1932

Abstract

Once inside host cells, retroviruses generate a double-stranded DNA copy of their RNA genomes via reverse transcription inside a viral core, and this viral DNA is subsequently integrated into the genome of the host cell. Before integration can occur, the core must cross the cell cortex, be transported through the cytoplasm, and enter the nucleus. Retroviruses have evolved different mechanisms to accomplish this journey. This review examines the various mechanisms retroviruses, especially HIV-1, have evolved to commute throughout the cell. Retroviruses cross the cell cortex while modulating actin dynamics and use microtubules as roads while connecting with microtubule-associated proteins and motors to reach the nucleus. Although a clearer picture exists for HIV-1 compared with other retroviruses, there is still much to learn about how retroviruses accomplish their commute.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100422-023502
2024-09-26
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/virology/11/1/annurev-virology-100422-023502.html?itemId=/content/journals/10.1146/annurev-virology-100422-023502&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Merino-Gracia J, Garcia-Mayoral MF, Rodriguez-Crespo I. 2011.. The association of viral proteins with host cell dynein components during virus infection. . FEBS J. 278::29973011
    [Crossref] [Google Scholar]
  2. 2.
    Dodding MP, Way M. 2011.. Coupling viruses to dynein and kinesin-1. . EMBO J. 30::352739
    [Crossref] [Google Scholar]
  3. 3.
    Leopold PL, Pfister KK. 2006.. Viral strategies for intracellular trafficking: motors and microtubules. . Traffic 7::51623
    [Crossref] [Google Scholar]
  4. 4.
    Dibsy R, Bremaud E, Mak J, Favard C, Muriaux D. 2023.. HIV-1 diverts cortical actin for particle assembly and release. . Nat. Commun. 14::6945
    [Crossref] [Google Scholar]
  5. 5.
    Lyman MG, Enquist LW. 2009.. Herpesvirus interactions with the host cytoskeleton. . J. Virol. 83::205866
    [Crossref] [Google Scholar]
  6. 6.
    Scherer J, Vallee RB. 2011.. Adenovirus recruits dynein by an evolutionary novel mechanism involving direct binding to pH-primed hexon. . Viruses 3::141731
    [Crossref] [Google Scholar]
  7. 7.
    Serrano T, Frémont S, Echard A. 2023.. Get in and get out: remodeling of the cellular actin cytoskeleton upon HIV-1 infection. . Biol. Cell 115::e2200085
    [Crossref] [Google Scholar]
  8. 8.
    da Silva ES, Naghavi MH. 2023.. Microtubules and viral infection. . Adv. Virus Res. 115::87134
    [Crossref] [Google Scholar]
  9. 9.
    Goff SP. 2001.. Retroviridae: the retroviruses and their replication. . In Fields Virology, ed. DM Knipe, PM Howley , pp. 1871939. Philadelphia, PA:: Lippincott Williams & Wilkins
    [Google Scholar]
  10. 10.
    Pollard TD. 2016.. Actin and actin-binding proteins. . Cold Spring Harb. Perspect. Biol. 8:(8):a018226
    [Crossref] [Google Scholar]
  11. 11.
    Gautreau AM, Fregoso FE, Simanov G, Dominguez R. 2022.. Nucleation, stabilization, and disassembly of branched actin networks. . Trends Cell Biol. 32::42132
    [Crossref] [Google Scholar]
  12. 12.
    Rottner K, Faix J, Bogdan S, Linder S, Kerkhoff E. 2017.. Actin assembly mechanisms at a glance. . J. Cell Sci. 130::342735
    [Crossref] [Google Scholar]
  13. 13.
    Dohner K, Nagel CH, Sodeik B. 2005.. Viral stop-and-go along microtubules: taking a ride with dynein and kinesins. . Trends Microbiol. 13::32027
    [Crossref] [Google Scholar]
  14. 14.
    Hirokawa N, Noda Y, Tanaka Y, Niwa S. 2009.. Kinesin superfamily motor proteins and intracellular transport. . Nat. Rev. Mol. Cell Biol. 10::68296
    [Crossref] [Google Scholar]
  15. 15.
