1932

Abstract

The nucleoplasm, the cytosol, the inside of virions, and again the cytosol comprise the world in which the capsids of alphaherpesviruses encounter viral and host proteins that support or limit them in performing their tasks. Here, we review the fascinating conundrum of how specific protein-protein interactions late in alphaherpesvirus infection orchestrate capsid nuclear assembly, nuclear egress, and cytoplasmic envelopment, but target incoming capsids to the nuclear pores in naive cells to inject the viral genomes into the nucleoplasm for viral transcription and replication. Multiple capsid interactions with viral and host proteins have been characterized using viral mutants and assays that reconstitute key stages of the infection cycle. Keratinocytes, fibroblasts, mucosal epithelial cells, neurons, and immune cells employ cell type–specific intrinsic and cytokine-induced resistance mechanisms to restrict several stages of the viral infection cycle. However, concomitantly, alphaherpesviruses have evolved countermeasures to ensure efficient capsid function during infection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100422-022751
2024-09-26
2024-12-11
Loading full text...

Full text loading...

/deliver/fulltext/virology/11/1/annurev-virology-100422-022751.html?itemId=/content/journals/10.1146/annurev-virology-100422-022751&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Traidl S, Roesner L, Zeitvogel J, Werfel T. 2021.. Eczema herpeticum in atopic dermatitis. . Allergy 76::301727
    [Crossref] [Google Scholar]
  2. 2.
    Wauters O, Lebas E, Nikkels AF. 2012.. Chronic mucocutaneous herpes simplex virus and varicella zoster virus infections. . J. Am. Acad. Dermatol. 66::e21727
    [Crossref] [Google Scholar]
  3. 3.
    Whitley RJ, Roizman B. 2016.. Herpes simplex viruses. . In Clinical Virology, ed. DD Richman, RJ Whitley, FJ Hayden , pp. 41545. Washington, DC:: ASM. , 4th ed..
    [Google Scholar]
  4. 4.
    Gershon AA, Breuer J, Cohen JI, Cohrs RJ, Gershon MD, et al. 2015.. Varicella zoster virus infection. . Nat. Rev. Dis. Primers 1::15016
    [Crossref] [Google Scholar]
  5. 5.
    Zerboni L, Sen N, Oliver SL, Arvin AM. 2014.. Molecular mechanisms of varicella zoster virus pathogenesis. . Nat. Rev. Microbiol. 12::197210
    [Crossref] [Google Scholar]
  6. 6.
    Cliffe AR, Wilson AC. 2017.. Restarting lytic gene transcription at the onset of herpes simplex virus reactivation. . J. Virol. 91::e01419-16
    [Crossref] [Google Scholar]
  7. 7.
    Depledge DP, Sadaoka T, Ouwendijk WJD. 2018.. Molecular aspects of varicella-zoster virus latency. . Viruses 10::349
    [Crossref] [Google Scholar]
  8. 8.
    Kurt-Jones EA, Orzalli MH, Knipe DM. 2017.. Innate immune mechanisms and herpes simplex virus infection and disease. . Adv. Anat. Embryol. Cell Biol. 223::4975
    [Crossref] [Google Scholar]
  9. 9.
    Lum KK, Cristea IM. 2021.. Host innate immune response and viral immune evasion during alphaherpesvirus infection. . Curr. Issues Mol. Biol. 42::63586
    [Google Scholar]
  10. 10.
    Zhu S, Viejo-Borbolla A. 2021.. Pathogenesis and virulence of herpes simplex virus. . Virulence 12::2670702
    [Crossref] [Google Scholar]
  11. 11.
    Piret J, Boivin G. 2020.. Immunomodulatory strategies in herpes simplex virus encephalitis. . Clin. Microbiol. Rev. 33::e00105-19
    [Crossref] [Google Scholar]
  12. 12.
    Gibson W, Roizman B. 1972.. Proteins specified by herpes simplex virus. 8. Characterization and composition of multiple capsid forms of subtypes 1 and 2. . J. Virol. 10::104452
    [Crossref] [Google Scholar]
  13. 13.
    Grose C, Friedrichs WE, Smith GC. 1983.. Purification and molecular anatomy of the varicella-zoster virion. . Biken J. 26::115
    [Google Scholar]
  14. 14.
    Kinchington PR, Bookey D, Turse SE. 1995.. The transcriptional regulatory proteins encoded by varicella-zoster virus open reading frames (ORFs) 4 and 63, but not ORF 61, are associated with purified virus particles. . J. Virol. 69::427482
    [Crossref] [Google Scholar]
  15. 15.
    Spear PG, Roizman B. 1972.. Proteins specified by herpes simplex virus. V. Purification and structural proteins of the herpesvirion. . J. Virol. 9::14359
    [Crossref] [Google Scholar]
  16. 16.
    Cohen JI. 2010.. The varicella-zoster virus genome. . Curr. Top. Microbiol. Immunol. 342::114
    [Google Scholar]
  17. 17.
    Davison AJ. 2010.. Herpesvirus systematics. . Vet. Microbiol. 143::5269
    [Crossref] [Google Scholar]
  18. 18.
    Kuny CV, Szpara ML. 2021.. Alphaherpesvirus genomics: past, present and future. . Curr. Issues Mol. Biol. 42::4180
    [Google Scholar]
  19. 19.
    Ward PL, Roizman B. 1994.. Herpes simplex genes: the blueprint of a successful human pathogen. . Trends Genet. 10::26774
    [Crossref] [Google Scholar]
  20. 20.
    Ashford P, Hernandez A, Greco TM, Buch A, Sodeik B, et al. 2016.. HVint: a strategy for identifying novel protein-protein interactions in herpes simplex virus type 1. . Mol. Cell. Proteom. 15::293953
    [Crossref] [Google Scholar]
  21. 21.
    Fossum E, Friedel CC, Rajagopala SV, Titz B, Baiker A, et al. 2009.. Evolutionarily conserved herpesviral protein interaction networks. . PLOS Pathog. 5::e1000570
    [Crossref] [Google Scholar]
  22. 22.
    Hernandez Duran A, Grunewald K, Topf M. 2019.. Conserved central intraviral protein interactome of the Herpesviridae family. . mSystems 4::e00295-19
    [Crossref] [Google Scholar]
  23. 23.
    Newcomb WW, Homa FL, Thomsen DR, Trus BL, Cheng N, et al. 1999.. Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. . J. Virol. 73::423950
    [Crossref] [Google Scholar]
  24. 24.
    Newcomb WW, Homa FL, Thomsen DR, Brown JC. 2001.. In vitro assembly of the herpes simplex virus procapsid: formation of small procapsids at reduced scaffolding protein concentration. . J. Struct. Biol. 133::2331
    [Crossref] [Google Scholar]
  25. 25.
