1932

Abstract

Viruses exploit key host cell factors to accomplish each individual stage of the viral replication cycle. To understand viral pathogenesis and speed the development of new antiviral strategies, high-resolution visualization of virus-host interactions is needed to define where and when these events occur within cells. Here, we review state-of-the-art live cell imaging techniques for tracking individual stages of viral life cycles, focusing predominantly on retroviruses and especially human immunodeficiency virus type 1, which is most extensively studied. We describe how visible viruses can be engineered for live cell imaging and how nonmodified viruses can, in some instances, be tracked and studied indirectly using cell biosensor systems. We summarize the ways in which live cell imaging has been used to dissect the retroviral life cycle. Finally, we discuss select challenges for the future including the need for better labeling strategies, increased resolution, and multivariate systems that will allow for the study of full viral replication cycles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100422-012608
2024-09-26
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/virology/11/1/annurev-virology-100422-012608.html?itemId=/content/journals/10.1146/annurev-virology-100422-012608&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bernal JD, Fankuchen I. 1937.. Structure types of protein crystals from virus-infected plants. . Nature 139:(3526):92324
    [Crossref] [Google Scholar]
  2. 2.
    Brenner S, Horne RW. 1959.. A negative staining method for high resolution electron microscopy of viruses. . Biochim. Biophys. Acta 34::10310
    [Crossref] [Google Scholar]
  3. 3.
    Lowy RJ, Sarkar DP, Chen Y, Blumenthal R. 1990.. Observation of single influenza virus-cell fusion and measurement by fluorescence video microscopy. . PNAS 87:(5):185054
    [Crossref] [Google Scholar]
  4. 4.
    Georgi A, Mottola-Hartshorn C, Warner A, Fields B, Chen LB. 1990.. Detection of individual fluorescently labeled reovirions in living cells. . PNAS 87:(17):657983
    [Crossref] [Google Scholar]
  5. 5.
    Arnheiter H, Dubois-Dalcq M, Lazzarini RA. 1984.. Direct visualization of protein transport and processing in the living cell by microinjection of specific antibodies. . Cell 39:(1):99109
    [Crossref] [Google Scholar]
  6. 6.
    Bächi T. 1988.. Direct observation of the budding and fusion of an enveloped virus by video microscopy of viable cells. . J. Cell Biol. 107:(5):168995
    [Crossref] [Google Scholar]
  7. 7.
    Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. 1992.. Primary structure of the Aequorea victoria green-fluorescent protein. . Gene 111:(2):22933
    [Crossref] [Google Scholar]
  8. 8.
    Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY. 1995.. Understanding, improving and using green fluorescent proteins. . Trends Biochem. Sci. 20:(11):44855
    [Crossref] [Google Scholar]
  9. 9.
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. 1994.. Green fluorescent protein as a marker for gene expression. . Science 263:(5148):8025
    [Crossref] [Google Scholar]
  10. 10.
    Marsh M, Helenius A. 2006.. Virus entry: open sesame. . Cell 124:(4):72940
    [Crossref] [Google Scholar]
  11. 11.
    Greber UF, Way M. 2006.. A superhighway to virus infection. . Cell 124:(4):74154
    [Crossref] [Google Scholar]
  12. 12.
    Witte R, Andriasyan V, Georgi F, Yakimovich A, Greber UF. 2018.. Concepts in light microscopy of viruses. . Viruses 10:(4):202
    [Crossref] [Google Scholar]
  13. 13.
    Campbell EM, Hope TJ. 2008.. Live cell imaging of the HIV-1 life cycle. . Trends Microbiol. 16:(12):58087
    [Crossref] [Google Scholar]
  14. 14.
    Sivaraman D, Biswas P, Cella LN, Yates MV, Chen W. 2011.. Detecting RNA viruses in living mammalian cells by fluorescence microscopy. . Trends Biotechnol. 29:(7):30713
    [Crossref] [Google Scholar]
  15. 15.
    Bann DV, Parent LJ. 2012.. Application of live-cell RNA imaging techniques to the study of retroviral RNA trafficking. . Viruses 4:(6):96379
    [Crossref] [Google Scholar]
  16. 16.
    Sun E, He J, Zhuang X. 2013.. Live cell imaging of viral entry. . Curr. Opin. Virol. 3:(1):3443
    [Crossref] [Google Scholar]
  17. 17.
    Dirk BS, Van Nynatten LR, Dikeakos JD. 2016.. Where in the cell are you? Probing HIV-1 host interactions through advanced imaging techniques. . Viruses 8:(10):288
    [Crossref] [Google Scholar]
  18. 18.
    Saffarian S. 2021.. Application of advanced light microscopy to the study of HIV and its interactions with the host. . Viruses 13:(2):223
    [Crossref] [Google Scholar]
  19. 19.
