1932

Abstract

South American ecosystems host astonishing biodiversity, with potentially great richness in viruses. However, these ecosystems have not yet been the source of any widespread, epidemic viruses. Here we explore a set of putative causes that may explain this apparent paradox. We discuss that human presence in South America is recent, beginning around 14,000 years ago; that few domestications of native species have occurred; and that successive immigration events associated with Old World virus introductions reduced the likelihood of spillovers and adaptation of local viruses into humans. Also, the diversity and ecological characteristics of vertebrate hosts might serve as protective factors. Moreover, although forest areas remained well preserved until recently, current brutal, sudden, and large-scale clear cuts through the forest have resulted in nearly no ecotones, which are essential for creating an adaptive gradient of microbes, hosts, and vectors. This may be temporarily preventing virus emergence. Nevertheless, the mid-term effect of such drastic changes in habitats and landscapes, coupled with explosive urbanization and climate changes, must not be overlooked by health authorities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100422-024648
2024-09-26
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/virology/11/1/annurev-virology-100422-024648.html?itemId=/content/journals/10.1146/annurev-virology-100422-024648&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Diamond J. 2005.. Guns, Germs and Steel: The Fate of Human Societies. New York:: Norton
    [Google Scholar]
  2. 2.
    Haffer J. 2008.. Hypotheses to explain the origin of species in Amazonia. . Braz. J. Biol. 68:(4 Suppl.):91747
    [Crossref] [Google Scholar]
  3. 3.
    Salazar A, Baldi G, Hirota M, Syktus J, McAlpine C. 2015.. Land use and land cover change impacts on the regional climate of non-Amazonian South America: a review. . Glob. Planet. Change 128::10319
    [Crossref] [Google Scholar]
  4. 4.
    Raven PH, Gereau RE, Phillipson PB, Chatelain C, Jenkins CN, Ulloa Ulloa C. 2020.. The distribution of biodiversity richness in the tropics. . Sci. Adv. 6:(37):eabc6228
    [Crossref] [Google Scholar]
  5. 5.
    Antonelli A. 2022.. The rise and fall of Neotropical biodiversity. . Bot. J. Linn. Soc. 199:(1):824
    [Crossref] [Google Scholar]
  6. 6.
    World Popul. Rev. 2024.. South America population 2024. . World Population Review. https://worldpopulationreview.com/continents/south-america-population
    [Google Scholar]
  7. 7.
    Mendez C, Santos-Marquez F. 2022.. Economic and social disparities across subnational regions of South America: a spatial convergence approach. . Comp. Econ. Stud. 64:(4):582605
    [Crossref] [Google Scholar]
  8. 8.
    Marie V, Gordon ML. 2023.. The (re-)emergence and spread of viral zoonotic disease: a perfect storm of human ingenuity and stupidity. . Viruses 15:(8):1638
    [Crossref] [Google Scholar]
  9. 9.
    Nathanson N. 2007.. Viral Pathogenesis and Immunity. Amsterdam:: Elsevier
    [Google Scholar]
  10. 10.
    Carroll D, Daszak P, Wolfe ND, Gao GF, Morel CM, et al. 2018.. The global virome project. . Science 359:(6378):87274
    [Crossref] [Google Scholar]
  11. 11.
    Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zambrana-Torrelio CM, et al. 2013.. A strategy to estimate unknown viral diversity in mammals. . mBio 4:(5):e00598-13
    [Crossref] [Google Scholar]
  12. 12.
    Grange ZL, Goldstein T, Johnson CK, Anthony S, Gilardi K, et al. 2021.. Ranking the risk of animal-to-human spillover for newly discovered viruses. . PNAS 118:(15):e2002324118
    [Crossref] [Google Scholar]
  13. 13.
    Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, et al. 2017.. Pathways to zoonotic spillover. . Nat. Rev. Microbiol. 15:(8):50210
    [Crossref] [Google Scholar]
  14. 14.
    Becker DJ, Washburne AD, Faust CL, Pulliam JRC, Mordecai EA, et al. 2019.. Dynamic and integrative approaches to understanding pathogen spillover. . Philos. Trans. R. Soc. B 374:(1782):20190014
    [Crossref] [Google Scholar]
  15. 15.
    Ellwanger JH, Fearnside PM, Ziliotto M, Valverde-Villegas JM, da Veiga ABG, et al. 2022.. Synthesizing the connections between environmental disturbances and zoonotic spillover. . An. Acad. Bras. Cienc. 94:(Suppl. 3):e20211530
    [Crossref] [Google Scholar]
  16. 16.
    Dolan PT, Whitfield ZJ, Andino R. 2018.. Mechanisms and concepts in RNA virus population dynamics and evolution. . Annu. Rev. Virol. 5::6992
    [Crossref] [Google Scholar]
  17. 17.
    Guth S, Hanley KA, Althouse BM, Boots M. 2020.. Ecological processes underlying the emergence of novel enzootic cycles: arboviruses in the neotropics as a case study. . PLOS Negl. Trop. Dis. 14:(8):e0008338
    [Crossref] [Google Scholar]
  18. 18.
    Mazur FG, Morinisi LM, Martins JO, Guerra PPB, Freire CCM. 2021.. Exploring virome diversity in public data in South America as an approach for detecting viral sources from potentially emerging viruses. . Front. Genet. 12::722857
    [Crossref] [Google Scholar]
  19. 19.
