles. In recent years, autophagy has emerged to play important roles in plant-pathogen interactions. It acts as an antiviral defense mechanism in plants. Moreover, increasing evidence shows that plant viruses can manipulate, hijack, or even exploit the autophagy pathway to promote pathogenesis, demonstrating the pivotal role of autophagy in the evolutionary arms race between hosts and viruses. In this review, we discuss recent findings about the antiviral and proviral roles of autophagy in plant-virus interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-010220-054709
2020-09-29
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/virology/7/1/annurev-virology-010220-054709.html?itemId=/content/journals/10.1146/annurev-virology-010220-054709&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Yang X, Bassham DC. 2015. New insight into the mechanism and function of autophagy in plant cells. Int. Rev. Cell Mol. Biol. 320:1–40
    [Google Scholar]
  2. 2. 
    Liu Y, Bassham DC. 2012. Autophagy: pathways for self-eating in plant cells. Annu. Rev. Plant Biol. 63:215–37
    [Google Scholar]
  3. 3. 
    Klionsky DJ. 2005. The molecular machinery of autophagy: unanswered questions. J. Cell Sci. 118:7–18
    [Google Scholar]
  4. 4. 
    Mizushima N. 2007. Autophagy: process and function. Genes Dev 21:2861–73
    [Google Scholar]
  5. 5. 
    Marshall RS, Vierstra RD. 2018. Autophagy: the master of bulk and selective recycling. Annu. Rev. Plant Biol. 69:173–208
    [Google Scholar]
  6. 6. 
    Choi Y, Bowman JW, Jung JU 2018. Autophagy during viral infection—a double-edged sword. Nat. Rev. Microbiol. 16:341–54
    [Google Scholar]
  7. 7. 
    Wang P, Mugume Y, Bassham DC 2018. New advances in autophagy in plants: regulation, selectivity and function. Semin. Cell Dev. Biol. 80:113–22
    [Google Scholar]
  8. 8. 
    Nishimura T, Tamura N, Kono N, Shimanaka Y, Arai H et al. 2017. Autophagosome formation is initiated at phosphatidylinositol synthase-enriched ER subdomains. EMBO J 36:1719–35
    [Google Scholar]
  9. 9. 
    Zhuang X, Chung KP, Cui Y, Lin W, Gao C et al. 2017. ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. . PNAS 114:E426–426
    [Google Scholar]
  10. 10. 
    Mizushima N, Yoshimori T, Ohsumi Y 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell. Dev. Biol. 27:107–32
    [Google Scholar]
  11. 11. 
    Michaeli S, Galili G, Genschik P, Fernie AR, Avin-Wittenberg T 2016. Autophagy in plants—What's new on the menu. ? Trends Plant Sci 21:134–44
    [Google Scholar]
  12. 12. 
    Garcia-Ruiz H. 2019. Host factors against plant viruses. Mol. Plant Pathol. 20:1588–601
    [Google Scholar]
  13. 13. 
    Jones-Rhoades MW, Bartel DP, Bartel B 2006. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57:19–53
    [Google Scholar]
  14. 14. 
    Jones JD, Dangl JL. 2006. The plant immune system. Nature 444:323–29
    [Google Scholar]
  15. 15. 
    Koornneef A, Pieterse CM. 2008. Cross talk in defense signaling. Plant Physiol 146:839–44
    [Google Scholar]
  16. 16. 
    Marino D, Peeters N, Rivas S 2012. Ubiquitination during plant immune signaling. Plant Physiol 160:15–27
    [Google Scholar]
  17. 17. 
    Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y et al. 2006. Autophagy in development and stress responses of plants. Autophagy 2:2–11
    [Google Scholar]
  18. 18. 
    Ismayil A, Yang M, Liu Y 2020. Role of autophagy during plant-virus interactions. Semin. Cell Dev. Biol. 101:36–40
    [Google Scholar]
  19. 19. 
    Soto-Burgos J, Zhuang XH, Jiang L, Bassham DC 2018. Dynamics of autophagosome formation. Plant Physiol 176:219–29
    [Google Scholar]
  20. 20. 
    Xie Z, Klionsky DJ. 2007. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9:1102–9
    [Google Scholar]
  21. 21. 
    Johansen T, Lamark T. 2019. Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors. J. Mol. Biol. 432:80–103
    [Google Scholar]
  22. 22. 
    Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T et al. 2012. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198:219–33
    [Google Scholar]
  23. 23. 
    Obara K, Sekito T, Niimi K, Ohsumi Y 2008. The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J. Biol. Chem. 283:23972–80
    [Google Scholar]
  24. 24. 
    Rieter E, Vinke F, Bakula D, Cebollero E, Ungermann C et al. 2013. Atg18 function in autophagy is regulated by specific sites within its β-propeller. J. Cell Sci. 126:593–604
    [Google Scholar]
  25. 25. 
    Tamura N, Oku M, Ito M, Noda NN, Inagaki F, Sakai Y 2013. Atg18 phosphoregulation controls organellar dynamics by modulating its phosphoinositide-binding activity. J. Cell Biol. 202:685–98
    [Google Scholar]
  26. 26. 
    Efe JA, Botelho RJ, Emr SD 2007. Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Mol. Biol. Cell 18:4232–44
    [Google Scholar]
  27. 27. 
    Xiong Y, Contento AL, Bassham DC 2005. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. . Plant J 42:535–46
    [Google Scholar]
  28. 28. 
    Graef M, Friedman JR, Graham C, Babu M, Nunnari J 2013. ER exit sites are physical and functional core autophagosome biogenesis components. Mol. Biol. Cell 24:2918–31
    [Google Scholar]
  29. 29. 
    Kotania T, Kirisakoa H, Koizumib M, Ohsumib Y, Nakatogawa H 2018. The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. PNAS 115:10363–68
    [Google Scholar]
  30. 30. 
    Suzuki K, Akioka M, Kondo-Kakuta C, Yamamoto H, Ohsumi Y 2013. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. . Cell Sci 126:2534–44
    [Google Scholar]
  31. 31. 
    Osawa T, Kotani T, Kawaoka T, Hirata E, Suzuki K et al. 2019. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 26:281–88
    [Google Scholar]
  32. 32. 
    Valverde DP, Yu S, Boggavarapu V, Kumar N, Lees JA et al. 2019. ATG2 transports lipids to promote autophagosome biogenesis. J. Cell Biol. 218:1787–98
    [Google Scholar]
  33. 33. 
    Ktistakis NT. 2019. Who plays the ferryman: ATG2 channels lipids into the forming autophagosome. J. Cell Biol. 218:1767–68
    [Google Scholar]
  34. 34. 
    Tang Z, Takahashi Y, Wang HG 2019. ATG2 regulation of phagophore expansion at mitochondria-associated ER membranes. Autophagy 15:2165–66
    [Google Scholar]
  35. 35. 
    Patel S, Dinesh-Kumar SP. 2008. Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 4:20–27
    [Google Scholar]
  36. 36. 
    Phillips AR, Suttangkakul A, Vierstra RD 2008. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. . Genetics 178:1339–53
    [Google Scholar]
  37. 37. 
    Suttangkakul A, Li FQ, Chung T, Vierstra RD 2011. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. . Plant Cell 23:3761–79
    [Google Scholar]
  38. 38. 
    Taherbhoy AM, Tait SW, Kaiser SE, Williams AH, Deng A et al. 2011. Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol. Cell 44:451–61
    [Google Scholar]
  39. 39. 
    Xiong J. 2015. Atg7 in development and disease: panacea or Pandora's Box. ? Protein Cell 6:722–34
    [Google Scholar]
  40. 40. 
    Birgisdottir AB, Lamark T, Johansen T 2013. The LIR motif—crucial for selective autophagy. J. Cell Sci. 126:3237–47
    [Google Scholar]
  41. 41. 
    Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W et al. 2008. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211–18
    [Google Scholar]
  42. 42. 
    Marshall RS, Hua Z, Mali S, McLoughlin F, Vierstra RD 2019. ATG8-binding UIM proteins define a new class of autophagy adaptors and receptors. Cell 177:766–81
    [Google Scholar]
  43. 43. 
    Haxim Y, Ismayil A, Jia Q, Wang Y, Zheng X et al. 2017. Autophagy functions as an antiviral mechanism against geminiviruses in plants. eLife 6:e23897
    [Google Scholar]
  44. 44. 
    Khaminets A, Behl C, Dikic I 2016. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol 26:6–16
    [Google Scholar]
  45. 45. 
    Gatica D, Lahiri V, Klionsky DJ 2018. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 20:233–42
    [Google Scholar]
  46. 46. 