    Tran V, Poole DS, Jeffery JJ, Sheahan TP, Creech D, et al. 2015.. Multi-modal imaging with a toolbox of influenza A reporter viruses. . Viruses 7:(10):531927
    [Crossref] [Google Scholar]
  20. 20.
    Sewald X, Gonzalez DG, Haberman AM, Mothes W. 2012.. In vivo imaging of virological synapses. . Nat. Commun. 3::1320
    [Crossref] [Google Scholar]
  21. 21.
    Fukuyama S, Katsura H, Zhao D, Ozawa M, Ando T, et al. 2015.. Multi-spectral fluorescent reporter influenza viruses (Color-flu) as powerful tools for in vivo studies. . Nat. Commun. 6::6600
    [Crossref] [Google Scholar]
  22. 22.
    Casper SJ, Holt CA. 1996.. Expression of the green fluorescent protein-encoding gene from a tobacco mosaic virus-based vector. . Gene 173:(1):6973
    [Crossref] [Google Scholar]
  23. 23.
    Lee AH, Han JM, Sung YC. 1997.. Generation of the replication-competent human immunodeficiency virus type 1 which expresses a jellyfish green fluorescent protein. . Biochem. Biophys. Res. Commun. 233:(1):28892
    [Crossref] [Google Scholar]
  24. 24.
    Duprex WP, McQuaid S, Hangartner L, Billeter MA, Rima BK. 1999.. Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. . J. Virol. 73:(11):956875
    [Crossref] [Google Scholar]
  25. 25.
    Vieira J, O'Hearn PM. 2004.. Use of the red fluorescent protein as a marker of Kaposi's sarcoma-associated herpesvirus lytic gene expression. . Virology 325:(2):22540
    [Crossref] [Google Scholar]
  26. 26.
    Hendrix J, Baumgärtel V, Schrimpf W, Ivanchenko S, Digman MA, et al. 2015.. Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers. . J. Cell Biol. 210:(4):62946
    [Crossref] [Google Scholar]
  27. 27.
    Becker JT, Sherer NM. 2017.. Subcellular localization of HIV-1 gag-pol mRNAs regulates sites of virion assembly. . J. Virol. 91:(6):e02315-16
    [Crossref] [Google Scholar]
  28. 28.
    Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W. 2007.. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. . Nat. Cell Biol. 9:(3):31015
    [Crossref] [Google Scholar]
  29. 29.
    Hübner W, McNerney GP, Chen P, Dale BM, Gordon RE, et al. 2009.. Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. . Science 323:(5922):174347
    [Crossref] [Google Scholar]
  30. 30.
    Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, et al. 2008.. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. . Nat. Cell Biol. 10:(2):21119
    [Crossref] [Google Scholar]
  31. 31.
    McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ. 2003.. Recruitment of HIV and its receptors to dendritic cell-T cell junctions. . Science 300:(5623):129597
    [Crossref] [Google Scholar]
  32. 32.
    Gousset K, Ablan SD, Coren LV, Ono A, Soheilian F, et al. 2008.. Real-time visualization of HIV-1 GAG trafficking in infected macrophages. . PLOS Pathog. 4:(3):e1000015
    [Crossref] [Google Scholar]
  33. 33.
    Burdick RC, Delviks-Frankenberry KA, Chen J, Janaka SK, Sastri J, et al. 2017.. Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes. . PLOS Pathog. 13:(8):e1006570
    [Crossref] [Google Scholar]
  34. 34.
    Mamede JI, Cianci GC, Anderson MR, Hope TJ. 2017.. Early cytoplasmic uncoating is associated with infectivity of HIV-1. . PNAS 114:(34):E716978
    [Crossref] [Google Scholar]
  35. 35.
    Zurnic Bönisch I, Dirix L, Lemmens V, Borrenberghs D, De Wit F, et al. 2020.. Capsid-labelled HIV to investigate the role of capsid during nuclear import and integration. . J. Virol. 94:(7):e01024-19
    [Crossref] [Google Scholar]
  36. 36.
    Schifferdecker S, Zila V, Müller TG, Sakin V, Anders-Össwein M, et al. 2022.. Direct capsid labeling of infectious HIV-1 by genetic code expansion allows detection of largely complete nuclear capsids and suggests nuclear entry of HIV-1 complexes via common routes. . mBio 13:(5):e0195922
    [Crossref] [Google Scholar]
  37. 37.
    Campbell EM, Perez O, Melar M, Hope TJ. 2007.. Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell. . Virology 360:(2):28693
    [Crossref] [Google Scholar]
  38. 38.
    Lampe M, Briggs JAG, Endress T, Glass B, Riegelsberger S, et al. 2007.. Double-labelled HIV-1 particles for study of virus–cell interaction. . Virology 360:(1):92104
    [Crossref] [Google Scholar]
  39. 39.