    García-Romero C, Carrillo Bilbao GA, Navarro J-C, Martin-Solano S, Saegerman C. 2023.. Arboviruses in mammals in the neotropics: a systematic review to strengthen epidemiological monitoring strategies and conservation medicine. . Viruses 15:(2):417
    [Crossref] [Google Scholar]
  20. 20.
    Holmes EC, Rambaut A, Andersen KG. 2018.. Pandemics: spend on surveillance, not prediction. . Nature 558:(7709):18082
    [Crossref] [Google Scholar]
  21. 21.
    Rosenberg R, Johansson MA, Powers AM, Miller BR. 2013.. Search strategy has influenced the discovery rate of human viruses. . PNAS 110:(34):1396164
    [Crossref] [Google Scholar]
  22. 22.
    Downs WG. 1982.. The Rockefeller Foundation virus program:. 19511971 with update to 1981. . Annu. Rev. Med. 33::129
    [Crossref] [Google Scholar]
  23. 23.
    Sarute N, Ross SR. 2017.. New World arenavirus biology. . Annu. Rev. Virol. 4::14158
    [Crossref] [Google Scholar]
  24. 24.
    Firth C, Tokarz R, Simith DB, Nunes MRT, Bhat M, et al. 2012.. Diversity and distribution of hantaviruses in South America. . J. Virol. 86:(24):1375666
    [Crossref] [Google Scholar]
  25. 25.
    Wang D. 2015.. Fruits of virus discovery: new pathogens and new experimental models. . J. Virol. 89:(3):148688
    [Crossref] [Google Scholar]
  26. 26.
    Van Brussel K, Holmes EC. 2022.. Zoonotic disease and virome diversity in bats. . Curr. Opin. Virol. 52::192202
    [Crossref] [Google Scholar]
  27. 27.
    Wallau GL, Barbier E, Tomazatos A, Schmidt-Chanasit J, Bernard E. 2023.. The virome of bats inhabiting Brazilian biomes: knowledge gaps and biases towards zoonotic viruses. . Microbiol. Spectr. 11:(1):e0407722
    [Crossref] [Google Scholar]
  28. 28.
    Salmier A, Tirera S, de Thoisy B, Franc A, Darcissac E, et al. 2017.. Virome analysis of two sympatric bat species (Desmodus rotundus and Molossus molossus) in French Guiana. . PLOS ONE 12:(11):e0186943
    [Crossref] [Google Scholar]
  29. 29.
    Fontenele RS, Lacorte C, Lamas NS, Schmidlin K, Varsani A, Ribeiro SG. 2019.. Single stranded DNA viruses associated with capybara faeces sampled in Brazil. . Viruses 11:(8):710
    [Crossref] [Google Scholar]
  30. 30.
    Tirera S, de Thoisy B, Donato D, Bouchier C, Lacoste V, et al. 2021.. The influence of habitat on viral diversity in neotropical rodent hosts. . Viruses 13:(9):1690
    [Crossref] [Google Scholar]
  31. 31.
    de Souza WM, Fumagalli MJ, de Araujo J, Sabino-Santos G Jr., Maia FGM, et al. 2018.. Discovery of novel anelloviruses in small mammals expands the host range and diversity of the Anelloviridae. . Virology 514::917
    [Crossref] [Google Scholar]
  32. 32.
    Maia LMS, de Lara Pinto AZ, de Carvalho MS, de Melo FL, Ribeiro BM, Slhessarenko RD. 2019.. Novel viruses in mosquitoes from Brazilian Pantanal. . Viruses 11:(10):957
    [Crossref] [Google Scholar]
  33. 33.
    da Silva AF, Machado LC, da Silva LMI, Dezordi FZ, Wallau GL. 2023.. Highly divergent and diverse viral community infecting sylvatic mosquitoes from Northeast Brazil. . bioRxiv 2023.06.27.546706. https://doi.org/10.1101/2023.06.27.546706
  34. 34.
    de Souza WM, Fumagalli MJ, de Oliveira Torres Carrasco A, Romeiro MF, Modha S, et al. 2018.. Viral diversity of Rhipicephalus microplus parasitizing cattle in southern Brazil. . Sci. Rep. 8:(1):16315
    [Crossref] [Google Scholar]
  35. 35.
    Orozco Orozco M, Gómez GF, Alzate JF, Isaza JP, Gutiérrez LA. 2021.. Virome analysis of three Ixodidae ticks species from Colombia: a potential strategy for discovering and surveying tick-borne viruses. . Infect. Genet. Evol. 96::105103
    [Crossref] [Google Scholar]
  36. 36.
    Treangen TJ, Schoeler G, Phillippy AM, Bergman NH, Turell MJ. 2016.. Identification and genomic analysis of a novel group C orthobunyavirus isolated from a mosquito captured near Iquitos, Peru. . PLOS Negl. Trop. Dis. 10:(4):e0004440
    [Crossref] [Google Scholar]
  37. 37.
    Tschá MK, Suzukawa AA, Rodrigues-Luiz GF, da Silva AM, Cataneo AHD, et al. 2021.. Pirahy virus: identification of a new and potential emerging arbovirus in South Brazil. . Virus Evol. 7:(2):veab105
    [Crossref] [Google Scholar]
  38. 38.