    Zaffagnini G, Martens S. 2016. Mechanisms of selective autophagy. J. Mol. Biol. 428:1714–24
    [Google Scholar]
  47. 47. 
    Zhou J, Wang J, Cheng Y, Chi YJ, Fan B et al. 2013. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLOS Genet 9:e1003196
    [Google Scholar]
  48. 48. 
    Chiramel AI, Brady NR, Bartenschlager R 2013. Divergent roles of autophagy in virus infection. Cells 2:83–104
    [Google Scholar]
  49. 49. 
    Jackson WT. 2015. Viruses and the autophagy pathway. Virology 479:450–56
    [Google Scholar]
  50. 50. 
    Clavel M, Michaeli S, Genschik P 2017. Autophagy: a double-edged sword to fight plant viruses. Trends Plant Sci 22:646–48
    [Google Scholar]
  51. 51. 
    Fu S, Xu Y, Li C, Li Y, Wu J, Zhou X 2018. Rice stripe virus interferes with S-acylation of remorin and induces its autophagic degradation to facilitate virus infection. Mol. Plant 11:269–87
    [Google Scholar]
  52. 52. 
    Xu Y, Zhou P, Cheng S, Lu Q, Nowak K et al. 2019. A bacterial effector reveals the V-ATPase-ATG16L1 axis that initiates xenophagy. Cell 178:3552–66
    [Google Scholar]
  53. 53. 
    Yang M, Zhang Y, Xie X, Yue N, Li J et al. 2018. Barley stripe mosaic virus γb protein subverts autophagy to promote viral infection by disrupting the ATG7-ATG8 interaction. Plant Cell 30:1582–95
    [Google Scholar]
  54. 54. 
    Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP 2005. Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–77
    [Google Scholar]
  55. 55. 
    Han S, Wang Y, Zheng X, Jia Q, Zhao J et al. 2015. Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana. . Plant Cell 27:1316–31
    [Google Scholar]
  56. 56. 
    Xu G, Wang S, Han S, Xie K, Wang Y et al. 2017. Plant Bax inhibitor-1 interacts with ATG6 to regulate autophagy and programmed cell death. Autophagy 13:1161–75
    [Google Scholar]
  57. 57. 
    Hafrén A, Macia JL, Love AJ, Milner JJ, Drucker M, Hofius D 2017. Selective autophagy limits Cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. PNAS 114:E2026–2026
    [Google Scholar]
  58. 58. 
    Hafrén A, Ustun S, Hochmuth A, Svenning S, Johansen T, Hofius D 2018. Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HCpro. Plant Physiol 176:649–62
    [Google Scholar]
  59. 59. 
    Li F, Zhang M, Zhang C, Zhou X 2019. Nuclear autophagy degrades a geminivirus nuclear protein to restrict viral infection in solanaceous plants. New Phytol 225:1746–61
    [Google Scholar]
  60. 60. 
    Gorovits R, Fridman L, Kolot M, Rotem O, Ghanim M et al. 2016. Tomato yellow leaf curl virus confronts host degradation by sheltering in small/midsized protein aggregates. Virus Res 213:304–13
    [Google Scholar]
  61. 61. 
    Gorovits R, Moshe A, Ghanim M, Czosnek H 2014. Degradation mechanisms of the Tomato yellow leaf curl virus coat protein following inoculation of tomato plants by the whitefly Bemisia tabaci. Pest Manag. Sci 70:1632–39
    [Google Scholar]
  62. 62. 
    Li F, Zhang C, Li Y, Wu G, Hou X et al. 2018. Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase. Nat. Commun. 9:1268
    [Google Scholar]
  63. 63. 
    Koonin EV, Dolja VV. 1993. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 28:375–430
    [Google Scholar]
  64. 64. 
    Jiang L, Lu YW, Zheng X, Yang X, Chen Y et al. 2019. A plant protein NbP3IP induces autophagy and mediates the autophagic degradation of RSV p3 to inhibit viral infection. bioRxiv 532275. https://doi.org/10.1101/532275
    [Crossref]
  65. 65. 
    Jeon EJ, Tadamura K, Murakami T, Inaba JI, Kim BM et al. 2017. rgs-CaM detects and counteracts viral RNA silencing suppressors in plant immune priming. J. Virol. 91:e00761-17
    [Google Scholar]
  66. 66. 