    Sun J, Liu C, Peng R, Zhang FK, Tong Z, et al. 2020.. Cryo-EM structure of the varicella-zoster virus A-capsid. . Nat. Commun. 11::4795
    [Crossref] [Google Scholar]
  26. 26.
    Tatman JD, Preston VG, Nicholson P, Elliott RM, Rixon FJ. 1994.. Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. . J. Gen. Virol. 75:(Part 5):110113
    [Crossref] [Google Scholar]
  27. 27.
    Thomsen DR, Newcomb WW, Brown JC, Homa FL. 1995.. Assembly of the herpes simplex virus capsid: requirement for the carboxyl-terminal twenty-five amino acids of the proteins encoded by the UL26 and UL26.5 genes. . J. Virol. 69::3690703
    [Crossref] [Google Scholar]
  28. 28.
    Abaitua F, Daikoku T, Crump CM, Bolstad M, O'Hare P. 2011.. A single mutation responsible for temperature-sensitive entry and assembly defects in the VP1-2 protein of herpes simplex virus. . J. Virol. 85::202436
    [Crossref] [Google Scholar]
  29. 29.
    Aksyuk AA, Newcomb WW, Cheng N, Winkler DC, Fontana J, et al. 2015.. Subassemblies and asymmetry in assembly of herpes simplex virus procapsid. . mBio 6::e01525-15
    [Crossref] [Google Scholar]
  30. 30.
    Batterson W, Furlong D, Roizman B. 1983.. Molecular genetics of herpes simplex virus. VIII. Further characterization of a temperature-sensitive mutant defective in release of viral DNA and in other stages of the viral reproductive cycle. . J. Virol. 45::397407
    [Crossref] [Google Scholar]
  31. 31.
    Dasgupta A, Wilson DW. 1999.. ATP depletion blocks herpes simplex virus DNA packaging and capsid maturation. . J. Virol. 73::200615
    [Crossref] [Google Scholar]
  32. 32.
    Preston VG, Murray J, Preston CM, McDougall IM, Stow ND. 2008.. The UL25 gene product of herpes simplex virus type 1 is involved in uncoating of the viral genome. . J. Virol. 82::665466
    [Crossref] [Google Scholar]
  33. 33.
    Messerle M, Crnkovic I, Hammerschmidt W, Ziegler H, Koszinowski UH. 1997.. Cloning and muta-genesis of a herpesvirus genome as an infectious bacterial artificial chromosome. . PNAS 94::1475963
    [Crossref] [Google Scholar]
  34. 34.
    Nagel CH, Pohlmann A, Sodeik B. 2014.. Construction and characterization of bacterial artificial chromosomes (BACs) containing herpes simplex virus full-length genomes. . Methods Mol. Biol. 1144::4362
    [Crossref] [Google Scholar]
  35. 35.
    Tischer BK, Kaufer BB, Sommer M, Wussow F, Arvin AM, Osterrieder N. 2007.. A self-excisable infectious bacterial artificial chromosome clone of varicella-zoster virus allows analysis of the essential tegument protein encoded by ORF9. . J. Virol. 81::132008
    [Crossref] [Google Scholar]
  36. 36.
    Radtke K, Anderson F, Sodeik B. 2014.. A precipitation-based assay to analyze interactions of viral particles with cytosolic host factors. . Methods Mol. Biol. 1144::191208
    [Crossref] [Google Scholar]
  37. 37.
    Anderson F, Savulescu AF, Rudolph K, Schipke J, Cohen I, et al. 2014.. Targeting of viral capsids to nuclear pores in a cell-free reconstitution system. . Traffic 15::126681
    [Crossref] [Google Scholar]
  38. 38.
    Radtke K, Kieneke D, Wolfstein A, Michael K, Steffen W, et al. 2010.. Plus- and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures. . PLOS Pathog. 6::e1000991
    [Crossref] [Google Scholar]
  39. 39.
    Zhang Y, McKnight JL. 1993.. Herpes simplex virus type 1 UL46 and UL47 deletion mutants lack VP11 and VP12 or VP13 and VP14, respectively, and exhibit altered viral thymidine kinase expression. . J. Virol. 67::148292
    [Crossref] [Google Scholar]
  40. 40.
    Wolfstein A, Nagel CH, Radtke K, Döhner K, Allan VJ, Sodeik B. 2006.. The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro. . Traffic 7::22737
    [Crossref] [Google Scholar]
  41. 41.
    Daniel GR, Pegg CE, Smith GA. 2018.. Dissecting the herpesvirus architecture by targeted proteolysis. . J. Virol. 92::e00738-18
    [Crossref] [Google Scholar]
  42. 42.
    Ojala PM, Sodeik B, Ebersold MW, Kutay U, Helenius A. 2000.. Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. . Mol. Cell. Biol. 20::492231
    [Crossref] [Google Scholar]
  43. 43.
    Serrero MC, Girault V, Weigang S, Greco TM, Ramos-Nascimento A, et al. 2022.. The interferon-inducible GTPase MxB promotes capsid disassembly and genome release of herpesviruses. . eLife 11::e76804
    [Crossref] [Google Scholar]
  44. 44.
    Lee GE, Murray JW, Wolkoff AW, Wilson DW. 2006.. Reconstitution of herpes simplex virus microtubule-dependent trafficking in vitro. . J. Virol. 80::426475
    [Crossref] [Google Scholar]
  45. 45.
    Brandariz-Nunez A, Liu T, Du T, Evilevitch A. 2019.. Pressure-driven release of viral genome into a host nucleus is a mechanism leading to herpes infection. . eLife 8::e47212
    [Crossref] [Google Scholar]
  46. 46.
    Henaff D, Remillard-Labrosse G, Loret S, Lippe R. 2013.. Analysis of the early steps of herpes simplex virus 1 capsid tegumentation. . J. Virol. 87::4895906
    [Crossref] [Google Scholar]
  47. 47.
    Takeshima K, Arii J, Maruzuru Y, Koyanagi N, Kato A, Kawaguchi Y. 2019.. Identification of the capsid binding site in the herpes simplex virus 1 nuclear egress complex and its role in viral primary envelopment and replication. . J. Virol. 93::e01290-19
    [Crossref] [Google Scholar]
  48. 48.
    Heming JD, Conway JF, Homa FL. 2017.. Herpesvirus capsid assembly and DNA packaging. . Adv. Anat. Embryol. Cell Biol. 223::11942
    [Crossref] [Google Scholar]
  49. 49.
    Crump C. 2018.. Virus assembly and egress of HSV. . Adv. Exp. Med. Biol. 1045::2344
    [Crossref] [Google Scholar]
  50. 50.
    Draganova EB, Thorsen MK, Heldwein EE. 2021.. Nuclear egress. . Curr. Issues Mol. Biol. 41::12570
    [Crossref] [Google Scholar]
  51. 51.
