Once inside host cells, retroviruses generate a double-stranded DNA copy of their RNA genomes via reverse transcription inside a viral core, and this viral DNA is subsequently integrated into the genome of the host cell. Before integration can occur, the core must cross the cell cortex, be transported through the cytoplasm, and enter the nucleus. Retroviruses have evolved different mechanisms to accomplish this journey. This review examines the various mechanisms retroviruses, especially HIV-1, have evolved to commute throughout the cell. Retroviruses cross the cell cortex while modulating actin dynamics and use microtubules as roads while connecting with microtubule-associated proteins and motors to reach the nucleus. Although a clearer picture exists for HIV-1 compared with other retroviruses, there is still much to learn about how retroviruses accomplish their commute.


Article metrics loading...

Loading full text...

Full text loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error