    Verhey KJ, Hammond JW. 2009.. Traffic control: regulation of kinesin motors. . Nat. Rev. Mol. Cell Biol. 10::76577
    [Crossref] [Google Scholar]
  16. 16.
    Hook P, Vallee RB. 2006.. The dynein family at a glance. . J. Cell Sci. 119::436971
    [Crossref] [Google Scholar]
  17. 17.
    Can S, Lacey S, Gur M, Carter AP, Yildiz A. 2019.. Directionality of dynein is controlled by the angle and length of its stalk. . Nature 566::40710
    [Crossref] [Google Scholar]
  18. 18.
    Caviston JP, Holzbaur EL. 2006.. Microtubule motors at the intersection of trafficking and transport. . Trends Cell Biol. 16::53037
    [Crossref] [Google Scholar]
  19. 19.
    Gyoeva FK, Sarkisov DV, Khodjakov AL, Minin AA. 2004.. The tetrameric molecule of conventional kinesin contains identical light chains. . Biochemistry 43::1352531
    [Crossref] [Google Scholar]
  20. 20.
    Wozniak MJ, Allan VJ. 2006.. Cargo selection by specific kinesin light chain 1 isoforms. . EMBO J. 25::545768
    [Crossref] [Google Scholar]
  21. 21.
    Cason SE, Holzbaur ELF. 2022.. Selective motor activation in organelle transport along axons. . Nat. Rev. Mol. Cell Biol. 23::699714
    [Crossref] [Google Scholar]
  22. 22.
    Tati S, Alisaraie L. 2022.. Recruitment of dynein and kinesin to viral particles. . FASEB J. 36::e22311
    [Crossref] [Google Scholar]
  23. 23.
    Río-Bergé C, Cong Y, Reggiori F. 2023.. Getting on the right track: interactions between viruses and the cytoskeletal motor proteins. . Traffic 24::11430
    [Crossref] [Google Scholar]
  24. 24.
    Canty JT, Tan R, Kusakci E, Fernandes J, Yildiz A. 2021.. Structure and mechanics of dynein motors. . Annu. Rev. Biophys. 50::54974
    [Crossref] [Google Scholar]
  25. 25.
    Bhabha G, Johnson GT, Schroeder CM, Vale RD. 2016.. How dynein moves along microtubules. . Trends Biochem. Sci. 41::94105
    [Crossref] [Google Scholar]
  26. 26.
    Zhang K, Foster HE, Rondelet A, Lacey SE, Bahi-Buisson N, et al. 2017.. Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. . Cell 169::130314.e18
    [Crossref] [Google Scholar]
  27. 27.
    Urnavicius L, Lau CK, Elshenawy MM, Morales-Rios E, Motz C, et al. 2018.. Cryo-EM shows how dynactin recruits two dyneins for faster movement. . Nature 554::2026
    [Crossref] [Google Scholar]
  28. 28.
    DeSantis ME, Cianfrocco MA, Htet ZM, Tran PT, Reck-Peterson SL, Leschziner AE. 2017.. Lis1 has two opposing modes of regulating cytoplasmic dynein. . Cell 170::1197208.e12
    [Crossref] [Google Scholar]
  29. 29.
    Reck-Peterson SL, Redwine WB, Vale RD, Carter AP. 2018.. The cytoplasmic dynein transport machinery and its many cargoes. . Nat. Rev. Mol. Cell Biol. 19::38298
    [Crossref] [Google Scholar]
  30. 30.
    Zhao Y, Oten S, Yildiz A. 2023.. Nde1 promotes Lis1-mediated activation of dynein. . Nat. Commun. 14::7221
    [Crossref] [Google Scholar]
  31. 31.
    Chen B. 2019.. Molecular mechanism of HIV-1 entry. . Trends Microbiol. 27::87891
    [Crossref] [Google Scholar]
  32. 32.