    Sood C, Francis AC, Desai TM, Melikyan GB. 2017.. An improved labeling strategy enables automated detection of single-virus fusion and assessment of HIV-1 protease activity in single virions. . J. Biol. Chem. 292:(49):20196207
    [Crossref] [Google Scholar]
  40. 40.
    Francis AC, Marin M, Shi J, Aiken C, Melikyan GB. 2016.. Time-resolved imaging of single HIV-1 uncoating in vitro and in living cells. . PLOS Pathog. 12:(6):e1005709
    [Crossref] [Google Scholar]
  41. 41.
    Lehmann MJ, Sherer NM, Marks CB, Pypaert M, Mothes W. 2005.. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. . J. Cell Biol. 170:(2):31725
    [Crossref] [Google Scholar]
  42. 42.
    Sherer NM, Lehmann MJ, Jimenez-Soto LF, Ingmundson A, Horner SM, et al. 2003.. Visualization of retroviral replication in living cells reveals budding into multivesicular bodies. . Traffic 4:(11):785801
    [Crossref] [Google Scholar]
  43. 43.
    Sliva K, Erlwein O, Bittner A, Schnierle BS. 2004.. Murine leukemia virus (MLV) replication monitored with fluorescent proteins. . Virol. J. 1::14
    [Crossref] [Google Scholar]
  44. 44.
    Carravilla P, Nieva JL, Eggeling C. 2020.. Fluorescence microscopy of the HIV-1 envelope. . Viruses 12:(3):348
    [Crossref] [Google Scholar]
  45. 45.
    Pezeshkian N, Groves NS, van Engelenburg SB. 2019.. Single-molecule imaging of HIV-1 envelope glycoprotein dynamics and Gag lattice association exposes determinants responsible for virus incorporation. . PNAS 116:(50):2526977
    [Crossref] [Google Scholar]
  46. 46.
    Kemler I, Meehan A, Poeschla EM. 2010.. Live-cell coimaging of the genomic RNAs and Gag proteins of two lentiviruses. . J. Virol. 84:(13):635266
    [Crossref] [Google Scholar]
  47. 47.
    Jouvenet N, Simon SM, Bieniasz PD. 2009.. Imaging the interaction of HIV-1 genomes and Gag during assembly of individual viral particles. . PNAS 106:(45):1911419
    [Crossref] [Google Scholar]
  48. 48.
    Chen J, Liu Y, Wu B, Nikolaitchik OA, Mohan PR, et al. 2020.. Visualizing the translation and packaging of HIV-1 full-length RNA. . PNAS 117:(11):614555
    [Crossref] [Google Scholar]
  49. 49.
    Pocock GM, Becker JT, Swanson CM, Ahlquist P, Sherer NM. 2016.. HIV-1 and M-PMV RNA nuclear export elements program viral genomes for distinct cytoplasmic trafficking behaviors. . PLOS Pathog. 12:(4):e1005565
    [Crossref] [Google Scholar]
  50. 50.
    Basyuk E, Galli T, Mougel M, Blanchard J-M, Sitbon M, Bertrand E. 2003.. Retroviral genomic RNAs are transported to the plasma membrane by endosomal vesicles. . Dev. Cell 5:(1):16174
    [Crossref] [Google Scholar]
  51. 51.
    Burdick RC, Hu W-S, Pathak VK. 2013.. Nuclear import of APOBEC3F-labeled HIV-1 preintegration complexes. . PNAS 110:(49):E478089
    [Crossref] [Google Scholar]
  52. 52.
    Hatch SC, Sardo L, Chen J, Burdick R, Gorelick R, et al. 2013.. Gag-dependent enrichment of HIV-1 RNA near the uropod membrane of polarized T cells. . J. Virol. 87:(21):1191215
    [Crossref] [Google Scholar]
  53. 53.
    Chen J, Nikolaitchik O, Singh J, Wright A, Bencsics CE, et al. 2009.. High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis. . PNAS 106:(32):1353540
    [Crossref] [Google Scholar]
  54. 54.
    Mörner A, Björndal A, Albert J, Kewalramani VN, Littman DR, et al. 1999.. Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. . J. Virol. 73:(3):234349
    [Crossref] [Google Scholar]
  55. 55.
    Gervaix A, West D, Leoni LM, Richman DD, Wong-Staal F, Corbeil J. 1997.. A new reporter cell line to monitor HIV infection and drug susceptibility in vitro. . PNAS 94:(9):465358
    [Crossref] [Google Scholar]
  56. 56.
    Kane M, Zang TM, Rihn SJ, Zhang F, Kueck T, et al. 2016.. Identification of interferon-stimulated genes with antiretroviral activity. . Cell Host Microbe 20:(3):392405
    [Crossref] [Google Scholar]
  57. 57.
    Evans EL, Becker JT, Fricke SL, Patel K, Sherer NM. 2018.. HIV-1 Vif's capacity to manipulate the cell cycle is species specific. . J. Virol. 92:(7):e02102-17
    [Crossref] [Google Scholar]
  58. 58.
