1932

Abstract

The negative effects of potyvirus diseases on the agricultural industry are extensive and global. Understanding how protein-protein interactions contribute to potyviral infections is imperative to developing resistant varieties that help counter the threat potyviruses pose. While many protein-protein interactions have been reported, only a fraction are essential for potyviral infection. Accumulating evidence demonstrates that potyviral infection processes are interconnected. For instance, the interaction between the eukaryotic initiation factor 4E (eIF4E) and viral protein genome-linked (VPg) is crucial for both viral translation and protecting viral RNA (vRNA). Additionally, recent evidence for open reading frames on the reverse-sense vRNA and for nonequimolar expression of viral proteins has challenged the previous polyprotein expression model. These discoveries will surely reveal more about the potyviral protein interactome. In this review, we present a synthesis of the potyviral infection cycle and discuss influential past discoveries and recent work on protein-protein interactions in various infection processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100422-034124
2024-09-26
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/virology/11/1/annurev-virology-100422-034124.html?itemId=/content/journals/10.1146/annurev-virology-100422-034124&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Inoue-Nagata AK, Jordan R, Kreuze J, Li F, López-Moya JJ, et al. 2022.. ICTV virus taxonomy profile: Potyviridae 2022. . J. Gen. Virol. 103:(5):001738
    [Crossref] [Google Scholar]
  2. 2.
    Moury B, Desbiez C. 2020.. Host range evolution of potyviruses: a global phylogenetic analysis. . Viruses 12:(1):111
    [Crossref] [Google Scholar]
  3. 3.
    Gong P, Shen Q, Zhang M, Qiao R, Jiang J, et al. 2023.. Plant and animal positive-sense single-stranded RNA viruses encode small proteins important for viral infection in their negative-sense strand. . Mol. Plant 16:(11):1794810
    [Crossref] [Google Scholar]
  4. 4.
    Martínez F, Carrasco JL, Toft C, Hillung J, Giménez-Santamarina S, et al. 2023. A binary interaction map between turnip mosaic virus and Arabidopsis thaliana proteomes. . Commun. Biol. 6:(1):28
    [Crossref] [Google Scholar]
  5. 5.
    Wei T, Huang T-S, McNeil J, Laliberté J-F, Hong J, et al. 2010.. Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication. . J. Virol. 84:(2):799809
    [Crossref] [Google Scholar]
  6. 6.
    Laliberté J-F, Sanfaçon H. 2010.. Cellular remodeling during plant virus infection. . Annu. Rev. Phytopathol. 48::6991
    [Crossref] [Google Scholar]
  7. 7.
    Schaad MC, Jensen PE, Carrington JC. 1997.. Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. . EMBO J. 16:(13):404959
    [Crossref] [Google Scholar]
  8. 8.
    Lõhmus A, Varjosalo M, Mäkinen K. 2016.. Protein composition of 6K2-induced membrane structures formed during Potato virus A infection. . Mol. Plant Pathol. 17:(6):94358
    [Crossref] [Google Scholar]
  9. 9.
    Cotton S, Grangeon R, Thivierge K, Mathieu I, Ide C, et al. 2009.. Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. . J. Virol. 83:(20):1046071
    [Crossref] [Google Scholar]
  10. 10.
    Grangeon R, Cotton S, Laliberté J-F. 2010.. A model for the biogenesis of turnip mosaic virus replication factories. . Commun. Integr. Biol. 3:(4):36365
    [Crossref] [Google Scholar]
  11. 11.
    Zilian E, Maiss E. 2011.. Detection of plum pox potyviral protein–protein interactions in planta using an optimized mRFP-based bimolecular fluorescence complementation system. . J. Gen. Virol. 92:(12):271123
    [Crossref] [Google Scholar]
  12. 12.
    Grangeon R, Agbeci M, Chen J, Grondin G, Zheng H, Laliberté J-F. 2012.. Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection. . J. Virol. 86:(17):925565
    [Crossref] [Google Scholar]
  13. 13.
    Wei T, Wang A. 2008.. Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. . J. Virol. 82:(24):1225264
    [Crossref] [Google Scholar]
  14. 14.
    Jiang J, Patarroyo C, Garcia Cabanillas D, Zheng H, Laliberté J-F. 2015.. The vesicle-forming 6K2 protein of turnip mosaic virus interacts with the COPII coatomer Sec24a for viral systemic infection. . J. Virol. 89:(13):6695710
    [Crossref] [Google Scholar]
  15. 15.