    Stephens C, Naghavi MH. 2022.. The host cytoskeleton: a key regulator of early HIV-1 infection. . FEBS J. https://doi.org/10.1111/febs.16706
    [Google Scholar]
  33. 33.
    Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, et al. 2023.. HIV infection: shaping the complex, dynamic, and interconnected network of the cytoskeleton. . Int. J. Mol. Sci. 24:(17):13104
    [Crossref] [Google Scholar]
  34. 34.
    Harmon B, Ratner L. 2008.. Induction of the Gαq signaling cascade by the human immunodeficiency virus envelope is required for virus entry. . J. Virol. 82::9191205
    [Crossref] [Google Scholar]
  35. 35.
    Harmon B, Campbell N, Ratner L. 2010.. Role of Abl kinase and the Wave2 signaling complex in HIV-1 entry at a post-hemifusion step. . PLOS Pathog. 6::e1000956
    [Crossref] [Google Scholar]
  36. 36.
    Spear M, Guo J, Turner A, Yu D, Wang W, et al. 2014.. HIV-1 triggers WAVE2 phosphorylation in primary CD4 T cells and macrophages, mediating Arp2/3-dependent nuclear migration. . J. Biol. Chem. 289::694959
    [Crossref] [Google Scholar]
  37. 37.
    Vorster PJ, Guo J, Yoder A, Wang W, Zheng Y, et al. 2011.. LIM kinase 1 modulates cortical actin and CXCR4 cycling and is activated by HIV-1 to initiate viral infection. . J. Biol. Chem. 286::1255464
    [Crossref] [Google Scholar]
  38. 38.
    Jimenez-Baranda S, Gomez-Mouton C, Rojas A, Martinez-Prats L, Mira E, et al. 2007.. Filamin-A regulates actin-dependent clustering of HIV receptors. . Nat. Cell Biol. 9::83846
    [Crossref] [Google Scholar]
  39. 39.
    Yin W, Li W, Li Q, Liu Y, Liu J, et al. 2020.. Real-time imaging of individual virion-triggered cortical actin dynamics for human immunodeficiency virus entry into resting CD4 T cells. . Nanoscale 12::11529
    [Crossref] [Google Scholar]
  40. 40.
    Cameron PU, Saleh S, Sallmann G, Solomon A, Wightman F, et al. 2010.. Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. . PNAS 107::1693439
    [Crossref] [Google Scholar]
  41. 41.
    Santos MF, Rappa G, Karbanová J, Diana P, Cirrincione G, et al. 2023.. HIV-1-induced nuclear invaginations mediated by VAP-A, ORP3, and Rab7 complex explain infection of activated T cells. . Nat. Commun. 14::4588
    [Crossref] [Google Scholar]
  42. 42.
    McDonald D, Vodicka MA, Lucero G, Svitkina TM, Borisy GG, et al. 2002.. Visualization of the intracellular behavior of HIV in living cells. . J. Cell Biol. 159::44152
    [Crossref] [Google Scholar]
  43. 43.
    Malikov V, da Silva ES, Jovasevic V, Bennett G, de Souza Aranha Vieira DA, et al. 2015.. HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. . Nat. Commun. 6::6660
    [Crossref] [Google Scholar]
  44. 44.
    Arhel N, Genovesio A, Kim KA, Miko S, Perret E, et al. 2006.. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. . Nat. Methods 3::81724
    [Crossref] [Google Scholar]
  45. 45.
    Huang PT, Summers BJ, Xu C, Perilla JR, Malikov V, et al. 2019.. FEZ1 is recruited to a conserved cofactor site on capsid to promote HIV-1 trafficking. . Cell Rep. 28::237385.e7
    [Crossref] [Google Scholar]
  46. 46.
    Malikov V, Naghavi MH. 2023.. FEZ1 plays dual roles in early HIV-1 infection by independently regulating capsid transport and host interferon-stimulated gene expression. . J. Virol. 97::e0049923
    [Crossref] [Google Scholar]
  47. 47.