    Li F, Huang C, Li Z, Zhou X 2014. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLOS Pathog 10:e1003921
    [Google Scholar]
  67. 67. 
    Nakahara KS, Masuta C, Yamada S, Shimura H, Kashihara Y et al. 2012. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. PNAS 109:10113–18
    [Google Scholar]
  68. 68. 
    Huang YP, Huang YW, Hsiao YJ, Li SC, Hsu YH, Tsai CH 2019. Autophagy is involved in assisting the replication of Bamboo mosaic virus in Nicotiana benthamiana. J. Exp. Bot 70:4657–70
    [Google Scholar]
  69. 69. 
    Li F, Zhao N, Li Z, Xu X, Wang Y et al. 2017. A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. . PLOS Pathog 13:e1006213
    [Google Scholar]
  70. 70. 
    Ruck A, Attonito J, Garces KT, Nuñez L, Palmisano NJ et al. 2011. The Atg6/Vps30/Beclin1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in C. elegans. . Autophagy 7:386–400
    [Google Scholar]
  71. 71. 
    Ohsumi Y. 2001. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2:211–16
    [Google Scholar]
  72. 72. 
    Li YY, Sun Q, Zhao TY, Xiang HY, Zhang XY et al. 2019. Interaction between Brassica yellows virus silencing suppressor P0 and plant SKP1 facilitates stability of P0 in vivo against degradation by proteasome and autophagy pathways. New Phytol 222:1458–73
    [Google Scholar]
  73. 73. 
    Derrien B, Baumberger N, Schepetilnikov M, Viotti C, De Cillia J et al. 2012. Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. PNAS 109:15942–46
    [Google Scholar]
  74. 74. 
    Baumberger N, Tsai CH, Lie M, Havecker E, Baulcombe DC 2007. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr. Biol. 17:1609–14
    [Google Scholar]
  75. 75. 
    Michaeli S, Clavel M, Lechner E, Viotti C, Wu J et al. 2019. The viral F-box protein P0 induces an ER-derived autophagy degradation pathway for the clearance of membrane-bound AGO1. PNAS 116:22872–83
    [Google Scholar]
  76. 76. 
    Cheng X, Wang A. 2017. The potyvirus silencing suppressor protein VPg mediates degradation of SGS3 via ubiquitination and autophagy pathways. J. Virol. 91:e01478-16
    [Google Scholar]
  77. 77. 
    Jarsch IK, Ott T. 2011. Perspectives on remorin proteins, membrane rafts, and their role during plant–microbe interactions. Mol. Plant. Microbe Interact. 24:7–12
    [Google Scholar]
  78. 78. 
    Ismayil A, Yang M, Haxim Y, Wang Y, Li J et al. 2020. Cotton leaf curl Multan virus βC1 protein induces autophagy by disrupting the interaction of autophagy-related protein 3 with glyceraldehyde-3-phosphate dehydrogenases. Plant Cell 32:41124–35
    [Google Scholar]
  79. 79. 
    Wang LL, Wang XR, Wei XM, Huang H, Wu JX et al. 2016. The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies. Autophagy 12:1560–74
    [Google Scholar]
  80. 80. 
    Chen Y, Chen Q, Li M, Mao Q, Chen H et al. 2017. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector. PLOS Pathog 13:e1006727
    [Google Scholar]
  81. 81. 
    Deng XG, Zhu T, Peng XJ, Xi DH, Guo H et al. 2016. Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana. Sci. . Rep 6:20579
    [Google Scholar]
  82. 82. 
    Yang M, Li Z, Zhang K, Zhang X, Zhang Y et al. 2018. Barley stripe mosaic virus γb interacts with glycolate oxidase and inhibits peroxisomal ROS production to facilitate virus infection. Mol. Plant 11:338–41
    [Google Scholar]
  83. 83. 
    Zvereva AS, Golyaev V, Turco S, Gubaeva EG, Rajeswaran R et al. 2016. Viral protein suppresses oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on virus-infected plants. New Phytol 211:1020–34
    [Google Scholar]
  84. 84. 
    Liu YM, Bassham DC. 2010. TOR is a negative regulator of autophagy in Arabidopsis thaliana. . PLOS ONE 5:e11883
    [Google Scholar]
/content/journals/10.1146/annurev-virology-010220-054709
Loading
/content/journals/10.1146/annurev-virology-010220-054709
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error