    Wan J, Basu K, Mui J, Vali H, Zheng H, Laliberté J-F. 2015.. Ultrastructural characterization of turnip mosaic virus-induced cellular rearrangements reveals membrane-bound viral particles accumulating in vacuoles. . J. Virol. 89:(24):1244156
    [Crossref] [Google Scholar]
  16. 16.
    Agbeci M, Grangeon R, Nelson RS, Zheng H, Laliberté J-F. 2013.. Contribution of host intracellular transport machineries to intercellular movement of turnip mosaic virus. . PLOS Pathog. 9:(10):e1003683
    [Crossref] [Google Scholar]
  17. 17.
    Cabanillas DG, Jiang J, Movahed N, Germain H, Yamaji Y, et al. 2018.. Turnip mosaic virus uses the SNARE protein VTI11 in an unconventional route for replication vesicle trafficking. . Plant Cell 30:(10):2594615
    [Crossref] [Google Scholar]
  18. 18.
    Wu G, Jia Z, Ding K, Zheng H, Lu Y, et al. 2022.. Turnip mosaic virus co-opts the vacuolar sorting receptor VSR4 to promote viral genome replication in plants by targeting viral replication vesicles to the endosome. . PLOS Pathog. 18:(1):e1010257
    [Crossref] [Google Scholar]
  19. 19.
    Wei T, Zhang C, Hou X, Sanfaçon H, Wang A. 2013.. The SNARE protein Syp71 is essential for turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. . PLOS Pathog. 9:(5):e1003378
    [Crossref] [Google Scholar]
  20. 20.
    Wu G, Cui X, Dai Z, He R, Li Y, et al. 2020.. A plant RNA virus hijacks endocytic proteins to establish its infection in plants. . Plant J. 101:(2):384400
    [Crossref] [Google Scholar]
  21. 21.
    Wu G, Cui X, Chen H, Renaud JB, Yu K, et al. 2018.. Dynamin-like proteins of endocytosis in plants are coopted by potyviruses to enhance virus infection. . J. Virol. 92:(23):e01320-18
    [Google Scholar]
  22. 22.
    Bednarek SY, Backues SK. 2010.. Plant dynamin-related protein families DRP1 and DRP2 in plant development. . Biochem. Soc. Trans. 38:(3):797806
    [Crossref] [Google Scholar]
  23. 23.
    Geng C, Yan Z-Y, Cheng D-J, Liu J, Tian Y-P, et al. 2017.. Tobacco vein banding mosaic virus 6K2 protein hijacks NbPsbO1 for virus replication. . Sci. Rep. 7::43455
    [Crossref] [Google Scholar]
  24. 24.
    Del Toro F, Fernández FT, Tilsner J, Wright KM, Tenllado F, et al. 2014.. Potato virus Y HCPro localization at distinct, dynamically related and environment-influenced structures in the cell cytoplasm. . Mol. Plant-Microbe Interact. 27:(12):133143
    [Crossref] [Google Scholar]
  25. 25.
    Hafrén A, Lõhmus A, Mäkinen K. 2015.. Formation of Potato virus A-induced RNA granules and viral translation are interrelated processes required for optimal virus accumulation. . PLOS Pathog. 11:(12):e1005314
    [Crossref] [Google Scholar]
  26. 26.
    Cheng Y-Q, Liu Z-M, Xu J, Zhou T, Wang M, et al. 2008.. HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. . J. Gen. Virol. 89:(Part 8):204654
    [Crossref] [Google Scholar]
  27. 27.
    Kumar S, Karmakar R, Gupta I, Patel AK. 2020.. Interaction of potyvirus helper component-proteinase (HcPro) with RuBisCO and nucleosome in viral infections of plants. . Plant Physiol. Biochem. 151::31322
    [Crossref] [Google Scholar]
  28. 28.
    Jin Y, Ma D, Dong J, Li D, Deng C, et al. 2007.. The HC-Pro protein of Potato virus Y interacts with NtMinD of tobacco. . Mol. Plant-Microbe Interact. 20:(12):150511
    [Crossref] [Google Scholar]
  29. 29.
    Tu Y, Zhang Z, Li D, Li H, Dong J, Wang T. 2015.. Potato virus Y HC-Pro reduces the ATPase activity of NtMinD, which results in enlarged chloroplasts in HC-Pro transgenic tobacco. . PLOS ONE 10:(8):e0136210
    [Crossref] [Google Scholar]
  30. 30.