    Paci G, Caria J, Lemke EA. 2021.. Cargo transport through the nuclear pore complex at a glance. . J. Cell Sci. 134::jcs247874
    [Crossref] [Google Scholar]
  52. 52.
    Döhner K, Serrero MC, Sodeik B. 2023.. The role of nuclear pores and importins for herpes simplex virus infection. . Curr. Opin. Virol. 62::101361
    [Crossref] [Google Scholar]
  53. 53.
    Maier O, Sollars PJ, Pickard GE, Smith GA. 2016.. Visualizing herpesvirus procapsids in living cells. . J. Virol. 90::1018292
    [Crossref] [Google Scholar]
  54. 54.
    Cao L, Wang N, Lv Z, Chen W, Chen Z, et al. 2023.. Insights into varicella-zoster virus assembly from the B- and C-capsid at near-atomic resolution structures. . hLife 2:(2):64-74
    [Crossref] [Google Scholar]
  55. 55.
    Dai X, Zhou ZH. 2018.. Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. . Science 360::eaao7298
    [Crossref] [Google Scholar]
  56. 56.
    Wang J, Yuan S, Zhu D, Tang H, Wang N, et al. 2018.. Structure of the herpes simplex virus type 2 C-capsid with capsid-vertex-specific component. . Nat. Commun. 9::3668
    [Crossref] [Google Scholar]
  57. 57.
    Wang W, Zheng Q, Pan D, Yu H, Fu W, et al. 2020.. Near-atomic cryo-electron microscopy structures of varicella-zoster virus capsids. . Nat. Microbiol. 5::154252
    [Crossref] [Google Scholar]
  58. 58.
    Wang G, Zha Z, Huang P, Sun H, Huang Y, et al. 2022.. Structures of pseudorabies virus capsids. . Nat. Commun. 13::1533
    [Crossref] [Google Scholar]
  59. 59.
    Yuan S, Wang J, Zhu D, Wang N, Gao Q, et al. 2018.. Cryo-EM structure of a herpesvirus capsid at 3.1 Å. . Science 360:(6384):eaao7283
    [Crossref] [Google Scholar]
  60. 60.
    Chaudhuri V, Sommer M, Rajamani J, Zerboni L, Arvin AM. 2008.. Functions of varicella-zoster virus ORF23 capsid protein in viral replication and the pathogenesis of skin infection. . J. Virol. 82::1023146
    [Crossref] [Google Scholar]
  61. 61.
    Döhner K, Radtke K, Schmidt S, Sodeik B. 2006.. Eclipse phase of herpes simplex virus type 1 infection: efficient dynein-mediated capsid transport without the small capsid protein VP26. . J. Virol. 80::821124
    [Crossref] [Google Scholar]
  62. 62.
    Kobayashi R, Kato A, Sagara H, Watanabe M, Maruzuru Y, et al. 2017.. Herpes simplex virus 1 small capsomere-interacting protein VP26 regulates nucleocapsid maturation. . J. Virol. 91::e01068-17
    [Crossref] [Google Scholar]
  63. 63.
    Buch MHC, Newcomb WW, Winkler DC, Steven AC, Heymann JB. 2021.. Cryo-electron tomography of the herpesvirus procapsid reveals interactions of the portal with the scaffold and a shift on maturation. . mBio 12::e03575-20
    [Crossref] [Google Scholar]
  64. 64.
    Huet A, Huffman JB, Conway JF, Homa FL. 2020.. Role of the herpes simplex virus CVSC proteins at the capsid portal vertex. . J. Virol. 94::e01534-20
    [Crossref] [Google Scholar]
  65. 65.
    Gibson W, Roizman B. 1971.. Compartmentalization of spermine and spermidine in the herpes simplex virion. . PNAS 68::281821
    [Crossref] [Google Scholar]
  66. 66.
    Roos WH, Radtke K, Kniesmeijer E, Geertsema H, Sodeik B, Wuite GJ. 2009.. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. . PNAS 106::967378
    [Crossref] [Google Scholar]
  67. 67.
    Sae-Ueng U, Liu T, Catalano CE, Huffman JB, Homa FL, Evilevitch A. 2014.. Major capsid reinforcement by a minor protein in herpesviruses and phage. . Nucleic Acids Res. 42::9096107
    [Crossref] [Google Scholar]
  68. 68.
    Snijder J, Radtke K, Anderson F, Scholtes L, Corradini E, et al. 2017.. Vertex-specific proteins pUL17 and pUL25 mechanically reinforce herpes simplex virus capsids. . J. Virol. 91::e00123-17
    [Crossref] [Google Scholar]
  69. 69.
    McElwee M, Vijayakrishnan S, Rixon F, Bhella D. 2018.. Structure of the herpes simplex virus portal-vertex. . PLOS Biol. 16::e2006191
    [Crossref] [Google Scholar]
  70. 70.
    Huffman JB, Daniel GR, Falck-Pedersen E, Huet A, Smith GA, et al. 2017.. The C terminus of the herpes simplex virus UL25 protein is required for release of viral genomes from capsids bound to nuclear pores. . J. Virol. 91::e00641-17
    [Crossref] [Google Scholar]
  71. 71.
    Vijayakrishnan S, McElwee M, Loney C, Rixon F, Bhella D. 2020.. In situ structure of virus capsids within cell nuclei by correlative light and cryo-electron tomography. . Sci. Rep. 10::17596
    [Crossref] [Google Scholar]
  72. 72.
    Coller KE, Lee JI, Ueda A, Smith GA. 2007.. The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. . J. Virol. 81::1179097
    [Crossref] [Google Scholar]
  73. 73.
    Leelawong M, Lee JI, Smith GA. 2012.. Nuclear egress of pseudorabies virus capsids is enhanced by a subspecies of the large tegument protein that is lost upon cytoplasmic maturation. . J. Virol. 86::630314
    [Crossref] [Google Scholar]
  74. 74.
    Schipke J, Pohlmann A, Diestel R, Binz A, Rudolph K, et al. 2012.. The C terminus of the large tegument protein pUL36 contains multiple capsid binding sites that function differently during assembly and cell entry of herpes simplex virus. . J. Virol. 86::3682700
    [Crossref] [Google Scholar]
  75. 75.
    Lebrun M, Thelen N, Thiry M, Riva L, Ote I, et al. 2014.. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates. . Virology 454–455::31127
    [Crossref] [Google Scholar]
  76. 76.
    Luxton GW, Haverlock S, Coller KE, Antinone SE, Pincetic A, Smith GA. 2005.. Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. . PNAS 102::583237
    [Crossref] [Google Scholar]
  77. 77.
    Sandbaumhüter M, Döhner K, Schipke J, Binz A, Pohlmann A, et al. 2013.. Cytosolic herpes simplex virus capsids not only require binding inner tegument protein pUL36 but also pUL37 for active transport prior to secondary envelopment. . Cell. Microbiol. 15::24869
    [Crossref] [Google Scholar]
  78. 78.