    Travassos da Rosa JF, de Souza WM, de Paula Pinheiro F, Figueiredo ML, Cardoso JF, et al. 2017.. Oropouche virus: clinical, epidemiological, and molecular aspects of a neglected Orthobunyavirus. . Am. J. Trop. Med. Hyg. 96:(5):101930
    [Crossref] [Google Scholar]
  39. 39.
    Pinheiro FP, Travassos da Rosa AP, Gomes ML, LeDuc JW, Hoch AL. 1982.. Transmission of Oropouche virus from man to hamster by the midge Culicoides paraensis. . Science 215:(4537):125153
    [Crossref] [Google Scholar]
  40. 40.
    Sakkas H, Bozidis P, Franks A, Papadopoulou C. 2018.. Oropouche fever: a review. . Viruses 10:(4):175
    [Crossref] [Google Scholar]
  41. 41.
    Pan Am. Health Organ. 2024.. Epidemiological update: Oropouche in the region of the Americas. Epidemiol. Update, Pan Am. Health Organ., Washington, DC:. https://www.paho.org/en/file/142627/download?token=-wKGke5Z
    [Google Scholar]
  42. 42.
    Acosta-Ampudia Y, Monsalve DM, Rodríguez Y, Pacheco Y, Anaya J-M, Ramírez-Santana C. 2018.. Mayaro: an emerging viral threat?. Emerg. Microbes Infect. 7:(1):163
    [Crossref] [Google Scholar]
  43. 43.
    Hozé N, Salje H, Rousset D, Fritzell C, Vanhomwegen J, et al. 2020.. Reconstructing Mayaro virus circulation in French Guiana shows frequent spillovers. . Nat. Commun. 11:(1):2842
    [Crossref] [Google Scholar]
  44. 44.
    de Thoisy B, Gardon J, Salas RA, Morvan J, Kazanji M. 2003.. Mayaro virus in wild mammals, French Guiana. . Emerg. Infect. Dis. 9:(10):132629
    [Crossref] [Google Scholar]
  45. 45.
    LeDuc JW, Pinheiro FP, Travassos da Rosa AP. 1981.. An outbreak of Mayaro virus disease in Belterra, Brazil. II. Epidemiology. . Am. J. Trop. Med. Hyg. 30:(3):68288
    [Crossref] [Google Scholar]
  46. 46.
    Milhim BHGA, Estofolete CF, da Rocha LC, Liso E, Brienze VMS, et al. 2020.. Fatal outcome of Ilheus virus in the cerebrospinal fluid of a patient diagnosed with encephalitis. . Viruses 12:(9):957
    [Crossref] [Google Scholar]
  47. 47.
    da Costa VG, Saivish MV, Lino NAB, Bittar C, de Freitas Calmon M, et al. 2022.. Clinical landscape and rate of exposure to Ilheus virus: insights from systematic review and meta-analysis. . Viruses 15:(1):92
    [Crossref] [Google Scholar]
  48. 48.
    Plante JA, Plante KS, Popov VL, Shinde DP, Widen SG, et al. 2023.. Morphologic and genetic characterization of Ilheus virus, a potential emergent flavivirus in the Americas. . Viruses 15:(1):195
    [Crossref] [Google Scholar]
  49. 49.
    de Souza Lopes O, de Abreu Sacchetta L, Coimbra TL, Pinto GH, Glasser CM. 1978.. Emergence of a new arbovirus disease in Brazil. II. Epidemiologic studies on 1975 epidemic. . Am. J. Epidemiol. 108:(5):394401
    [Crossref] [Google Scholar]
  50. 50.
    Saivish MV, Gomes da Costa V, de Lima Menezes G, Alves da Silva R, Dutra da Silva GC, et al. 2021.. Rocio virus: an updated view on an elusive flavivirus. . Viruses 13:(11):2293
    [Crossref] [Google Scholar]
  51. 51.
    de Souza Lopes O, de Abreu Sacchetta L, Francy DB, Jakob WL, Calisher CH. 1981.. Emergence of a new arbovirus disease in Brazil. III. Isolation of Rocio virus from Psorophora Ferox (Humboldt, 1819). . Am. J. Epidemiol. 113:(2):12225
    [Crossref] [Google Scholar]
  52. 52.
    Ferreira IB, Pereira LE, Rocco IM, Marti AT, de Souza LT, Iversson LB. 1994.. Surveillance of arbovirus infections in the Atlantic Forest Region, State of São Paulo, Brazil. I. Detection of hemagglutination-inhibiting antibodies in wild birds between 1978 and 1990. . Rev. Inst. Med. Trop. Sao Paulo 36:(3):26574
    [Crossref] [Google Scholar]
  53. 53.
    Silva JR, Romeiro MF, de Souza WM, Munhoz TD, Borges GP, et al. 2014.. A Saint Louis encephalitis and Rocio virus serosurvey in Brazilian horses. . Rev. Soc. Bras. Med. Trop. 47:(4):41417
    [Crossref] [Google Scholar]
  54. 54.
    Zaid A, Burt FJ, Liu X, Poo YS, Zandi K, et al. 2021.. Arthritogenic alphaviruses: epidemiological and clinical perspective on emerging arboviruses. . Lancet Infect. Dis. 21:(5):e12333
    [Crossref] [Google Scholar]
  55. 55.