    Feki S, Loukili MJ, Triki-Marrakchi R, Karimova G, Old I, et al. 2005.. Interaction between tobacco ribulose-l,5-biphosphate carboxylase/oxygenase large subunit (RubisCO-LSU) and the PVY coat protein (PVY-CP). . Eur. J. Plant Pathol. 112:(3):22134
    [Crossref] [Google Scholar]
  31. 31.
    Lin L, Luo Z, Yan F, Lu Y, Zheng H, Chen J. 2011.. Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants. . Virus Genes 43:(1):9092
    [Crossref] [Google Scholar]
  32. 32.
    Li H, Ma D, Jin Y, Tu Y, Liu L, et al. 2015.. Helper component-proteinase enhances the activity of 1-deoxy-D-xylulose-5-phosphate synthase and promotes the biosynthesis of plastidic isoprenoids in Potato virus Y-infected tobacco. . Plant Cell Environ. 38:(10):202334
    [Crossref] [Google Scholar]
  33. 33.
    Tu Y, Jin Y, Ma D, Li H, Zhang Z, et al. 2015.. Interaction between PVY HC-Pro and the NtCF1β-subunit reduces the amount of chloroplast ATP synthase in virus-infected tobacco. . Sci. Rep. 5:(1):15605
    [Crossref] [Google Scholar]
  34. 34.
    Anindya R, Chittori S, Savithri HS. 2005.. Tyrosine 66 of Pepper vein banding virus genome-linked protein is uridylylated by RNA-dependent RNA polymerase. . Virology 336:(2):15462
    [Crossref] [Google Scholar]
  35. 35.
    Puustinen P, Mäkinen K. 2004.. Uridylylation of the potyvirus VPg by viral replicase NIb correlates with the nucleotide binding capacity of VPg. . J. Biol. Chem. 279:(37):3810310
    [Crossref] [Google Scholar]
  36. 36.
    Haldeman-Cahill R, Daròs JA, Carrington JC. 1998.. Secondary structures in the capsid protein coding sequence and 3′ nontranslated region involved in amplification of the tobacco etch virus genome. . J. Virol. 72:(5):407279
    [Crossref] [Google Scholar]
  37. 37.
    Daròs J-A, Schaad MC, Carrington JC. 1999.. Functional analysis of the interaction between VPg-proteinase (NIa) and RNA polymerase (NIb) of tobacco etch potyvirus, using conditional and suppressor mutants. . J. Virol. 73:(10):873240
    [Crossref] [Google Scholar]
  38. 38.
    Fellers J, Wan J, Hong Y, Collins GB, Hunt AG. 1998.. In vitro interactions between a potyvirus-encoded, genome-linked protein and RNA-dependent RNA polymerase. . J. Gen. Virol. 79:(8):204349
    [Crossref] [Google Scholar]
  39. 39.
    Guo D, Rajamäki M-L, Saarma M, Valkonen JP. 2001.. Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. . J. Gen. Virol. 82:(4):93539
    [Crossref] [Google Scholar]
  40. 40.
    Li XH, Valdez P, Olvera RE, Carrington JC. 1997.. Functions of the tobacco etch virus RNA polymerase (NIb): subcellular transport and protein-protein interaction with VPg/proteinase (NIa). . J. Virol. 71:(2):1598607
    [Crossref] [Google Scholar]
  41. 41.
    Restrepo-Hartwig MA, Carrington JC. 1994.. The tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in viral replication. . J. Virol. 68:(4):238897
    [Crossref] [Google Scholar]
  42. 42.
    Shen W, Shi Y, Dai Z, Wang A. 2020.. The RNA-dependent RNA polymerase NIb of potyviruses plays multifunctional, contrasting roles during viral infection. . Viruses 12:(1):77
    [Crossref] [Google Scholar]
  43. 43.
    Thivierge K, Cotton S, Dufresne PJ, Mathieu I, Beauchemin C, et al. 2008.. Eukaryotic elongation factor 1A interacts with Turnip mosaic virus RNA-dependent RNA polymerase and VPg-Pro in virus-induced vesicles. . Virology 377:(1):21625
    [Crossref] [Google Scholar]
  44. 44.
    Luan H, Shine MB, Cui X, Chen X, Ma N, et al. 2016.. The potyviral P3 protein targets eukaryotic elongation factor 1A to promote the unfolded protein response and viral pathogenesis. . Plant Physiol. 172:(1):22134
    [Crossref] [Google Scholar]
  45. 45.