    Holmes M, Zhang F, Bieniasz PD. 2015.. Single-cell and single-cycle analysis of HIV-1 replication. . PLOS Pathog. 11:(6):e1004961
    [Crossref] [Google Scholar]
  59. 59.
    Cortese M, Lee J-Y, Cerikan B, Neufeldt CJ, Oorschot VMJ, et al. 2020.. Integrative imaging reveals SARS-CoV-2-induced reshaping of subcellular morphologies. . Cell Host Microbe 28:(6):85366.e5
    [Crossref] [Google Scholar]
  60. 60.
    Voigt E, Inankur B, Baltes A, Yin J. 2013.. A quantitative infection assay for human type I, II, and III interferon antiviral activities. . Virol. J. 10::224
    [Crossref] [Google Scholar]
  61. 61.
    Arias-Arias JL, Corrales-Aguilar E, Mora-Rodríguez RA. 2021.. A fluorescent real-time plaque assay enables single-cell analysis of virus-induced cytopathic effect by live-cell imaging. . Viruses 13:(7):1193
    [Crossref] [Google Scholar]
  62. 62.
    Baumgärtel V, Ivanchenko S, Dupont A, Sergeev M, Wiseman PW, et al. 2011.. Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. . Nat. Cell Biol. 13:(4):46974
    [Crossref] [Google Scholar]
  63. 63.
    Jin J, Sherer NM, Heidecker G, Derse D, Mothes W. 2009.. Assembly of the murine leukemia virus is directed towards sites of cell–cell contact. . PLOS Biol. 7:(7):e1000163
    [Crossref] [Google Scholar]
  64. 64.
    Maldonado RJK, Rice B, Chen EC, Tuffy KM, Chiari EF, et al. 2020.. Visualizing association of the retroviral Gag protein with unspliced viral RNA in the nucleus. . mBio 11:(2):e00524-20
    [Crossref] [Google Scholar]
  65. 65.
    Angert I, Karuka SR, Mansky LM, Mueller JD. 2022.. Partitioning of ribonucleoprotein complexes from the cellular actin cortex. . Sci. Adv. 8:(33):eabj3236
    [Crossref] [Google Scholar]
  66. 66.
    Fogarty KH, Berk S, Grigsby IF, Chen Y, Mansky LM, Mueller JD. 2014.. Interrelationship between cytoplasmic retroviral Gag concentration and Gag-membrane association. . J. Mol. Biol. 426:(7):161124
    [Crossref] [Google Scholar]
  67. 67.
    Roy NH, Chan J, Lambelé M, Thali M. 2013.. Clustering and mobility of HIV-1 Env at viral assembly sites predict its propensity to induce cell-cell fusion. . J. Virol. 87:(13):751625
    [Crossref] [Google Scholar]
  68. 68.
    Maiuri P, Knezevich A, Bertrand E, Marcello A. 2011.. Real-time imaging of the HIV-1 transcription cycle in single living cells. . Methods 53:(1):6267
    [Crossref] [Google Scholar]
  69. 69.
    Dibsy R, Bremaud E, Mak J, Favard C, Muriaux D. 2023.. HIV-1 diverts cortical actin for particle assembly and release. . Nat. Commun. 14:(1):6945
    [Crossref] [Google Scholar]
  70. 70.
    Chojnacki J, Eggeling C. 2021.. Super-resolution STED microscopy-based mobility studies of the viral Env protein at HIV-1 assembly sites of fully infected T-cells. . Viruses 13:(4):608
    [Crossref] [Google Scholar]
  71. 71.
    Saha I, Saffarian S. 2020.. Dynamics of the HIV Gag lattice detected by localization correlation analysis and time-lapse iPALM. . Biophys. J. 119:(3):58192
    [Crossref] [Google Scholar]
  72. 72.
    Yang Y, Qu N, Tan J, Rushdi MN, Krueger CJ, Chen AK. 2018.. Roles of Gag-RNA interactions in HIV-1 virus assembly deciphered by single-molecule localization microscopy. . PNAS 115:(26):672126
    [Crossref] [Google Scholar]
  73. 73.
    Vrba SM, Hickman HD. 2022.. Imaging viral infection in vivo to gain unique perspectives on cellular antiviral immunity. . Immunol. Rev. 306:(1):20017
    [Crossref] [Google Scholar]
  74. 74.
    Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, et al. 2012.. HIV-infected T cells are migratory vehicles for viral dissemination. . Nature 490:(7419):28387
    [Crossref] [Google Scholar]
  75. 75.
    Flomm FJ, Soh TK, Schneider C, Wedemann L, Britt HM, et al. 2022.. Intermittent bulk release of human cytomegalovirus. . PLOS Pathog. 18:(8):e1010575
    [Crossref] [Google Scholar]
  76. 76.