    Buch A, Müller O, Ivanova L, Döhner K, Bialy D, et al. 2017.. Inner tegument proteins of herpes simplex virus are sufficient for intracellular capsid motility in neurons but not for axonal targeting. . PLOS Pathog. 13::e1006813
    [Crossref] [Google Scholar]
  79. 79.
    Roberts AP, Abaitua F, O'Hare P, McNab D, Rixon FJ, Pasdeloup D. 2009.. Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1. . J. Virol. 83::10516
    [Crossref] [Google Scholar]
  80. 80.
    Dedeo CL, Cingolani G, Teschke CM. 2019.. Portal protein: the orchestrator of capsid assembly for the dsDNA tailed bacteriophages and herpesviruses. . Annu. Rev. Virol. 6::14160
    [Crossref] [Google Scholar]
  81. 81.
    Kornfeind EM, Visalli RJ. 2018.. Human herpesvirus portal proteins: structure, function, and antiviral prospects. . Rev. Med. Virol. 28::e1972
    [Crossref] [Google Scholar]
  82. 82.
    Liu YT, Jih J, Dai X, Bi GQ, Zhou ZH. 2019.. Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome. . Nature 570:(7760):25761
    [Crossref] [Google Scholar]
  83. 83.
    Naniima P, Naimo E, Koch S, Curth U, Alkharsah KR, et al. 2021.. Assembly of infectious Kaposi's sarcoma-associated herpesvirus progeny requires formation of a pORF19 pentamer. . PLOS Biol. 19::e3001423
    [Crossref] [Google Scholar]
  84. 84.
    Szczepaniak R, Nellissery J, Jadwin JA, Makhov AM, Kosinski A, et al. 2011.. Disulfide bond formation contributes to herpes simplex virus capsid stability and retention of pentons. . J. Virol. 85::862534
    [Crossref] [Google Scholar]
  85. 85.
    Aho V, Salminen S, Mattola S, Gupta A, Flomm F, et al. 2021.. Infection-induced chromatin modifications facilitate translocation of herpes simplex virus capsids to the inner nuclear membrane. . PLOS Pathog. 17::e1010132
    [Crossref] [Google Scholar]
  86. 86.
    Lewis HC, Kelnhofer-Millevolte LE, Brinkley MR, Arbach HE, Arnold EA, et al. 2023.. HSV-1 exploits host heterochromatin for nuclear egress. . J. Cell Biol. 222:(9):e202304106
    [Crossref] [Google Scholar]
  87. 87.
    Funk C, Ott M, Raschbichler V, Nagel CH, Binz A, et al. 2015.. The herpes simplex virus protein pUL31 escorts nucleocapsids to sites of nuclear egress, a process coordinated by its N-terminal domain. . PLOS Pathog. 11::e1004957
    [Crossref] [Google Scholar]
  88. 88.
    Klupp BG, Mettenleiter TC. 2023.. The knowns and unknowns of herpesvirus nuclear egress. . Annu. Rev. Virol. 10::30523
    [Crossref] [Google Scholar]
  89. 89.
    Newcomb WW, Fontana J, Winkler DC, Cheng N, Heymann JB, Steven AC. 2017.. The primary enveloped virion of herpes simplex virus 1: its role in nuclear egress. . mBio 8::e00825-17
    [Crossref] [Google Scholar]
  90. 90.
    Wisner TW, Wright CC, Kato A, Kawaguchi Y, Mou F, et al. 2009.. Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase. . J. Virol. 83::311526
    [Crossref] [Google Scholar]
  91. 91.
    Heineman TC, Hall SL. 2002.. Role of the varicella-zoster virus gB cytoplasmic domain in gB transport and viral egress. . J. Virol. 76::59199
    [Crossref] [Google Scholar]
  92. 92.
    Zhou M, Vollmer B, Machala E, Chen M, Grünewald K, et al. 2023.. Targeted mutagenesis of the herpesvirus fusogen central helix captures transition states. . Nat. Commun. 14::7958
    [Crossref] [Google Scholar]
  93. 93.
    Schaap A, Fortin JF, Sommer M, Zerboni L, Stamatis S, et al. 2005.. T-cell tropism and the role of ORF66 protein in pathogenesis of varicella-zoster virus infection. . J. Virol. 79::1292133
    [Crossref] [Google Scholar]
  94. 94.
    Riva L, Thiry M, Lebrun M, L'Homme L, Piette J, Sadzot-Delvaux C. 2015.. Deletion of the ORF9p acidic cluster impairs the nuclear egress of varicella-zoster virus capsids. . J. Virol. 89::243641
    [Crossref] [Google Scholar]
  95. 95.
    Diefenbach RJ. 2015.. Conserved tegument protein complexes: essential components in the assembly of herpesviruses. . Virus Res. 210::30817
    [Crossref] [Google Scholar]
  96. 96.
    Hogue IB. 2021.. Tegument assembly, secondary envelopment and exocytosis. . Curr. Issues Mol. Biol. 42::551604
    [Google Scholar]
  97. 97.
    Owen DJ, Crump CM, Graham SC. 2015.. Tegument assembly and secondary envelopment of alphaherpesviruses. . Viruses 7::5084114
    [Crossref] [Google Scholar]
  98. 98.
    Smith GA. 2017.. Assembly and egress of an alphaherpesvirus clockwork. . Adv. Anat. Embryol. Cell Biol. 223::17193
    [Crossref] [Google Scholar]
  99. 99.
    Thomas ECM, Bossert M, Banfield BW. 2022.. The herpes simplex virus tegument protein pUL21 is required for viral genome retention within capsids. . PLOS Pathog. 18::e1010969
    [Crossref] [Google Scholar]
  100. 100.
    Benedyk TH, Muenzner J, Connor V, Han Y, Brown K, et al. 2021.. pUL21 is a viral phosphatase adaptor that promotes herpes simplex virus replication and spread. . PLOS Pathog. 17::e1009824
    [Crossref] [Google Scholar]
  101. 101.
    Metrick CM, Koenigsberg AL, Heldwein EE. 2020.. Conserved outer tegument component UL11 from herpes simplex virus 1 is an intrinsically disordered, RNA-binding protein. . mBio 11::e00810-20
    [Crossref] [Google Scholar]
  102. 102.
    Döhner K, Nagel CH, Sodeik B. 2005.. Viral stop-and-go along microtubules: taking a ride with dynein and kinesins. . Trends Microbiol. 13::32027
    [Crossref] [Google Scholar]
  103. 103.
    DuRaine G, Johnson DC. 2021.. Anterograde transport of α-herpesviruses in neuronal axons. . Virology 559::6573
    [Crossref] [Google Scholar]
  104. 104.