    Barrera R, Ferro C, Navarro J-C, Freier J, Liria J, et al. 2002.. Contrasting sylvatic foci of Venezuelan equine encephalitis virus in northern South America. . Am. J. Trop. Med. Hyg. 67:(3):32434
    [Crossref] [Google Scholar]
  56. 56.
    Guzmán-Terán C, Calderón-Rangel A, Rodriguez-Morales A, Mattar S. 2020.. Venezuelan equine encephalitis virus: The problem is not over for tropical America. . Ann. Clin. Microbiol. Antimicrob. 19:(1):19
    [Crossref] [Google Scholar]
  57. 57.
    Weaver SC, Ferro C, Barrera R, Boshell J, Navarro J-C. 2004.. Venezuelan equine encephalitis. . Annu. Rev. Entomol. 49::14174
    [Crossref] [Google Scholar]
  58. 58.
    Rivas F, Diaz LA, Cardenas VM, Daza E, Bruzon L, et al. 1997.. Epidemic Venezuelan equine encephalitis in La Guajira, Colombia, 1995. . J. Infect. Dis. 175:(4):82832
    [Crossref] [Google Scholar]
  59. 59.
    Luis AD, Hayman DTS, O'Shea TJ, Cryan PM, Gilbert AT, et al. 2013.. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special?. Proc. Biol. Sci. 280:(1756):20122753
    [Google Scholar]
  60. 60.
    Kuhn JH, Schmaljohn CS. 2023.. A brief history of bunyaviral family. . Diseases 11:(1):38
    [Crossref] [Google Scholar]
  61. 61.
    Guo W-P, Lin X-D, Wang W, Tian J-H, Cong M-L, et al. 2013.. Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents. . PLOS Pathog. 9:(2):e1003159
    [Crossref] [Google Scholar]
  62. 62.
    Shi M, Lin X-D, Chen X, Tian J-H, Chen L-J, et al. 2018.. The evolutionary history of vertebrate RNA viruses. . Nature 556:(7700):197202
    [Crossref] [Google Scholar]
  63. 63.
    Geoghegan JL, Di Giallonardo F, Wille M, Ortiz-Baez AS, Costa VA, et al. 2021.. Virome composition in marine fish revealed by meta-transcriptomics. . Virus Evol. 7:(1):veab005
    [Crossref] [Google Scholar]
  64. 64.
    Harding EF, Russo AG, Yan GJH, Mercer LK, White PA. 2022.. Revealing the uncharacterised diversity of amphibian and reptile viruses. . ISME Commun. 2:(1):95
    [Crossref] [Google Scholar]
  65. 65.
    Pan Am. Health Organ. 2013.. Epidemiological bulletin: Hantavirus Pulmonary Syndrome (HPS). Epidemiol. Update, Pan Am. Health Organ., Washington, DC:. https://www3.paho.org/hq/dmdocuments/2013/17-October-2013-Hantavirus-Epi-Alert.pdf?ua=1
    [Google Scholar]
  66. 66.
    Vera-Otarola J, Solis L, Lowy F, Olguín V, Angulo J, et al. 2020.. The Andes orthohantavirus NSs protein antagonizes the type I interferon response by inhibiting MAVS signaling. . J. Virol. 94:(13):e00454-20
    [Crossref] [Google Scholar]
  67. 67.
    Bellomo CM, Alonso DO, Pérez-Sautu U, Prieto K, Kehl S, et al. 2023.. Andes virus genome mutations that are likely associated with animal model attenuation and human person-to-person transmission. . mSphere 8:(3):e0001823
    [Crossref] [Google Scholar]
  68. 68.
    Martínez VP, Di Paola N, Alonso DO, Pérez-Sautu U, Bellomo CM, et al. 2020.. “ Super-spreaders” and person-to-person transmission of Andes virus in Argentina. . N. Engl. J. Med. 383:(23):223041
    [Crossref] [Google Scholar]
  69. 69.
    Charrel RN, de Lamballerie X. 2010.. Zoonotic aspects of arenavirus infections. . Vet. Microbiol. 140:(3–4):21320
    [Crossref] [Google Scholar]
  70. 70.
    Holmes EC. 2022.. The ecology of viral emergence. . Annu. Rev. Virol. 9::17392
    [Crossref] [Google Scholar]
  71. 71.
    Wolfe ND, Dunavan CP, Diamond J. 2007.. Origins of major human infectious diseases. . Nature 447:(7142):27983
    [Crossref] [Google Scholar]
  72. 72.
    Halsby K, Twomey DF, Featherstone C, Foster A, Walsh A, et al. 2017.. Zoonotic diseases in South American camelids in England and Wales. . Epidemiol. Infect. 145:(5):103743
    [Crossref] [Google Scholar]
  73. 73.
    Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. 2017.. Host and viral traits predict zoonotic spillover from mammals. . Nature 546:(7660):64650
    [Crossref] [Google Scholar]
  74. 74.
    Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, et al. 2011.. A molecular phylogeny of living primates. . PLOS Genet. 7:(3):e1001342
    [Crossref] [Google Scholar]
  75. 75.