    Joseph JG, Mudgal R, Lin S-S, Ono A, Liu AP. 2022.. Biomechanical role of epsin in influenza A virus entry. . Membranes 12:(9):859
    [Crossref] [Google Scholar]
  77. 77.
    El Meshri SE, Dujardin D, Godet J, Richert L, Boudier C, et al. 2015.. Role of the nucleocapsid domain in HIV-1 Gag oligomerization and trafficking to the plasma membrane: a fluorescence lifetime imaging microscopy investigation. . J. Mol. Biol. 427:(6 Part B ):148094
    [Crossref] [Google Scholar]
  78. 78.
    Lippincott-Schwartz J, Patterson GH. 2009.. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. . Trends Cell Biol. 19:(11):55565
    [Crossref] [Google Scholar]
  79. 79.
    Gomez CY, Hope TJ. 2006.. Mobility of human immunodeficiency virus type 1 Pr55Gag in living cells. . J. Virol. 80:(17):8796806
    [Crossref] [Google Scholar]
  80. 80.
    Sharma M, Marin M, Wu H, Prikryl D, Melikyan GB. 2023.. Human immunodeficiency virus 1 preferentially fuses with pH-neutral endocytic vesicles in cell lines and human primary CD4+ T-cells. . ACS Nano 17:(17):1743650
    [Crossref] [Google Scholar]
  81. 81.
    Cabantous S, Terwilliger TC, Waldo GS. 2005.. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. . Nat. Biotechnol. 23:(1):1027
    [Crossref] [Google Scholar]
  82. 82.
    Wang J, Kondo N, Long Y, Iwamoto A, Matsuda Z. 2009.. Monitoring of HIV-1 envelope-mediated membrane fusion using modified split green fluorescent proteins. . J. Virol. Methods 161:(2):21622
    [Crossref] [Google Scholar]
  83. 83.
    Guerreiro MR, Fernandes AR, Coroadinha AS. 2020.. Evaluation of structurally distorted split GFP fluorescent sensors for cell-based detection of viral proteolytic activity. . Sensors 21:(1):24
    [Crossref] [Google Scholar]
  84. 84.
    Kerppola TK. 2008.. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. . Annu. Rev. Biophys. 37::46587
    [Crossref] [Google Scholar]
  85. 85.
    Dirk BS, Jacob RA, Johnson AL, Pawlak EN, Cavanagh PC, et al. 2015.. Viral bimolecular fluorescence complementation: a novel tool to study intracellular vesicular trafficking pathways. . PLOS ONE 10:(4):e0125619
    [Crossref] [Google Scholar]
  86. 86.
    Friew YN, Boyko V, Hu W-S, Pathak VK. 2009.. Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA. . Retrovirology 6::56
    [Crossref] [Google Scholar]
  87. 87.
    Jin J, Sturgeon T, Weisz OA, Mothes W, Montelaro RC. 2009.. HIV-1 matrix dependent membrane targeting is regulated by Gag mRNA trafficking. . PLOS ONE 4:(8):e6551
    [Crossref] [Google Scholar]
  88. 88.
    Blanco-Rodriguez G, Gazi A, Monel B, Frabetti S, Scoca V, et al. 2020.. Remodeling of the core leads HIV-1 preintegration complex into the nucleus of human lymphocytes. . J. Virol. 94:(11):e00135-20
    [Crossref] [Google Scholar]
  89. 89.
    Sakin V, Hanne J, Dunder J, Anders-Össwein M, Laketa V, et al. 2017.. A versatile tool for live-cell imaging and super-resolution nanoscopy studies of HIV-1 Env distribution and mobility. . Cell Chem. Biol. 24:(5):63545.e5
    [Crossref] [Google Scholar]
  90. 90.
    Hulme AE, Hope TJ. 2014.. Live cell imaging of retroviral entry. . Annu. Rev. Virol. 1::50115
    [Crossref] [Google Scholar]
  91. 91.
    Francis AC, Melikyan GB. 2018.. Live-cell imaging of early steps of single HIV-1 infection. . Viruses 10:(5):275
    [Crossref] [Google Scholar]
  92. 92.
    Sherer NM, Jin J, Mothes W. 2010.. Directional spread of surface-associated retroviruses regulated by differential virus-cell interactions. . J. Virol. 84:(7):324858
    [Crossref] [Google Scholar]
  93. 93.
    Popik W, Alce TM, Au W-C. 2002.. Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4+ T cells. . J. Virol. 76:(10):470922
    [Crossref] [Google Scholar]
  94. 94.
    Melikyan GB, Barnard RJO, Abrahamyan LG, Mothes W, Young JAT. 2005.. Imaging individual retroviral fusion events: from hemifusion to pore formation and growth. . PNAS 102:(24):872833
    [Crossref] [Google Scholar]
  95. 95.