    Koyuncu OO, Enquist LW, Engel EA. 2021.. Invasion of the nervous system. . Curr. Issues Mol. Biol. 41::162
    [Crossref] [Google Scholar]
  105. 105.
    Smith GA. 2021.. Navigating the cytoplasm: delivery of the alphaherpesvirus genome to the nucleus. . Curr. Issues Mol. Biol. 41::171220
    [Crossref] [Google Scholar]
  106. 106.
    Antinone SE, Zaichick SV, Smith GA. 2010.. Resolving the assembly state of herpes simplex virus during axon transport by live-cell imaging. . J. Virol. 84::1301930
    [Crossref] [Google Scholar]
  107. 107.
    Scherer J, Yaffe ZA, Vershinin M, Enquist LW. 2016.. Dual-color herpesvirus capsids discriminate inoculum from progeny and reveal axonal transport dynamics. . J. Virol. 90:(21):999710006
    [Crossref] [Google Scholar]
  108. 108.
    Smith GA, Gross SP, Enquist LW. 2001.. Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. . PNAS 98::346670
    [Crossref] [Google Scholar]
  109. 109.
    Sodeik B. 2000.. Mechanisms of viral transport in the cytoplasm. . Trends Microbiol. 8::46572
    [Crossref] [Google Scholar]
  110. 110.
    Tannous R, Grose C. 2011.. Calculation of the anterograde velocity of varicella-zoster virions in a human sciatic nerve during shingles. . J. Infect. Dis. 203::32426
    [Crossref] [Google Scholar]
  111. 111.
    Shanda SK, Wilson DW. 2008.. UL36p is required for efficient transport of membrane-associated herpes simplex virus type 1 along microtubules. . J. Virol. 82::738894
    [Crossref] [Google Scholar]
  112. 112.
    Smith G. 2012.. Herpesvirus transport to the nervous system and back again. . Annu. Rev. Microbiol. 66::15376
    [Crossref] [Google Scholar]
  113. 113.
    Naghavi MH, Gundersen GG, Walsh D. 2013.. Plus-end tracking proteins, CLASPs, and a viral Akt mimic regulate herpesvirus-induced stable microtubule formation and virus spread. . PNAS 110::1826873
    [Crossref] [Google Scholar]
  114. 114.
    Pasdeloup D, Labetoulle M, Rixon FJ. 2013.. Differing effects of herpes simplex virus 1 and pseudorabies virus infections on centrosomal function. . J. Virol. 87::710212
    [Crossref] [Google Scholar]
  115. 115.
    Desai P, Sexton GL, McCaffery JM, Person S. 2001.. A null mutation in the gene encoding the herpes simplex virus type 1 UL37 polypeptide abrogates virus maturation. . J. Virol. 75::1025971
    [Crossref] [Google Scholar]
  116. 116.
    Desai PJ. 2000.. A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. . J. Virol. 74::1160818
    [Crossref] [Google Scholar]
  117. 117.
    Fuchs W, Klupp BG, Granzow H, Mettenleiter TC. 2004.. Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein. . J. Virol. 78::1187989
    [Crossref] [Google Scholar]
  118. 118.
    Klupp BG, Granzow H, Mundt E, Mettenleiter TC. 2001.. Pseudorabies virus UL37 gene product is involved in secondary envelopment. . J. Virol. 75::892736
    [Crossref] [Google Scholar]
  119. 119.
    Luxton GW, Lee JI, Haverlock-Moyns S, Schober JM, Smith GA. 2006.. The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. . J. Virol. 80::2019
    [Crossref] [Google Scholar]
  120. 120.
    Pasdeloup D, McElwee M, Beilstein F, Labetoulle M, Rixon FJ. 2013.. Herpesvirus tegument protein pUL37 interacts with dystonin/BPAG1 to promote capsid transport on microtubules during egress. . J. Virol. 87::285767
    [Crossref] [Google Scholar]
  121. 121.
    Böttcher S, Klupp BG, Granzow H, Fuchs W, Michael K, Mettenleiter TC. 2006.. Identification of a 709-amino-acid internal nonessential region within the essential conserved tegument protein (p)UL36 of pseudorabies virus. . J. Virol. 80::991015
    [Crossref] [Google Scholar]
  122. 122.
    Zaichick SV, Bohannon KP, Hughes A, Sollars PJ, Pickard GE, Smith GA. 2013.. The herpesvirus VP1/2 protein is an effector of dynein-mediated capsid transport and neuroinvasion. . Cell Host Microbe 13::193203
    [Crossref] [Google Scholar]
  123. 123.
    Pegg CE, Zaichick SV, Bomba-Warczak E, Jovasevic V, Kim D, et al. 2021.. Herpesviruses assimilate kinesin to produce motorized viral particles. . Nature 599::66266
    [Crossref] [Google Scholar]
  124. 124.
    Ivanova L, Buch A, Döhner K, Pohlmann A, Binz A, et al. 2016.. Conserved tryptophan motifs in the large tegument protein pUL36 are required for efficient secondary envelopment of herpes simplex virus capsids. . J. Virol. 90::536883
    [Crossref] [Google Scholar]
  125. 125.
    DuRaine G, Wisner TW, Howard P, Johnson DC. 2018.. Kinesin-1 proteins KIF5A, 5B and 5C promote anterograde transport of herpes simplex virus enveloped virions in axons. . J. Virol. 92::e01269-18
    [Crossref] [Google Scholar]
  126. 126.
    Diwaker D, Murray JW, Barnes J, Wolkoff AW, Wilson DW. 2020.. Deletion of the pseudorabies virus gE/gI-US9p complex disrupts kinesin KIF1A and KIF5C recruitment during egress, and alters the properties of microtubule-dependent transport in vitro. . PLOS Pathog. 16::e1008597
    [Crossref] [Google Scholar]
  127. 127.
    Diefenbach RJ, Davis A, Miranda-Saksena M, Fernandez MA, Kelly BJ, et al. 2016.. The basic domain of herpes simplex virus 1 pUS9 recruits kinesin-1 to facilitate egress from neurons. . J. Virol. 90::210211
    [Crossref] [Google Scholar]
  128. 128.
    Kramer T, Greco TM, Taylor MP, Ambrosini AE, Cristea IM, Enquist LW. 2012.. Kinesin-3 mediates axonal sorting and directional transport of alphaherpesvirus particles in neurons. . Cell Host Microbe 12:(6):80614
    [Crossref] [Google Scholar]
  129. 129.
    Daniel GR, Sollars PJ, Pickard GE, Smith GA. 2016.. The pseudorabies virus protein, pUL56, enhances virus dissemination and virulence but is dispensable for axonal transport. . Virology 488::17986
    [Crossref] [Google Scholar]
  130. 130.