    Rose NH, Badolo A, Sylla M, Akorli J, Otoo S, et al. 2023.. Dating the origin and spread of specialization on human hosts in mosquitoes. . eLife 12::e83524
    [Crossref] [Google Scholar]
  76. 76.
    Rose NH, Sylla M, Badolo A, Lutomiah J, Ayala D, et al. 2020.. Climate and urbanization drive mosquito preference for humans. . Curr. Biol. 30:(18):357079.e6
    [Crossref] [Google Scholar]
  77. 77.
    Powell JR, Gloria-Soria A, Kotsakiozi P. 2018.. Recent history of vector genomics and epidemiology records. . Bioscience 68:(11):85460
    [Crossref] [Google Scholar]
  78. 78.
    Brathwaite Dick O, San Martín JL, Montoya RH, del Diego J, Zambrano B, Dayan GH. 2012.. The history of dengue outbreaks in the Americas. . Am. J. Trop. Med. Hyg. 87:(4):58493
    [Crossref] [Google Scholar]
  79. 79.
    Salomón OD, Rojas de Arias A. 2022.. The second coming of urban yellow fever in the Americas: looking the past to see the future. . An. Acad. Bras. Cienc. 94:(2):e20201252
    [Crossref] [Google Scholar]
  80. 80.
    Allicock OM, Lemey P, Tatem AJ, Pybus OG, Bennett SN, et al. 2012.. Phylogeography and population dynamics of dengue viruses in the Americas. . Mol. Biol. Evol. 29:(6):153343
    [Crossref] [Google Scholar]
  81. 81.
    Belli A, Arostegui J, Garcia J, Aguilar C, Lugo E, et al. 2015.. Introduction and establishment of Aedes albopictus (Diptera: Culicidae) in Managua, Nicaragua. . J. Med. Entomol. 52:(4):71318
    [Crossref] [Google Scholar]
  82. 82.
    Paixão ES, Teixeira MG, Rodrigues LC. 2018.. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. . BMJ Glob. Health 3:(Suppl. 1):e000530
    [Crossref] [Google Scholar]
  83. 83.
    Eby P, Peel AJ, Hoegh A, Madden W, Giles JR, et al. 2023.. Pathogen spillover driven by rapid changes in bat ecology. . Nature 613:(7943):34044
    [Crossref] [Google Scholar]
  84. 84.
    Wang B, Thurmond S, Zhou K, Sánchez-Aparicio MT, Fang J, et al. 2020.. Structural basis for STAT2 suppression by flavivirus NS5. . Nat. Struct. Mol. Biol. 27:(10):87585
    [Crossref] [Google Scholar]
  85. 85.
    Ashour J, Morrison J, Laurent-Rolle M, Belicha-Villanueva A, Plumlee CR, et al. 2010.. Mouse STAT2 restricts early dengue virus replication. . Cell Host Microbe 8:(5):41021
    [Crossref] [Google Scholar]
  86. 86.
    Perkus ME, Goebel SJ, Davis SW, Johnson GP, Limbach K, et al. 1990.. Vaccinia virus host range genes. . Virology 179:(1):27686
    [Crossref] [Google Scholar]
  87. 87.
    Oguiura N, Spehner D, Drillien R. 1993.. Detection of a protein encoded by the vaccinia virus C7L open reading frame and study of its effect on virus multiplication in different cell lines. . J. Gen. Virol. 74:(7):140913
    [Crossref] [Google Scholar]
  88. 88.
    Shisler JL, Jin X-L. 2004.. The vaccinia virus K1L gene product inhibits host NF-κB activation by preventing IκBα degradation. . J. Virol. 78:(7):355360
    [Crossref] [Google Scholar]
  89. 89.
    Willis KL, Langland JO, Shisler JL. 2011.. Viral double-stranded RNAs from vaccinia virus early or intermediate gene transcripts possess PKR activating function, resulting in NF-κB activation, when the K1 protein is absent or mutated. . J. Biol. Chem. 286:(10):776578
    [Crossref] [Google Scholar]
  90. 90.
    Meng X, Schoggins J, Rose L, Cao J, Ploss A, et al. 2012.. C7L family of poxvirus host range genes inhibits antiviral activities induced by type I interferons and interferon regulatory factor 1. . J. Virol. 86:(8):453847
    [Crossref] [Google Scholar]
  91. 91.
    Sivan G, Glushakow-Smith SG, Katsafanas GC, Americo JL, Moss B. 2018.. Human host range restriction of the vaccinia virus C7/K1 double deletion mutant is mediated by an atypical mode of translation inhibition. . J. Virol. 92::e01329-18
    [Crossref] [Google Scholar]
  92. 92.
    Tenthorey JL, Emerman M, Malik HS. 2022.. Evolutionary landscapes of host-virus arms races. . Annu. Rev. Immunol. 40::27194
    [Crossref] [Google Scholar]
  93. 93.
    Walker RS, Sattenspiel L, Hill KR. 2015.. Mortality from contact-related epidemics among indigenous populations in Greater Amazonia. . Sci. Rep. 5::14032
    [Crossref] [Google Scholar]
  94. 94.
    Daugherty MD, Malik HS. 2012.. Rules of engagement: molecular insights from host-virus arms races. . Annu. Rev. Genet. 46::677700
    [Crossref] [Google Scholar]
  95. 95.