    Viard M, Parolini I, Sargiacomo M, Fecchi K, Ramoni C, et al. 2002.. Role of cholesterol in human immunodeficiency virus type 1 envelope protein-mediated fusion with host cells. . J. Virol. 76:(22):1158495
    [Crossref] [Google Scholar]
  96. 96.
    Dale BM, McNerney GP, Thompson DL, Hubner W, de Los Reyes K, et al. 2011.. Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion. . Cell Host Microbe 10:(6):55162
    [Crossref] [Google Scholar]
  97. 97.
    Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB. 2009.. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. . Cell 137:(3):43344
    [Crossref] [Google Scholar]
  98. 98.
    Harak C, Lohmann V. 2015.. Ultrastructure of the replication sites of positive-strand RNA viruses. . Virology 479–480::41833
    [Crossref] [Google Scholar]
  99. 99.
    den Boon JA, Ahlquist P. 2010.. Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. . Annu. Rev. Microbiol. 64::24156
    [Crossref] [Google Scholar]
  100. 100.
    Borodavka A, Acker J. 2023.. Seeing biomolecular condensates through the lens of viruses. . Annu. Rev. Virol. 10::16382
    [Crossref] [Google Scholar]
  101. 101.
    Su JM, Wilson MZ, Samuel CE, Ma D. 2021.. Formation and function of liquid-like viral factories in negative-sense single-stranded RNA virus infections. . Viruses 13:(1):126
    [Crossref] [Google Scholar]
  102. 102.
    Yamashita M, Engelman AN. 2017.. Capsid-dependent host factors in HIV-1 infection. . Trends Microbiol. 25:(9):74155
    [Crossref] [Google Scholar]
  103. 103.
    Ozbun MA, Campos SK. 2021.. The long and winding road: human papillomavirus entry and subcellular trafficking. . Curr. Opin. Virol. 50::7686
    [Crossref] [Google Scholar]
  104. 104.
    Smith GA. 2021.. Navigating the cytoplasm: delivery of the alphaherpesvirus genome to the nucleus. . Curr. Issues Mol. Biol. 41::171220
    [Crossref] [Google Scholar]
  105. 105.
    Blanco-Rodriguez G, Di Nunzio F. 2021.. The viral capsid: a master key to access the host nucleus. . Viruses 13:(6):1178
    [Crossref] [Google Scholar]
  106. 106.
    Malikov V, Naghavi MH. 2017.. Localized phosphorylation of a kinesin-1 adaptor by a capsid-associated kinase regulates HIV-1 motility and uncoating. . Cell Rep. 20:(12):279299
    [Crossref] [Google Scholar]
  107. 107.
    Malikov V, da Silva ES, Jovasevic V, Bennett G, de Souza Aranha Vieira DA, et al. 2015.. HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. . Nat. Commun. 6::6660
    [Crossref] [Google Scholar]
  108. 108.
    Dharan A, Opp S, Abdel-Rahim O, Keceli SK, Imam S, et al. 2017.. Bicaudal D2 facilitates the cytoplasmic trafficking and nuclear import of HIV-1 genomes during infection. . PNAS 114:(50):E1070716
    [Crossref] [Google Scholar]
  109. 109.
    Dharan A, Talley S, Tripathi A, Mamede JI, Majetschak M, et al. 2016.. KIF5B and Nup358 cooperatively mediate the nuclear import of HIV-1 during infection. . PLOS Pathog. 12:(6):e1005700
    [Crossref] [Google Scholar]
  110. 110.
    McDonald D, Vodicka MA, Lucero G, Svitkina TM, Borisy GG, et al. 2002.. Visualization of the intracellular behavior of HIV in living cells. . J. Cell Biol. 159:(3):44152
    [Crossref] [Google Scholar]
  111. 111.
    Arhel N, Genovesio A, Kim K-A, Miko S, Perret E, et al. 2006.. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. . Nat. Methods 3:(10):81724
    [Crossref] [Google Scholar]
  112. 112.
    Mamede JI, Hope TJ. 2016.. Detection and tracking of dual-labeled HIV particles using wide-field live cell imaging to follow viral core integrity. . Methods Mol. Biol. 1354::4959
    [Crossref] [Google Scholar]
  113. 113.
    Francis AC, Cereseto A, Singh PK, Shi J, Poeschla E, et al. 2022.. Localization and functions of native and eGFP-tagged capsid proteins in HIV-1 particles. . PLOS Pathog. 18:(8):e1010754
    [Crossref] [Google Scholar]
  114. 114.
    Burdick RC, Li C, Munshi M, Rawson JMO, Nagashima K, et al. 2020.. HIV-1 uncoats in the nucleus near sites of integration. . PNAS 117:(10):548693
    [Crossref] [Google Scholar]
  115. 115.
    Zila V, Margiotta E, Turoňová B, Müller TG, Zimmerli CE, et al. 2021.. Cone-shaped HIV-1 capsids are transported through intact nuclear pores. . Cell 184:(4):103246.e18
    [Crossref] [Google Scholar]
  116. 116.