    Beauchemin C, Laliberté J-F. 2007.. The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during turnip mosaic virus infection. . J. Virol. 81:(20):1090513
    [Crossref] [Google Scholar]
  46. 46.
    Dufresne PJ, Thivierge K, Cotton S, Beauchemin C, Ide C, et al. 2008.. Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles. . Virology 374:(1):21727
    [Crossref] [Google Scholar]
  47. 47.
    Carrington JC, Jensen PE, Schaad MC. 1998.. Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. . Plant J. 14:(4):393400
    [Crossref] [Google Scholar]
  48. 48.
    Fernández A, Guo HS, Sáenz P, Simón-Buela L, Gómez de Cedrón M, García JA. 1997.. The motif V of plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication. . Nucleic Acids Res. 25:(22):447480
    [Crossref] [Google Scholar]
  49. 49.
    López L, Urzainqui A, Domínguez E, García JA. 2001.. Identification of an N-terminal domain of the plum pox potyvirus CI RNA helicase involved in self-interaction in a yeast two-hybrid system. . J. Gen. Virol. 82:(3):67786
    [Crossref] [Google Scholar]
  50. 50.
    Tavert-Roudet G, Abdul-Razzak A, Doublet B, Walter J, Delaunay T, et al. 2012.. The C terminus of lettuce mosaic potyvirus cylindrical inclusion helicase interacts with the viral VPg and with lettuce translation eukaryotic initiation factor 4E. . J. Gen. Virol. 93:(1):18493
    [Crossref] [Google Scholar]
  51. 51.
    Merits A, Rajamäki M-L, Lindholm P, Runeberg-Roos P, Kekarainen T, et al. 2002.. Proteolytic processing of potyviral proteins and polyprotein processing intermediates in insect and plant cells. . J. Gen. Virol. 83:(5):121121
    [Crossref] [Google Scholar]
  52. 52.
    Chai M, Wu X, Liu J, Fang Y, Luan Y, et al. 2020.. P3N-PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. . J. Virol. 94:(8):e01898-19
    [Crossref] [Google Scholar]
  53. 53.
    Li Y, Xiong R, Bernards M, Wang A. 2016.. Recruitment of Arabidopsis RNA helicase AtRH9 to the viral replication complex by viral replicase to promote turnip mosaic virus replication. . Sci. Rep. 26:(6):30297
    [Crossref] [Google Scholar]
  54. 54.
    Huang T-S, Wei T, Laliberté J-F, Wang A. 2010.. A host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection. . Plant Physiol. 152:(1):25566
    [Crossref] [Google Scholar]
  55. 55.
    Restrepo MA, Freed DD, Carrington JC. 1990.. Nuclear transport of plant potyviral proteins. . Plant Cell 2:(10):98798
    [Google Scholar]
  56. 56.
    Rajamäki M-L, Valkonen JPT. 2009.. Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like Potato virus A in Nicotiana species. . Plant Cell 21:(8):2485502
    [Crossref] [Google Scholar]
  57. 57.
    Rajamäki M-L, Sikorskaite-Gudziuniene S, Sarmah N, Varjosalo M, Valkonen JPT. 2020.. Nuclear proteome of virus-infected and healthy potato leaves. . BMC Plant Biol. 20:(1):355
    [Crossref] [Google Scholar]
  58. 58.
    Ghram M, Morris G, Culjkovic-Kraljacic B, Mars J-C, Gendron P, et al. 2023.. The eukaryotic translation initiation factor eIF4E reprograms alternative splicing. . EMBO J. 42:(7):e110496
    [Crossref] [Google Scholar]
  59. 59.
    Castelló MJ, Carrasco JL, Vera P. 2010.. DNA-binding protein phosphatase AtDBP1 mediates susceptibility to two potyviruses in Arabidopsis. . Plant Physiol. 153:(4):152125
    [Crossref] [Google Scholar]
  60. 60.
    Cheng X, Xiong R, Li Y, Li F, Zhou X, Wang A. 2017.. Sumoylation of Turnip mosaic virus RNA polymerase promotes viral infection by counteracting the host NPR1-mediated immune response. . Plant Cell 29:(3):50825
    [Crossref] [Google Scholar]
  61. 61.
    Liu J, Wu X, Fang Y, Liu Y, Bello EO, et al. 2023.. A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity. . Nat. Commun. 14:(1):3580
    [Crossref] [Google Scholar]
  62. 62.