    Burnet FM. 1978.. Natural History of Infectious Disease. Cambridge, UK:: Cambridge Univ. Press. , 4th ed..
    [Google Scholar]
  96. 96.
    Hay AJ, Gregory V, Douglas AR, Lin YP. 2001.. The evolution of human influenza viruses. . Philos. Trans. R. Soc. B 356:( 1416.):186170
    [Crossref] [Google Scholar]
  97. 97.
    Jagtap S, Pattabiraman C, Sankaradoss A, Krishna S, Roy R. 2023.. Evolutionary dynamics of dengue virus in India. . PLOS Pathog. 19:(4):e1010862
    [Crossref] [Google Scholar]
  98. 98.
    Katzelnick LC, Fonville JM, Gromowski GD, Bustos Arriaga J, Green A, et al. 2015.. Dengue viruses cluster antigenically but not as discrete serotypes. . Science 349:(6254):133843
    [Crossref] [Google Scholar]
  99. 99.
    Katzelnick LC, Coello Escoto A, Huang AT, Garcia-Carreras B, Chowdhury N, et al. 2021.. Antigenic evolution of dengue viruses over 20 years. . Science 374:(6570):9991004
    [Crossref] [Google Scholar]
  100. 100.
    Lorenz C, Chiaravalloti-Neto F. 2022.. Why are there no human West Nile virus outbreaks in South America?. Lancet Reg. Health Am. 12::100276
    [Google Scholar]
  101. 101.
    Martins KA, Gregory MK, Valdez SM, Sprague TR, Encinales L, et al. 2019.. Neutralizing antibodies from convalescent chikungunya virus patients can cross-neutralize Mayaro and Una viruses. . Am. J. Trop. Med. Hyg. 100:(6):154144
    [Crossref] [Google Scholar]
  102. 102.
    Katzelnick LC, Narvaez C, Arguello S, Lopez Mercado B, Collado D, et al. 2020.. Zika virus infection enhances future risk of severe dengue disease. . Science 369:(6507):112328
    [Crossref] [Google Scholar]
  103. 103.
    Estofolete CF, Versiani AF, Dourado FS, Milhim BHGA, Pacca CC, et al. 2023.. Influence of previous Zika virus infection on acute dengue episode. . PLOS Negl. Trop. Dis. 17:(11):e0011710
    [Crossref] [Google Scholar]
  104. 104.
    Perez F, Llau A, Gutierrez G, Bezerra H, Coelho G, et al. 2019.. The decline of dengue in the Americas in 2017: discussion of multiple hypotheses. . Trop. Med. Int. Health 24:(4):44253
    [Crossref] [Google Scholar]
  105. 105.
    Olmo RP, Todjro YMH, Aguiar ERGR, de Almeida JPP, Ferreira FV, et al. 2023.. Mosquito vector competence for dengue is modulated by insect-specific viruses. . Nat. Microbiol. 8:(1):13549
    [Crossref] [Google Scholar]
  106. 106.
    Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, et al. 2008.. Global trends in emerging infectious diseases. . Nature 451:(7181):99093
    [Crossref] [Google Scholar]
  107. 107.
    Dunn RR, Davies TJ, Harris NC, Gavin MC. 2010.. Global drivers of human pathogen richness and prevalence. . Proc. Biol. Sci. 277:(1694):258795
    [Google Scholar]
  108. 108.
    Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ. 2005.. A molecular phylogeny for bats illuminates biogeography and the fossil record. . Science 307:(5709):58084
    [Crossref] [Google Scholar]
  109. 109.
    D'Elía G, Fabre P-H, Lessa EP. 2019.. Rodent systematics in an age of discovery: recent advances and prospects. . J. Mammal. 100:(3):85271
    [Crossref] [Google Scholar]
  110. 110.
    Baker ML, Schountz T, Wang L-F. 2013.. Antiviral immune responses of bats: a review. . Zoonoses Public Health 60:(1):10416
    [Crossref] [Google Scholar]
  111. 111.
    Serra-Cobo J, López-Roig M. 2017.. Bats and emerging infections: an ecological and virological puzzle. . Adv. Exp. Med. Biol. 972::3548
    [Crossref] [Google Scholar]
  112. 112.
    Carrillo-Bilbao G, Martin-Solano S, Saegerman C. 2021.. Zoonotic blood-borne pathogens in non-human primates in the Neotropical region: a systematic review. . Pathogens 10:(8):1009
    [Crossref] [Google Scholar]
  113. 113.
    Oliveira A, Santos R. 2023.. Infectious diseases of neotropical primates. . Braz. J. Vet. Pathol. 16:(1):134
    [Crossref] [Google Scholar]
  114. 114.
    George DB, Webb CT, Farnsworth ML, O'Shea TJ, Bowen RA, et al. 2011.. Host and viral ecology determine bat rabies seasonality and maintenance. . PNAS 108:(25):1020813
    [Crossref] [Google Scholar]
  115. 115.
    van Dijk JG, Verhagen JH, Wille M, Waldenström J. 2018.. Host and virus ecology as determinants of influenza A virus transmission in wild birds. . Curr. Opin. Virol. 28::2636
    [Crossref] [Google Scholar]
  116. 116.