    Müller TG, Zila V, Müller B, Kräusslich H-G. 2022.. Nuclear capsid uncoating and reverse transcription of HIV-1. . Annu. Rev. Virol. 9::26184
    [Crossref] [Google Scholar]
  117. 117.
    Femino AM, Fay FS, Fogarty K, Singer RH. 1998.. Visualization of single RNA transcripts in situ. . Science 280:(5363):58590
    [Crossref] [Google Scholar]
  118. 118.
    Boireau S, Maiuri P, Basyuk E, de la Mata M, Knezevich A, et al. 2007.. The transcriptional cycle of HIV-1 in real-time and live cells. . J. Cell Biol. 179:(2):291304
    [Crossref] [Google Scholar]
  119. 119.
    Forero-Quintero LS, Raymond W, Handa T, Saxton MN, Morisaki T, et al. 2021.. Live-cell imaging reveals the spatiotemporal organization of endogenous RNA polymerase II phosphorylation at a single gene. . Nat. Commun. 12:(1):3158
    [Crossref] [Google Scholar]
  120. 120.
    Tantale K, Garcia-Oliver E, Robert M-C, L'Hostis A, Yang Y, et al. 2021.. Stochastic pausing at latent HIV-1 promoters generates transcriptional bursting. . Nat. Commun. 12::4503
    [Crossref] [Google Scholar]
  121. 121.
    Pocock GM, Zimdars LL, Yuan M, Eliceiri KW, Ahlquist P, Sherer NM. 2017.. Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging. . Mol. Biol. Cell 28:(3):47687
    [Crossref] [Google Scholar]
  122. 122.
    Nawroth I, Mueller F, Basyuk E, Beerens N, Rahbek UL, Darzacq X, et al. 2013.. Stable assembly of HIV-1 export complexes occurs cotranscriptionally. . RNA 20:(1):18
    [Crossref] [Google Scholar]
  123. 123.
    Chen J, Grunwald D, Sardo L, Galli A, Plisov S, et al. 2014.. Cytoplasmic HIV-1 RNA is mainly transported by diffusion in the presence or absence of Gag protein. . PNAS 111:(48):E520513
    [Google Scholar]
  124. 124.
    Chen J, Umunnakwe C, Sun DQ, Nikolaitchik OA, Pathak VK, et al. 2020.. Impact of nuclear export pathway on cytoplasmic HIV-1 RNA transport mechanism and distribution. . mBio 11:(6):e01578-20
    [Google Scholar]
  125. 125.
    Freed EO. 2015.. HIV-1 assembly, release and maturation. . Nat. Rev. Microbiol. 13:(8):48496
    [Crossref] [Google Scholar]
  126. 126.
    Jouvenet N, Bieniasz PD, Simon SM. 2008.. Imaging the biogenesis of individual HIV-1 virions in live cells. . Nature 454:(7201):23640
    [Crossref] [Google Scholar]
  127. 127.
    Ivanchenko S, Godinez WJ, Lampe M, Kräusslich H-G, Eils R, et al. 2009.. Dynamics of HIV-1 assembly and release. . PLOS Pathog. 5:(11):e1000652
    [Crossref] [Google Scholar]
  128. 128.
    Chen J, Rahman SA, Nikolaitchik OA, Grunwald D, Sardo L, et al. 2016.. HIV-1 RNA genome dimerizes on the plasma membrane in the presence of Gag protein. . PNAS 113:(2):E2018
    [Google Scholar]
  129. 129.
    Gupta S, Bromley J, Saffarian S. 2020.. High-speed imaging of ESCRT recruitment and dynamics during HIV virus like particle budding. . PLOS ONE 15:(9):e0237268
    [Crossref] [Google Scholar]
  130. 130.
    Jouvenet N, Zhadina M, Bieniasz PD, Simon SM. 2011.. Dynamics of ESCRT protein recruitment during retroviral assembly. . Nat. Cell Biol. 13:(4):394401
    [Crossref] [Google Scholar]
  131. 131.
    Bleck M, Itano MS, Johnson DS, Thomas VK, North AJ, et al. 2014.. Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding. . PNAS 111:(33):1221116
    [Crossref] [Google Scholar]
  132. 132.
    Mothes W, Sherer NM, Jin J, Zhong P. 2010.. Virus cell-to-cell transmission. . J. Virol. 84:(17):836068
    [Crossref] [Google Scholar]
  133. 133.
    Gardiner JC, Mauer EJ, Sherer NM. 2016.. HIV-1 Gag, envelope, and extracellular determinants cooperate to regulate the stability and turnover of virological synapses. . J. Virol. 90:(14):658397
    [Crossref] [Google Scholar]
  134. 134.