    Gibbs AJ, Hajizadeh M, Ohshima K, Jones RAC. 2020.. The potyviruses: An evolutionary synthesis is emerging. . Viruses 12:(2):132
    [Crossref] [Google Scholar]
  63. 63.
    Xiong R, Wang A. 2013.. SCE1, the SUMO-conjugating enzyme in plants that interacts with NIb, the RNA-dependent RNA polymerase of Turnip mosaic virus, is required for viral infection. . J. Virol. 87:(8):470415
    [Crossref] [Google Scholar]
  64. 64.
    Zhang M, Gong P, Ge L, Chang Z, Cheng X, et al. 2021.. Nuclear exportin 1 facilitates turnip mosaic virus infection by exporting the sumoylated viral replicase and by repressing plant immunity. . New Phytol. 232:(3):138298
    [Crossref] [Google Scholar]
  65. 65.
    Zhang M, Gong P, Ge L, Li Y, Chang Z, et al. 2021.. Nuclear exportin 1 (XPO1) binds to the nuclear localization/export signal of the turnip mosaic virus NIb to promote viral infection. . Front. Microbiol. 4:(12):780724
    [Google Scholar]
  66. 66.
    Gómez de Cedrón M, Osaba L, López L, García JA. 2006.. Genetic analysis of the function of the plum pox virus CI RNA helicase in virus movement. . Virus Res. 116:(1–2):13645
    [Crossref] [Google Scholar]
  67. 67.
    Wei T, Zhang C, Hong J, Xiong R, Kasschau KD, et al. 2010.. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. . PLOS Pathog. 6:(6):e1000962
    [Crossref] [Google Scholar]
  68. 68.
    Rodríguez-Cerezo E, Findlay K, Shaw JG, Lomonossoff GP, Qiu SG, et al. 1997.. The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. . Virology 236:(2):296306
    [Crossref] [Google Scholar]
  69. 69.
    Gabrenaite-Verkhovskaya R, Andreev IA, Kalinina NO, Torrance L, Taliansky ME, Mäkinen K. 2008.. Cylindrical inclusion protein of potato virus A is associated with a subpopulation of particles isolated from infected plants. . J. Gen. Virol. 89:(Part 3):82938
    [Crossref] [Google Scholar]
  70. 70.
    Langenberg WG, Purcifull DE. 1989.. Interactions between pepper ringspot virus and cylindrical inclusions of two potyviruses. . J. Ultrastruct. Mol. Struct. Res. 102:(1):5358
    [Crossref] [Google Scholar]
  71. 71.
    Vijayapalani P, Maeshima M, Nagasaki-Takekuchi N, Miller WA. 2012.. Interaction of the trans-frame potyvirus protein P3N-PIPO with host protein PcaP1 facilitates potyvirus movement. . PLOS Pathog. 8:(4):e1002639
    [Crossref] [Google Scholar]
  72. 72.
    Geng C, Cong Q-Q, Li X-D, Mou A-L, Gao R, et al. 2015.. Developmentally regulated plasma membrane protein of Nicotiana benthamiana contributes to potyvirus movement and transports to plasmodesmata via the early secretory pathway and the actomyosin system. . Plant Physiol. 167:(2):394410
    [Crossref] [Google Scholar]
  73. 73.
    Cheng G, Yang Z, Zhang H, Zhang J, Xu J. 2020.. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. . New Phytol. 225:(5):212239
    [Crossref] [Google Scholar]
  74. 74.
    Rocher M, Simon V, Jolivet M-D, Sofer L, Deroubaix A-F, et al. 2022.. StREM1.3 REMORIN protein plays an agonistic role in potyvirus cell-to-cell movement in N. benthamiana. . Viruses 14:(3):574
    [Crossref] [Google Scholar]
  75. 75.
    Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H, Laliberté J-F. 2013.. 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. . Front. Microbiol. 4:(4):351
    [Google Scholar]
  76. 76.
    Merits A, Guo D, Saarma M. 1998.. VPg, coat protein and five non-structural proteins of potato A potyvirus bind RNA in a sequence-unspecific manner. . J. Gen. Virol. 12:(3):312327
    [Crossref] [Google Scholar]
  77. 77.
    Movahed N, Cabanillas DG, Wan J, Vali H, Laliberté JF, Zheng H. 2019.. Turnip mosaic virus components are released into the extracellular space by vesicles in infected leaves. . Plant Physiol. 180:(3):137588
    [Crossref] [Google Scholar]
  78. 78.