    Sabo Y, Walsh D, Barry DS, Tinaztepe S, de Los Santos K, et al. 2013.. HIV-1 induces the formation of stable microtubules to enhance early infection. . Cell Host Microbe 14::53546
    [Crossref] [Google Scholar]
  48. 48.
    Lukic Z, Dharan A, Fricke T, Diaz-Griffero F, Campbell EM. 2014.. HIV-1 uncoating is facilitated by dynein and kinesin 1. . J. Virol. 88::1361325
    [Crossref] [Google Scholar]
  49. 49.
    Naghavi MH, Walsh D. 2017.. Microtubule regulation and function during virus infection. . J. Virol. 91::e00538-17
    [Crossref] [Google Scholar]
  50. 50.
    Walsh D, Naghavi MH. 2019.. Exploitation of cytoskeletal networks during early viral infection. . Trends Microbiol. 27::3950
    [Crossref] [Google Scholar]
  51. 51.
    da Silva ES, Shanmugapriya S, Malikov V, Gu F, Delaney MK, Naghavi MH. 2020.. HIV-1 capsids mimic a microtubule regulator to coordinate early stages of infection. . EMBO J. 39::e104870
    [Crossref] [Google Scholar]
  52. 52.
    Allouch A, Di Primio C, Paoletti A, Lê-Bury G, Subra F, et al. 2020.. SUGT1 controls susceptibility to HIV-1 infection by stabilizing microtubule plus-ends. . Cell Death Differ. 27::324357
    [Crossref] [Google Scholar]
  53. 53.
    Delaney MK, Malikov V, Chai Q, Zhao G, Naghavi MH. 2017.. Distinct functions of diaphanous-related formins regulate HIV-1 uncoating and transport. . PNAS 114::E693241
    [Google Scholar]
  54. 54.
    Mitra S, Shanmugapriya S, da Silva ES, Naghavi MH. 2020.. HIV-1 exploits CLASP2 to induce microtubule stabilization and facilitate virus trafficking to the nucleus. . J. Virol. 94::e00404-20
    [Crossref] [Google Scholar]
  55. 55.
    Andersen RO, Turnbull DW, Johnson EA, Doe CQ. 2012.. Sgt1 acts via an LKB1/AMPK pathway to establish cortical polarity in larval neuroblasts. . Dev. Biol. 363::25865
    [Crossref] [Google Scholar]
  56. 56.
    Steensgaard P, Garre M, Muradore I, Transidico P, Nigg EA, et al. 2004.. Sgt1 is required for human kinetochore assembly. . EMBO Rep. 5::62631
    [Crossref] [Google Scholar]
  57. 57.
    Halpain S, Dehmelt L. 2006.. The MAP1 family of microtubule-associated proteins. . Genome Biol. 7::224
    [Crossref] [Google Scholar]
  58. 58.
    Atherton J, Houdusse A, Moores C. 2013.. MAPping out distribution routes for kinesin couriers. . Biol. Cell 105::46587
    [Crossref] [Google Scholar]
  59. 59.
    Fernandez J, Portilho DM, Danckaert A, Munier S, Becker A, et al. 2015.. Microtubule-associated proteins 1 (MAP1) promote human immunodeficiency virus type I (HIV-1) intracytoplasmic routing to the nucleus. . J. Biol. Chem. 290::463146
    [Crossref] [Google Scholar]
  60. 60.
    Swan A, Nguyen T, Suter B. 1999.. Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. . Nat. Cell Biol. 1::44449
    [Crossref] [Google Scholar]
  61. 61.
    Bullock SL, Ish-Horowicz D. 2001.. Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis. . Nature 414::61116
    [Crossref] [Google Scholar]
  62. 62.
    Delanoue R, Davis I. 2005.. Dynein anchors its mRNA cargo after apical transport in the Drosophila blastoderm embryo. . Cell 122::97106
    [Crossref] [Google Scholar]
  63. 63.
    Hoogenraad CC, Akhmanova A, Howell SA, Dortland BR, De Zeeuw CI, et al. 2001.. Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes. . EMBO J. 20::404154
    [Crossref] [Google Scholar]
  64. 64.