    Wang L, Izadmehr S, Kamau E, Kong X-P, Chen BK. 2019.. Sequential trafficking of Env and Gag to HIV-1 T cell virological synapses revealed by live imaging. . Retrovirology 16:(1):2
    [Crossref] [Google Scholar]
  135. 135.
    Ward AE, Kiessling V, Pornillos O, White JM, Ganser-Pornillos BK, Tamm LK. 2020.. HIV-cell membrane fusion intermediates are restricted by Serincs as revealed by cryo-electron and TIRF microscopy. . J. Biol. Chem. 295:(45):1518395
    [Crossref] [Google Scholar]
  136. 136.
    Sood C, Marin M, Chande A, Pizzato M, Melikyan GB. 2017.. SERINC5 protein inhibits HIV-1 fusion pore formation by promoting functional inactivation of envelope glycoproteins. . J. Biol. Chem. 292:(14):601426
    [Crossref] [Google Scholar]
  137. 137.
    Zhong Z, Ning J, Boggs EA, Jang S, Wallace C, et al. 2021.. Cytoplasmic CPSF6 regulates HIV-1 capsid trafficking and infection in a cyclophilin A-dependent manner. . mBio 12:(2):e03142-20
    [Crossref] [Google Scholar]
  138. 138.
    Francis AC, Marin M, Singh PK, Achuthan V, Prellberg MJ, et al. 2020.. HIV-1 replication complexes accumulate in nuclear speckles and integrate into speckle-associated genomic domains. . Nat. Commun. 11::3505
    [Crossref] [Google Scholar]
  139. 139.
    Behrens RT, Sherer NM. 2023.. Retroviral hijacking of host transport pathways for genome nuclear export. . mBio 14:(6):e0007023
    [Crossref] [Google Scholar]
  140. 140.
    Evans EL, Pocock GM, Einsdorf G, Behrens RT, Dobson ETA, et al. 2022.. HIV RGB: automated single-cell analysis of HIV-1 Rev-dependent RNA nuclear export and translation using image processing in KNIME. . Viruses 14:(5):903
    [Crossref] [Google Scholar]
  141. 141.
    Larson DR, Johnson MC, Webb WW, Vogt VM. 2005.. Visualization of retrovirus budding with correlated light and electron microscopy. . PNAS 102:(43):1545358
    [Crossref] [Google Scholar]
  142. 142.
    Haugh KA, Ladinsky MS, Ullah I, Stone HM, Pi R, et al. 2021.. In vivo imaging of retrovirus infection reveals a role for Siglec-1/CD169 in multiple routes of transmission. . eLife 10::e64179
    [Crossref] [Google Scholar]
  143. 143.
    Murakami T, Carmona N, Ono A. 2020.. Virion-incorporated PSGL-1 and CD43 inhibit both cell-free infection and transinfection of HIV-1 by preventing virus-cell binding. . PNAS 117:(14):805563
    [Crossref] [Google Scholar]
  144. 144.
    Starling T, Carlon-Andres I, Iliopoulou M, Kraemer B, Loidolt-Krueger M, et al. 2023.. Multicolor lifetime imaging and its application to HIV-1 uptake. . Nat. Commun. 14:(1):4994
    [Crossref] [Google Scholar]
  145. 145.
    Sewald X, Ladinsky MS, Uchil PD, Beloor J, Pi R, et al. 2015.. Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection. . Science 350:(6260):56367
    [Crossref] [Google Scholar]
  146. 146.
    Symeonides M, Murooka TT, Bellfy LN, Roy NH, Mempel TR, Thali M. 2015.. HIV-1-induced small T cell syncytia can transfer virus particles to target cells through transient contacts. . Viruses 7:(12):6590603
    [Crossref] [Google Scholar]
  147. 147.
    Ayuso JM, Farooqui M, Virumbrales-Muñoz M, Denecke K, Rehman S, et al. 2023.. Microphysiological model reveals the promise of memory-like natural killer cell immunotherapy for HIV± cancer. . Nat. Commun. 14:(1):6681
    [Crossref] [Google Scholar]
  148. 148.
    Ao Y, Grover JR, Gifford L, Han Y, Zhong G, et al. 2024.. Bioorthogonal click labeling of an amber-free HIV-1 provirus for in-virus single molecule imaging. . Cell Chem. Biol. 31::487501
    [Crossref] [Google Scholar]
  149. 149.
    Bakhshpour-Yucel M, Gür SD, Seymour E, Aslan M, Lortlar Ünlü N, Ünlü MS. 2023.. Highly-sensitive, label-free detection of microorganisms and viruses via interferometric reflectance imaging sensor. . Micromachines 14:(2):281
    [Crossref] [Google Scholar]
  150. 150.
    Petkidis A, Andriasyan V, Greber UF. 2023.. Label-free microscopy for virus infections. . Microscopy 72:(3):20412
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-100422-012608
Loading
/content/journals/10.1146/annurev-virology-100422-012608
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error