    Soberón J, Ceballos G. 2011.. Species richness and range size of the terrestrial mammals of the world: biological signal within mathematical constraints. . PLOS ONE 6:(5):e19359
    [Crossref] [Google Scholar]
  117. 117.
    Soria CD, Pacifici M, Di Marco M, Stephen SM, Rondinini C. 2021.. COMBINE: a coalesced mammal database of intrinsic and extrinsic traits. . Ecology 102:(6):e03344
    [Crossref] [Google Scholar]
  118. 118.
    Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X, et al. 2017.. Global patterns in coronavirus diversity. . Virus Evol. 3:(1):vex012
    [Crossref] [Google Scholar]
  119. 119.
    Ostfeld RS, Keesing F. 2012.. Effects of host diversity on infectious disease. . Annu. Rev. Ecol. Evol. Syst. 43::15782
    [Crossref] [Google Scholar]
  120. 120.
    Johnson PTJ, Ostfeld RS, Keesing F. 2015.. Frontiers in research on biodiversity and disease. . Ecol. Lett. 18:(10):111933
    [Crossref] [Google Scholar]
  121. 121.
    Johnson PTJ, Calhoun DM, Riepe T, McDevitt-Galles T, Koprivnikar J. 2019.. Community disassembly and disease: Realistic—but not randomized—biodiversity losses enhance parasite transmission. . Proc. Biol. Sci. 2861902::20190260
    [Google Scholar]
  122. 122.
    García-Peña GE, Garchitorena A, Carolan K, Canard E, Prieur-Richard A-H, et al. 2016.. Niche-based host extinction increases prevalence of an environmentally acquired pathogen. . Oikos 125:(10):150815
    [Crossref] [Google Scholar]
  123. 123.
    Dizney LJ, Ruedas LA. 2009.. Increased host species diversity and decreased prevalence of Sin Nombre virus. . Emerg. Infect. Dis. 15:(7):101218
    [Crossref] [Google Scholar]
  124. 124.
    Vadell MV, Gómez Villafañe IE, Carbajo AE. 2020.. Hantavirus infection and biodiversity in the Americas. . Oecologia 192:(1):16977
    [Crossref] [Google Scholar]
  125. 125.
    Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE. 2012.. Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. . PLOS Pathog. 8:(4):e1002588
    [Crossref] [Google Scholar]
  126. 126.
    Park AW, Cleveland CA, Dallas TA, Corn JL. 2016.. Vector species richness increases haemorrhagic disease prevalence through functional diversity modulating the duration of seasonal transmission. . Parasitology 143:(7):87479
    [Crossref] [Google Scholar]
  127. 127.
    Roche B, Rohani P, Dobson AP, Guégan J-F. 2013.. The impact of community organization on vector-borne pathogens. . Am. Nat. 181:(1):111
    [Crossref] [Google Scholar]
  128. 128.
    Kocher A, Cornuault J, Gantier J-C, Manzi S, Chavy A, et al. 2023.. Biodiversity and vector-borne diseases: Host dilution and vector amplification occur simultaneously for Amazonian leishmaniases. . Mol. Ecol. 32:(8):181731
    [Crossref] [Google Scholar]
  129. 129.
    Mu H, Li X, Wen Y, Huang J, Du P, et al. 2022.. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. . Sci. Data 9:(1):176
    [Crossref] [Google Scholar]
  130. 130.
    Power GM, Vaughan AM, Qiao L, Sanchez Clemente N, Pescarini JM, et al. 2022.. Socioeconomic risk markers of arthropod-borne virus (arbovirus) infections: a systematic literature review and meta-analysis. . BMJ Glob. Health 7:(4):e007735
    [Crossref] [Google Scholar]
  131. 131.
    Magouras I, Brookes VJ, Jori F, Martin A, Pfeiffer DU, Dürr S. 2020.. Emerging zoonotic diseases: Should we rethink the animal–human interface?. Front. Vet. Sci. 7::582743
    [Crossref] [Google Scholar]
  132. 132.
    Guégan J-F, Ayouba A, Cappelle J, de Thoisy B. 2020.. Forests and emerging infectious diseases: unleashing the beast within. . Environ. Res. Lett. 15:(8):083007
    [Crossref] [Google Scholar]
  133. 133.
    Rohr JR, Civitello DJ, Halliday FW, Hudson PJ, Lafferty KD, et al. 2020.. Towards common ground in the biodiversity–disease debate. . Nat. Ecol. Evol. 4:(1):2433
    [Crossref] [Google Scholar]
  134. 134.
    Fischer R, Taubert F, Müller MS, Groeneveld J, Lehmann S, et al. 2021.. Accelerated forest fragmentation leads to critical increase in tropical forest edge area. . Sci. Adv. 7:(37):eabg7012
    [Crossref] [Google Scholar]
  135. 135.
    Butler RA. 2021.. Amazon destruction. . 2021.. WorldRainforests.com. https://worldrainforests.com/amazon/amazon_destruction.html
    [Google Scholar]
  136. 136.
    Sadeghieh T, Sargeant JM, Greer AL, Berke O, Dueymes G, et al. 2021.. Yellow fever virus outbreak in Brazil under current and future climate. . Infect. Dis. Model. 6::66477
    [Google Scholar]
  137. 137.