    Hoogenraad CC, Wulf P, Schiefermeier N, Stepanova T, Galjart N, et al. 2003.. Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. . EMBO J. 22::600415
    [Crossref] [Google Scholar]
  65. 65.
    Matanis T, Akhmanova A, Wulf P, Del Nery E, Weide T, et al. 2002.. Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. . Nat. Cell Biol. 4::98692
    [Crossref] [Google Scholar]
  66. 66.
    Pare C, Suter B. 2000.. Subcellular localization of Bic-D::GFP is linked to an asymmetric oocyte nucleus. . J. Cell Sci. 113:(Part 12):211927
    [Crossref] [Google Scholar]
  67. 67.
    Larsen KS, Xu J, Cermelli S, Shu Z, Gross SP. 2008.. BicaudalD actively regulates microtubule motor activity in lipid droplet transport. . PLOS ONE 3::e3763
    [Crossref] [Google Scholar]
  68. 68.
    Zhou H, Xu M, Huang Q, Gates A, Zhang X, et al. 2008.. Genome-scale RNAi screen for host factors required for HIV replication. . Cell Host Microbe 4::495504
    [Crossref] [Google Scholar]
  69. 9.
    Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, et al. 2008.. Identification of host proteins required for HIV infection through a functional genomic screen. . Science 319::92126
    [Crossref] [Google Scholar]
  70. 70.
    Konig R, Zhou Y, Elleder D, Diamond T, Bonamy G, et al. 2008.. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. . Cell 135::4960
    [Crossref] [Google Scholar]
  71. 71.
    Dharan A, Opp S, Abdel-Rahim O, Keceli SK, Imam S, et al. 2017.. Bicaudal D2 facilitates the cytoplasmic trafficking and nuclear import of HIV-1 genomes during infection. . PNAS 114:: E1070716
    [Crossref] [Google Scholar]
  72. 72.
    Carnes SK, Zhou J, Aiken C. 2018.. HIV-1 engages a dynein-dynactin-BICD2 complex for infection and transport to the nucleus. . J. Virol. 92::e00358-18
    [Crossref] [Google Scholar]
  73. 73.
    Malikov V, Naghavi MH. 2017.. Localized phosphorylation of a kinesin-1 adaptor by a capsid-associated kinase regulates HIV-1 motility and uncoating. . Cell Rep. 20::279299
    [Crossref] [Google Scholar]
  74. 74.
    Márquez CL, Lau D, Walsh J, Shah V, McGuinness C, et al. 2018.. Kinetics of HIV-1 capsid uncoating revealed by single-molecule analysis. . eLife 7::e34772
    [Crossref] [Google Scholar]
  75. 75.
    Francis AC, Melikyan GB. 2018.. Single HIV-1 imaging reveals progression of infection through CA-dependent steps of docking at the nuclear pore, uncoating, and nuclear transport. . Cell Host Microbe 23::53648.e6
    [Crossref] [Google Scholar]
  76. 76.
    Ambrose Z, Aiken C. 2014.. HIV-1 uncoating: connection to nuclear entry and regulation by host proteins. . Virology 454455:37179
    [Google Scholar]
  77. 77.
    Shen Q, Wu C, Freniere C, Tripler TN, Xiong Y. 2021.. Nuclear import of HIV-1. . Viruses 13::2242
    [Crossref] [Google Scholar]
  78. 78.
    Suzuki Y, Craigie R. 2007.. The road to chromatin—nuclear entry of retroviruses. . Nat. Rev. Microbiol. 5::18796
    [Crossref] [Google Scholar]
  79. 79.
    Karageorgos L, Li P, Burrell C. 1993.. Characterization of HIV replication complexes early after cell-to-cell infection. . AIDS Res. Hum. Retroviruses 9::81723
    [Crossref] [Google Scholar]
  80. 80.
    Iordanskiy S, Berro R, Altieri M, Kashanchi F, Bukrinsky M. 2006.. Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin. . Retrovirology 3::4
    [Crossref] [Google Scholar]
  81. 81.