    Koshizuka T, Kawaguchi Y, Nishiyama Y. 2005.. Herpes simplex virus type 2 membrane protein UL56 associates with the kinesin motor protein KIF1A. . J. Gen. Virol. 86::52733
    [Crossref] [Google Scholar]
  131. 131.
    Gershon MD, Gershon AA. 2010.. VZV infection of keratinocytes: production of cell-free infectious virions in vivo. . Curr. Top. Microbiol. Immunol. 342::17388
    [Google Scholar]
  132. 132.
    Sloutskin A, Kinchington PR, Goldstein RS. 2013.. Productive versus non-productive infection by cell-free varicella zoster virus of human neurons derived from embryonic stem cells is dependent upon infectious viral dose. . Virology 443::28593
    [Crossref] [Google Scholar]
  133. 133.
    Bohannon KP, Jun Y, Gross SP, Smith GA. 2013.. Differential protein partitioning within the herpesvirus tegument and envelope underlies a complex and variable virion architecture. . PNAS 110::E161320
    [Crossref] [Google Scholar]
  134. 134.
    Grünewald K, Desai P, Winkler DC, Heymann JB, Belnap DM, et al. 2003.. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. . Science 302::139698
    [Crossref] [Google Scholar]
  135. 135.
    Maurer UE, Sodeik B, Grünewald K. 2008.. Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. . PNAS 105::1055964
    [Crossref] [Google Scholar]
  136. 136.
    Wang ZH, Gershon MD, Lungu O, Zhu Z, Mallory S, et al. 2001.. Essential role played by the C-terminal domain of glycoprotein I in envelopment of varicella-zoster virus in the trans-Golgi network: interactions of glycoproteins with tegument. . J. Virol. 75::32340
    [Crossref] [Google Scholar]
  137. 137.
    Birzer A, Kraner ME, Heilingloh CS, Mühl-Zürbes P, Hofmann J, et al. 2020.. Mass spectrometric characterization of HSV-1 L-particles from human dendritic cells and BHK21 cells and analysis of their functional role. . Front. Microbiol. 11::1997
    [Crossref] [Google Scholar]
  138. 138.
    Delva JL, Daled S, Van Waesberghe C, Almey R, Jansens RJJ, et al. 2022.. Proteomic comparison of three wild-type pseudorabies virus strains and the attenuated Bartha strain reveals reduced incorporation of several tegument proteins in Bartha virions. . J. Virol. 96::e0115822
    [Crossref] [Google Scholar]
  139. 139.
    Loret S, Guay G, Lippé R. 2008.. Comprehensive characterization of extracellular herpes simplex virus type 1 virions. . J. Virol. 82::860518
    [Crossref] [Google Scholar]
  140. 140.
    del Rio T, Ch'ng TH, Flood EA, Gross SP, Enquist LW. 2005.. Heterogeneity of a fluorescent tegument component in single pseudorabies virus virions and enveloped axonal assemblies. . J. Virol. 79::390319
    [Crossref] [Google Scholar]
  141. 141.
    El Bilali N, Duron J, Gingras D, Lippé R. 2017.. Quantitative evaluation of protein heterogeneity within herpes simplex virus 1 particles. . J. Virol. 91::e00320-17
    [Crossref] [Google Scholar]
  142. 142.
    Laine RF, Albecka A, van de Linde S, Rees EJ, Crump CM, Kaminski CF. 2015.. Structural analysis of herpes simplex virus by optical super-resolution imaging. . Nat. Commun. 6::5980
    [Crossref] [Google Scholar]
  143. 143.
    Azab W, Osterrieder K. 2017.. Initial contact: the first steps in herpesvirus entry. . Adv. Anat. Embryol. Cell Biol. 223::127
    [Crossref] [Google Scholar]
  144. 144.
    Cairns TM, Connolly SA. 2021.. Entry of alphaherpesviruses. . Curr. Issues Mol. Biol. 41::63124
    [Crossref] [Google Scholar]
  145. 145.
    De La Cruz N, Knebel-Mörsdorf D. 2020.. Endocytic internalization of herpes simplex virus 1 in human keratinocytes at low temperature. . J. Virol. 95::e02195-20
    [Google Scholar]
  146. 146.
    Devadas D, Koithan T, Diestel R, Prank U, Sodeik B, Döhner K. 2014.. Herpes simplex virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated kinases but neither clathrin- nor caveolin-mediated endocytosis. . J. Virol. 88::1337895
    [Crossref] [Google Scholar]
  147. 147.
    Tebaldi G, Pritchard SM, Nicola AV. 2020.. Herpes simplex virus entry by a nonconventional endocytic pathway. . J. Virol. 94::e01910-20
    [Crossref] [Google Scholar]
  148. 148.
    Wang C, Hu R, Wang T, Duan L, Hou Q, et al. 2023.. A bivalent β-carboline derivative inhibits macropinocytosis-dependent entry of pseudorabies virus by targeting the kinase DYRK1A. . J. Biol. Chem. 299::104605
    [Crossref] [Google Scholar]
  149. 149.
    Lycke E, Hamark B, Johansson M, Krotochwil A, Lycke J, Svennerholm B. 1988.. Herpes simplex virus infection of the human sensory neuron: an electron microscopy study. . Arch. Virol. 101::87104
    [Crossref] [Google Scholar]
  150. 150.
    Miranda-Saksena M, Wakisaka H, Tijono B, Boadle RA, Rixon F, et al. 2006.. Herpes simplex virus type 1 accumulation, envelopment, and exit in growth cones and varicosities in mid-distal regions of axons. . J. Virol. 80::3592606
    [Crossref] [Google Scholar]
  151. 151.
    Meckes DG Jr., Wills JW. 2008.. Structural rearrangement within an enveloped virus upon binding to the host cell. . J. Virol. 82::1042935
    [Crossref] [Google Scholar]
  152. 152.
    Morrison EE, Wang YF, Meredith DM. 1998.. Phosphorylation of structural components promotes dissociation of the herpes simplex virus type 1 tegument. . J. Virol. 72::710814
    [Crossref] [Google Scholar]
  153. 153.
    Granzow H, Weiland F, Jons A, Klupp BG, Karger A, Mettenleiter TC. 1997.. Ultrastructural analysis of the replication cycle of pseudorabies virus in cell culture: a reassessment. . J. Virol. 71::207282
    [Crossref] [Google Scholar]
  154. 154.
    Sodeik B, Ebersold MW, Helenius A. 1997.. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. . J. Cell Biol. 136::100721
    [Crossref] [Google Scholar]
  155. 155.
    Jacob T, Van den Broeke C, Grauwet K, Baert K, Claessen C, et al. 2015.. Pseudorabies virus US3 leads to filamentous actin disassembly and contributes to viral genome delivery to the nucleus. . Vet. Microbiol. 177::37985
    [Crossref] [Google Scholar]
  156. 156.