    Giovanetti M, Pinotti F, Zanluca C, Fonseca V, Nakase T, et al. 2023.. Genomic epidemiology unveils the dynamics and spatial corridor behind the yellow fever virus outbreak in Southern Brazil. . Sci. Adv. 9:(35):eadg9204
    [Crossref] [Google Scholar]
  138. 138.
    Oladipo HJ, Tajudeen YA, Oladunjoye IO, Mustapha ST, Sodiq YI, et al. 2023.. Adopting a statistical, mechanistic, integrated surveillance, thermal biology, and holistic (SMITH) approach for arbovirus control in a changing climate: a review of evidence. . Challenges 14:(1):8
    [Crossref] [Google Scholar]
  139. 139.
    Delrieu M, Martinet J-P, O'Connor O, Viennet E, Menkes C, et al. 2023.. Temperature and transmission of chikungunya, dengue, and Zika viruses: a systematic review of experimental studies on Aedes aegypti and Aedes albopictus. . Curr. Res. Parasitol. Vector-Borne Dis. 4::100139
    [Crossref] [Google Scholar]
  140. 140.
    Barcellos C, Lowe R. 2014.. Expansion of the dengue transmission area in Brazil: the role of climate and cities. . Trop. Med. Int. Health 19:(2):15968
    [Crossref] [Google Scholar]
  141. 141.
    Loehman RA, Elias J, Douglass RJ, Kuenzi AJ, Mills JN, Wagoner K. 2012.. Prediction of Peromyscus maniculatus (deer mouse) population dynamics in Montana, USA, using satellite-driven vegetation productivity and weather data. . J. Wildl. Dis. 48:(2):34860
    [Crossref] [Google Scholar]
  142. 142.
    Andreo V, Neteler M, Rocchini D, Provensal C, Levis S, et al. 2014.. Estimating hantavirus risk in southern Argentina: a GIS-based approach combining human cases and host distribution. . Viruses 6:(1):20122
    [Crossref] [Google Scholar]
  143. 143.
    Harvey E, Holmes EC. 2022.. Diversity and evolution of the animal virome. . Nat. Rev. Microbiol. 20:(6):32134
    [Crossref] [Google Scholar]
  144. 144.
    Morse SS, Mazet JAK, Woolhouse M, Parrish CR, Carroll D, et al. 2012.. Prediction and prevention of the next pandemic zoonosis. . Lancet 380:(9857):195665
    [Crossref] [Google Scholar]
  145. 145.
    Leite JA, Vicari A, Perez E, Siqueira M, Resende P, et al. 2022.. Implementation of a COVID-19 genomic surveillance regional network for Latin America and Caribbean region. . PLOS ONE 17:(3):e0252526
    [Crossref] [Google Scholar]
  146. 146.
    Minist. Salud, Argent. 2023.. Detección de casos de encefalitis equina del oeste en equinos en Corrientes y Santa Fe y casos sospechosos en estudio en diversas provincias. Alerta SE48/2023, Repúb. Argent. https://bancos.salud.gob.ar/sites/default/files/2023-11/alerta-encefalitis-equina-del-oeste_0.pdf
    [Google Scholar]
  147. 147.
    Sist. Nac. Emerg. Urug. 2023.. Encefalomielitis Equina del Oeste en Uruguay. . Sistema Nacional de Emergencias. https://www.gub.uy/sistema-nacional-emergencias/comunicacion/noticias/encefalomielitis-equina-del-oeste-uruguay
    [Google Scholar]
  148. 148.
    Destoumieux-Garzón D, Mavingui P, Boetsch G, Boissier J, Darriet F, et al. 2018.. The One Health concept: 10 years old and a long road ahead. . Front. Vet. Sci. 5::14
    [Crossref] [Google Scholar]
  149. 149.
    Wells K, Morand S, Wardeh M, Baylis M. 2020.. Distinct spread of DNA and RNA viruses among mammals amid prominent role of domestic species. . Glob. Ecol. Biogeogr. 29:(3):47081
    [Crossref] [Google Scholar]
  150. 150.
    Marklewitz M, Junglen S. 2019.. Evolutionary and ecological insights into the emergence of arthropod-borne viruses. . Acta Trop. 190::5258
    [Crossref] [Google Scholar]
  151. 151.
    Lovejoy TE, Nobre C. 2018.. Amazon tipping point. . Sci. Adv. 4:(2):eaat2340
    [Crossref] [Google Scholar]
  152. 152.
    Dakos V, Matthews B, Hendry AP, Levine J, Loeuille N, et al. 2019.. Ecosystem tipping points in an evolving world. . Nat. Ecol. Evol. 3:(3):35562
    [Crossref] [Google Scholar]
  153. 153.
    Int. Comm. Taxon. Viruses. 2023.. Virus Metadata Resource April 2023. https://ictv.global/filebrowser/download/12029
    [Google Scholar]
  154. 154.
    Vancutsem C, Achard F, Pekel JF, Vieilledent G, Carboni S, et al. 2021.. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. . Science Adv. 7:(10):eabe1603
    [Crossref] [Google Scholar]
  155. 155.
    Jenkins CN, Pimm SL, Joppa LN. 2013.. Global patterns of terrestrial vertebrate diversity and conservation. . PNAS 110:(28):e260210
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-100422-024648
Loading
/content/journals/10.1146/annurev-virology-100422-024648
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error