    Farnet CM, Haseltine WA. 1991.. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. . J. Virol. 65::191015
    [Crossref] [Google Scholar]
  82. 82.
    Miller MD, Farnet CM, Bushman FD. 1997.. Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. . J. Virol. 71::538290
    [Crossref] [Google Scholar]
  83. 83.
    Ganser-Pornillos BK, Pornillos O. 2019.. Restriction of HIV-1 and other retroviruses by TRIM5. . Nat. Rev. Microbiol. 17::54656
    [Crossref] [Google Scholar]
  84. 84.
    Stremlau M, Perron M, Lee M, Li Y, Song B, et al. 2006.. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor. . PNAS 103::551419
    [Crossref] [Google Scholar]
  85. 85.
    Grutter MG, Luban J. 2012.. TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. . Curr. Opin. Virol. 2::14250
    [Crossref] [Google Scholar]
  86. 86.
    Fletcher AJ, Vaysburd M, Maslen S, Zeng J, Skehel JM, et al. 2018.. Trivalent RING assembly on retroviral capsids activates TRIM5 ubiquitination and innate immune signaling. . Cell Host Microbe 24::76175.e6
    [Crossref] [Google Scholar]
  87. 87.
    Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, et al. 2013.. MX2 is an interferon-induced inhibitor of HIV-1 infection. . Nature 502::56366
    [Crossref] [Google Scholar]
  88. 88.
    Goujon C, Moncorge O, Bauby H, Doyle T, Ward CC, et al. 2013.. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. . Nature 502::55962
    [Crossref] [Google Scholar]
  89. 89.
    Burdick RC, Li C, Munshi M, Rawson JMO, Nagashima K, et al. 2020.. HIV-1 uncoats in the nucleus near sites of integration. . PNAS 117::548693
    [Crossref] [Google Scholar]
  90. 90.
    Zila V, Margiotta E, Turonova B, Muller TG, Zimmerli CE, et al. 2021.. Cone-shaped HIV-1 capsids are transported through intact nuclear pores. . Cell 184::103246.e18
    [Crossref] [Google Scholar]
  91. 91.
    Li C, Burdick RC, Nagashima K, Hu WS, Pathak VK. 2021.. HIV-1 cores retain their integrity until minutes before uncoating in the nucleus. . PNAS 118::e2019467118
    [Crossref] [Google Scholar]
  92. 92.
    Muller TG, Zila V, Peters K, Schifferdecker S, Stanic M, et al. 2021.. HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells. . eLife 10::e64776
    [Crossref] [Google Scholar]
  93. 93.
    Rensen E, Mueller F, Scoca V, Parmar JJ, Souque P, et al. 2021.. Clustering and reverse transcription of HIV-1 genomes in nuclear niches of macrophages. . EMBO J. 40::e105247
    [Crossref] [Google Scholar]
  94. 94.
    Shen Q, Kumari S, Xu C, Jang S, Shi J, et al. 2023.. The capsid lattice engages a bipartite NUP153 motif to mediate nuclear entry of HIV-1 cores. . PNAS 120::e2202815120
    [Crossref] [Google Scholar]
  95. 95.
    Xue G, Yu HJ, Buffone C, Huang SW, Lee K, et al. 2023.. The HIV-1 capsid core is an opportunistic nuclear import receptor. . Nat. Commun. 14::3782
    [Crossref] [Google Scholar]
  96. 96.
    Shen Q, Feng Q, Wu C, Xiong Q, Tian T, et al. 2023.. Modeling HIV-1 nuclear entry with nucleoporin-gated DNA-origami channels. . Nat. Struct. Mol. Biol. 30::42535
    [Crossref] [Google Scholar]
  97. 97.
    Bejarano DA, Peng K, Laketa V, Borner K, Jost KL, et al. 2019.. HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the nuclear pore complex. . eLife 8::e41800
    [Crossref] [Google Scholar]
  98. 98.