    Diwaker D, Wilson DW. 2019.. Microtubule-dependent trafficking of alphaherpesviruses in the nervous system: the ins and outs. . Viruses 11:(12):1165
    [Crossref] [Google Scholar]
  157. 157.
    Döhner K, Wolfstein A, Prank U, Echeverri C, Dujardin D, et al. 2002.. Function of dynein and dynactin in herpes simplex virus capsid transport. . Mol. Biol. Cell 13::2795809
    [Crossref] [Google Scholar]
  158. 158.
    Frampton AR Jr., Uchida H, von Einem J, Goins WF, Grandi P, et al. 2010.. Equine herpesvirus type 1 (EHV-1) utilizes microtubules, dynein, and ROCK1 to productively infect cells. . Vet. Microbiol. 141::1221
    [Crossref] [Google Scholar]
  159. 159.
    Miranda-Saksena M, Denes CE, Diefenbach RJ, Cunningham AL. 2018.. Infection and transport of herpes simplex virus type 1 in neurons: role of the cytoskeleton. . Viruses 10::92
    [Crossref] [Google Scholar]
  160. 160.
    Antinone SE, Smith GA. 2010.. Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis. . J. Virol. 84::150412
    [Crossref] [Google Scholar]
  161. 161.
    Grigoryan S, Kinchington PR, Yang IH, Selariu A, Zhu H, et al. 2012.. Retrograde axonal transport of VZV: kinetic studies in hESC-derived neurons. . J. Neurovirol. 18::46270
    [Crossref] [Google Scholar]
  162. 162.
    Abaitua F, Hollinshead M, Bolstad M, Crump CM, O'Hare P. 2012.. A nuclear localization signal in herpesvirus protein VP1-2 is essential for infection via capsid routing to the nuclear pore. . J. Virol. 86::89989014
    [Crossref] [Google Scholar]
  163. 163.
    Copeland AM, Newcomb WW, Brown JC. 2009.. Herpes simplex virus replication: roles of viral proteins and nucleoporins in capsid-nucleus attachment. . J. Virol. 83::166068
    [Crossref] [Google Scholar]
  164. 164.
    Granzow H, Klupp BG, Mettenleiter TC. 2005.. Entry of pseudorabies virus: an immunogold-labeling study. . J. Virol. 79::32005
    [Crossref] [Google Scholar]
  165. 165.
    Krautwald M, Fuchs W, Klupp BG, Mettenleiter TC. 2009.. Translocation of incoming pseudorabies virus capsids to the cell nucleus is delayed in the absence of tegument protein pUL37. . J. Virol. 83::338996
    [Crossref] [Google Scholar]
  166. 166.
    Richards AL, Sollars PJ, Pitts JD, Stults AM, Heldwein EE, et al. 2017.. The pUL37 tegument protein guides alpha-herpesvirus retrograde axonal transport to promote neuroinvasion. . PLOS Pathog. 13::e1006741
    [Crossref] [Google Scholar]
  167. 167.
    Stults AM, Sollars PJ, Heath KD, Sillman SJ, Pickard GE, Smith GA. 2022.. Bovine herpesvirus 1 invasion of sensory neurons by retrograde axonal transport is dependent on the pUL37 region 2 effector. . J. Virol. 96::e0148621
    [Crossref] [Google Scholar]
  168. 168.
    Apcarian A, Cunningham AL, Diefenbach RJ. 2010.. Identification of binding domains in the herpes simplex virus type 1 small capsid protein pUL35 (VP26). . J. Gen. Virol. 91::265963
    [Crossref] [Google Scholar]
  169. 169.
    Antinone SE, Shubeita GT, Coller KE, Lee JI, Haverlock-Moyns S, et al. 2006.. The herpesvirus capsid surface protein, VP26, and the majority of the tegument proteins are dispensable for capsid transport toward the nucleus. . J. Virol. 80::549498
    [Crossref] [Google Scholar]
  170. 170.
    Koyuncu OO, Perlman DH, Enquist LW. 2013.. Efficient retrograde transport of pseudorabies virus within neurons requires local protein synthesis in axons. . Cell Host Microbe 13::5466
    [Crossref] [Google Scholar]
  171. 171.
    Huffmaster NJ, Sollars PJ, Richards AL, Pickard GE, Smith GA. 2015.. Dynamic ubiquitination drives herpesvirus neuroinvasion. . PNAS 112::1281823
    [Crossref] [Google Scholar]
  172. 172.
    Böttcher S, Maresch C, Granzow H, Klupp BG, Teifke JP, Mettenleiter TC. 2008.. Mutagenesis of the active-site cysteine in the ubiquitin-specific protease contained in large tegument protein pUL36 of pseudorabies virus impairs viral replication in vitro and neuroinvasion in vivo. . J. Virol. 82::600916
    [Crossref] [Google Scholar]
  173. 173.
    Kattenhorn LM, Korbel GA, Kessler BM, Spooner E, Ploegh HL. 2005.. A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae. . Mol. Cell 19::54757
    [Crossref] [Google Scholar]
  174. 174.
    Lee JI, Sollars PJ, Baver SB, Pickard GE, Leelawong M, Smith GA. 2009.. A herpesvirus encoded deubiquitinase is a novel neuroinvasive determinant. . PLOS Pathog. 5::e1000387
    [Crossref] [Google Scholar]
  175. 175.
    Hennig T, Abaitua F, O'Hare P. 2014.. Functional analysis of nuclear localization signals in VP1-2 homologues from all herpesvirus subfamilies. . J. Virol. 88::5391405
    [Crossref] [Google Scholar]
  176. 176.
    Döhner K, Cornelius A, Serrero MC, Sodeik B. 2021.. The journey of herpesvirus capsids and genomes to the host cell nucleus. . Curr. Opin. Virol. 50::14758
    [Crossref] [Google Scholar]
  177. 177.
    McElwee M, Beilstein F, Labetoulle M, Rixon FJ, Pasdeloup D. 2013.. Dystonin/BPAG1 promotes plus-end-directed transport of herpes simplex virus 1 capsids on microtubules during entry. . J. Virol. 87::1100818
    [Crossref] [Google Scholar]
  178. 178.
    Bley CJ, Nie S, Mobbs GW, Petrovic S, Gres AT, et al. 2022.. Architecture of the cytoplasmic face of the nuclear pore. . Science 376::eabm9129
    [Crossref] [Google Scholar]
  179. 179.
    Rode K, Döhner K, Binz A, Glass M, Strive T, et al. 2011.. Uncoupling uncoating of herpes simplex virus genomes from their nuclear import and gene expression. . J. Virol. 85::427183
    [Crossref] [Google Scholar]
  180. 180.
    Liu YT, Jih J, Dai X, Bi GQ, Zhou ZH. 2019.. Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome. . Nature 570::25761
    [Crossref] [Google Scholar]
  181. 181.
    Döhner K, Ramos-Nascimento A, Bialy D, Anderson F, Hickford-Martinez A, et al. 2018.. Importin α1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons. . PLOS Pathog. 14::e1006823
    [Crossref] [Google Scholar]
  182. 182.
    Pasdeloup D, Blondel D, Isidro AL, Rixon FJ. 2009.. Herpesvirus capsid association with the nuclear pore complex and viral DNA release involve the nucleoporin CAN/Nup214 and the capsid protein pUL25. . J. Virol. 83::661023
    [Crossref] [Google Scholar]
  183. 183.
    Jovasevic V, Liang L, Roizman B. 2008.. Proteolytic cleavage of VP1-2 is required for release of herpes simplex virus 1 DNA into the nucleus. . J. Virol. 82::331119
    [Crossref] [Google Scholar]
  184. 184.
    O'Hara M, Rixon FJ, Stow ND, Murray J, Murphy M, Preston VG. 2010.. Mutational analysis of the herpes simplex virus type 1 UL25 DNA packaging protein reveals regions that are important after the viral DNA has been packaged. . J. Virol. 84::425263
    [Crossref] [Google Scholar]
  185. 185.
    Ma Z, Ni G, Damania B. 2018.. Innate sensing of DNA virus genomes. . Annu. Rev. Virol. 5::34162
    [Crossref] [Google Scholar]
  186. 186.
    Paludan SR, Pradeu T, Masters SL, Mogensen TH. 2021.. Constitutive immune mechanisms: mediators of host defence and immune regulation. . Nat. Rev. Immunol. 21::13750
    [Crossref] [Google Scholar]
  187. 187.
    Kim M, Truong NR, James V, Bosnjak L, Sandgren KJ, et al. 2015.. Relay of herpes simplex virus between Langerhans cells and dermal dendritic cells in human skin. . PLOS Pathog. 11::e1004812
    [Crossref] [Google Scholar]
  188. 188.
    Morrow G, Slobedman B, Cunningham AL, Abendroth A. 2003.. Varicella-zoster virus productively infects mature dendritic cells and alters their immune function. . J. Virol. 77::495059
    [Crossref] [Google Scholar]
  189. 189.
    Turan A, Grosche L, Krawczyk A, Mühl-Zürbes P, Drassner C, et al. 2019.. Autophagic degradation of lamins facilitates the nuclear egress of herpes simplex virus type 1. . J. Cell Biol. 218::50823
    [Crossref] [Google Scholar]
  190. 190.
    Chakraborty P, Vervelde L, Dalziel RG, Wasson PS, Nair V, et al. 2017.. Marek's disease virus infection of phagocytes: a de novo in vitro infection model. . J. Gen. Virol. 98::108088
    [Crossref] [Google Scholar]
  191. 191.
    Menachery VD, Leib DA. 2009.. Control of herpes simplex virus replication is mediated through an interferon regulatory factor 3-dependent pathway. . J. Virol. 83::12399406
    [Crossref] [Google Scholar]
  192. 192.
    Shivkumar M, Lawler C, Milho R, Stevenson PG. 2016.. Herpes simplex virus 1 interaction with myeloid cells in vivo. . J. Virol. 90::866172
    [Crossref] [Google Scholar]
  193. 193.
    Vogel K, Thomann S, Vogel B, Schuster P, Schmidt B. 2014.. Both plasmacytoid dendritic cells and monocytes stimulate natural killer cells early during human herpes simplex virus type 1 infections. . Immunology 143::588600
    [Crossref] [Google Scholar]
  194. 194.
    Kennedy JJ, Steain M, Slobedman B, Abendroth A. 2019.. Infection and functional modulation of human monocytes and macrophages by varicella-zoster virus. . J. Virol. 93::e01887-18
    [Crossref] [Google Scholar]
  195. 195.
    Arbeit RD, Zaia JA, Valerio MA, Levin MJ. 1982.. Infection of human peripheral blood mononuclear cells by varicella-zoster virus. . Intervirology 18::5665
    [Crossref] [Google Scholar]
  196. 196.
    Horan KA, Hansen K, Jakobsen MR, Holm CK, Søby S, et al. 2013.. Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors. . J. Immunol. 190::231119
    [Crossref] [Google Scholar]
  197. 197.
    Ishimaru H, Hosokawa K, Sugimoto A, Tanaka R, Watanabe T, Fujimuro M. 2020.. MG132 exerts anti-viral activity against HSV-1 by overcoming virus-mediated suppression of the ERK signaling pathway. . Sci. Rep. 10::6671
    [Crossref] [Google Scholar]
  198. 198.
    Schneider SM, Pritchard SM, Wudiri GA, Trammell CE, Nicola AV. 2019.. Early steps in herpes simplex virus infection blocked by a proteasome inhibitor. . mBio 10::e00732-19
    [Crossref] [Google Scholar]
  199. 199.
    Sun C, Luecke S, Bodda C, Jønsson KL, Cai Y, et al. 2019.. Cellular requirements for sensing and elimination of incoming HSV-1 DNA and capsids. . J. Interferon Cytokine Res. 39::191204
    [Crossref] [Google Scholar]
  200. 200.
    Betancor G. 2023.. You shall not pass: MX2 proteins are versatile viral inhibitors. . Vaccines 11::930
    [Crossref] [Google Scholar]
  201. 201.
    Staeheli P, Haller O. 2018.. Human MX2/MxB: a potent interferon-induced postentry inhibitor of herpesviruses and HIV-1. . J. Virol. 92::e00709-18
    [Crossref] [Google Scholar]
  202. 202.
    Bayer A, Child SJ, Malik HS, Geballe AP. 2023.. A single polymorphic residue in humans underlies species-specific restriction of HSV-1 by the antiviral protein MxB. . J. Virol. 97::e0083023
    [Crossref] [Google Scholar]
  203. 203.
    Crameri M, Bauer M, Caduff N, Walker R, Steiner F, et al. 2018.. MxB is an interferon-induced restriction factor of human herpesviruses. . Nat. Commun. 9::1980
    [Crossref] [Google Scholar]
  204. 204.
    Schilling M, Bulli L, Weigang S, Graf L, Naumann S, et al. 2018.. Human MxB protein is a pan-herpesvirus restriction factor. . J. Virol. 92::e01056-18
    [Crossref] [Google Scholar]
  205. 205.
    Moschonas GD, Delhaye L, Cooreman R, Hüsers F, Bhat A, et al. 2024.. MX2 restricts HIV-1 and herpes simplex virus type 1 by forming cytoplasmic biomolecular condensates that mimic nuclear pore complexes. . bioRxiv 2023.06.22.545931. https://doi.org/10.1101/2023.06.22.545931
/content/journals/10.1146/annurev-virology-100422-022751
Loading
/content/journals/10.1146/annurev-virology-100422-022751
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error