    Francis AC, Marin M, Singh PK, Achuthan V, Prellberg MJ, et al. 2020.. HIV-1 replication complexes accumulate in nuclear speckles and integrate into speckle-associated genomic domains. . Nat. Commun. 11::3505
    [Crossref] [Google Scholar]
  99. 99.
    Achuthan V, Perreira JM, Sowd GA, Puray-Chavez M, McDougall WM, et al. 2018.. Capsid-CPSF6 interaction licenses nuclear HIV-1 trafficking to sites of viral DNA integration. . Cell Host Microbe 24::392404.e8
    [Crossref] [Google Scholar]
  100. 100.
    Zhong Z, Ning J, Boggs EA, Jang S, Wallace C, et al. 2021.. Cytoplasmic CPSF6 regulates HIV-1 capsid trafficking and infection in a cyclophilin A-dependent manner. . mBio 12::e03142-20
    [Crossref] [Google Scholar]
  101. 101.
    Ay S, Di Nunzio F. 2023.. HIV-induced CPSF6 condensates. . J. Mol. Biol. 435::168094
    [Crossref] [Google Scholar]
  102. 102.
    Luchsinger C, Lee K, Mardones GA, KewalRamani VN, Diaz-Griffero F. 2023.. Formation of nuclear CPSF6/CPSF5 biomolecular condensates upon HIV-1 entry into the nucleus is important for productive infection. . Sci. Rep. 13::10974
    [Crossref] [Google Scholar]
  103. 103.
    Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, et al. 2005.. A role for LEDGF/p75 in targeting HIV DNA integration. . Nat. Med. 11::128789
    [Crossref] [Google Scholar]
  104. 104.
    Su Y, Qiao W, Guo T, Tan J, Li Z, et al. 2010.. Microtubule-dependent retrograde transport of bovine immunodeficiency virus. . Cell. Microbiol. 12::1098107
    [Crossref] [Google Scholar]
  105. 105.
    Opazo T, Garces A, Tapia D, Barraza F, Bravo A, et al. 2017.. Functional evidence of the involvement of the dynein light chain DYNLRB2 in murine leukemia virus infection. . J. Virol. 91::e00129-17
    [Crossref] [Google Scholar]
  106. 106.
    Pereira LE, Clark J, Grznarova P, Wen X, LaCasse R, et al. 2014.. Direct evidence for intracellular anterograde co-transport of M-PMV Gag and Env on microtubules. . Virology 449::10919
    [Crossref] [Google Scholar]
  107. 107.
    Sfakianos JN, Hunter E. 2003.. M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. . Traffic 4::67180
    [Crossref] [Google Scholar]
  108. 108.
    Petit C, Giron ML, Tobaly-Tapiero J, Bittoun P, Real E, et al. 2003.. Targeting of incoming retroviral Gag to the centrosome involves a direct interaction with the dynein light chain 8. . J. Cell Sci. 116::343342
    [Crossref] [Google Scholar]
  109. 109.
    St-Louis MC, Cojocariu M, Archambault D. 2004.. The molecular biology of bovine immunodeficiency virus: a comparison with other lentiviruses. . Anim. Health Res. Rev. 5::12543
    [Crossref] [Google Scholar]
  110. 110.
    Valle-Tenney R, Opazo T, Cancino J, Goff SP, Arriagada G. 2016.. Dynein regulators are important for ecotropic murine leukemia virus infection. . J. Virol. 90::6896905
    [Crossref] [Google Scholar]
  111. 111.
    Elis E, Ehrlich M, Prizan-Ravid A, Laham-Karam N, Bacharach E. 2012.. p12 tethers the murine leukemia virus pre-integration complex to mitotic chromosomes. . PLOS Pathog. 8::e1003103
    [Crossref] [Google Scholar]
  112. 112.
    Pietrantoni G, Gaete-Argel A, Herrera-Rojo D, Ibarra-Karmy R, Bustos FJ, et al. 2021.. Dynein light-chain Dynlrb2 is essential for murine leukemia virus traffic and nuclear entry. . J. Virol. 95::e0017021
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-100422-023502
Loading
/content/journals/10.1146/annurev-virology-100422-023502
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error