    Wan J, Cabanillas DG, Zheng H, Laliberté J-F. 2015.. Turnip mosaic virus moves systemically through both phloem and xylem as membrane-associated complexes. . Plant Physiol. 167:(4):137488
    [Crossref] [Google Scholar]
  79. 79.
    Soler-Garzón A, McClean PE, Miklas PN. 2021.. Coding mutations in vacuolar protein-sorting 4 AAA+ ATPase endosomal sorting complexes required for transport protein homologs underlie bc-2 and new bc-4 gene conferring resistance to Bean common mosaic virus in common bean. . Front. Plant Sci. 12::769247
    [Crossref] [Google Scholar]
  80. 80.
    Agaoua A, Rittener V, Troadec C, Desbiez C, Bendahmane A, et al. 2022.. A single substitution in Vacuolar protein sorting 4 is responsible for resistance to Watermelon mosaic virus in melon. . J. Exp. Bot. 73:(12):400821
    [Crossref] [Google Scholar]
  81. 81.
    Davies BA, Babst M, Katzmann DJ. 2011.. Regulation of Vps4 during MVB sorting and cytokinesis. . Traffic 12:(10):1298305
    [Crossref] [Google Scholar]
  82. 82.
    Saha S, Mäkinen K. 2020.. Insights into the functions of eIF4E-biding motif of VPg in potato virus A infection. . Viruses 12:(2):197
    [Crossref] [Google Scholar]
  83. 83.
    Zlobin N, Taranov V. 2023.. Plant eIF4E isoforms as factors of susceptibility and resistance to potyviruses. . Front. Plant Sci. 10:(14):1041868
    [Crossref] [Google Scholar]
  84. 84.
    Yang X, Li Y, Wang A. 2021.. Research advances in potyviruses: from the laboratory bench to the field. . Annu. Rev. Phytopathol. 59::129
    [Crossref] [Google Scholar]
  85. 85.
    Kuroiwa K, Danilo B, Perrot L, Thenault C, Veillet F, et al. 2023.. An iterative gene-editing strategy broadens eIF4E1 genetic diversity in Solanum lycopersicum and generates resistance to multiple potyvirus isolates. . Plant Biotechnol. J. 21:(5):91830
    [Crossref] [Google Scholar]
  86. 86.
    Bastet A, Robaglia C, Gallois J-L. 2017.. eIF4E resistance: Natural variation should guide gene editing. . Trends Plant Sci. 22:(5):41119
    [Crossref] [Google Scholar]
  87. 87.
    Wittmann S, Chatel H, Fortin MG, Laliberté JF. 1997.. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. . Virology 234:(1):8492
    [Crossref] [Google Scholar]
  88. 88.
    Khan MA, Miyoshi H, Gallie DR, Goss DJ. 2008.. Potyvirus genome-linked protein, VPg, directly affects wheat germ in vitro translation: interactions with translation initiation factors eIF4F and eIFiso4F. . J. Biol. Chem. 283:(3):134049
    [Crossref] [Google Scholar]
  89. 89.
    Eskelin K, Hafrén A, Rantalainen KI, Mäkinen K. 2011.. Potyviral VPg enhances viral RNA translation and inhibits reporter mRNA translation in planta. . J. Virol. 85:(17):921021
    [Crossref] [Google Scholar]
  90. 90.
    Abdul-Razzak A, Guiraud T, Peypelut M, Walter J, Houvenaghel M-C, et al. 2009.. Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E-mediated resistance against Lettuce mosaic potyvirus. . Mol. Plant Pathol. 10:(1):10913
    [Crossref] [Google Scholar]
  91. 91.
    Wang A, Krishnaswamy S. 2012.. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. . Mol. Plant Pathol. 13:(7):795803
    [Crossref] [Google Scholar]
  92. 92.
    Shiboleth YM, Haronsky E, Leibman D, Arazi T, Wassenegger M, et al. 2007.. The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. . J. Virol. 81:(23):1313548
    [Crossref] [Google Scholar]
  93. 93.
    Torres-Barceló C, Daròs J-A, Elena SF. 2010.. HC-Pro hypo- and hypersuppressor mutants: differences in viral siRNA accumulation in vivo and siRNA binding activity in vitro. . Arch. Virol. 155:(2):25154
    [Crossref] [Google Scholar]
  94. 94.
    Del Toro F, Sun H, Robinson C, Jiménez Á, Covielles E, et al. 2022.. In planta versus viral expression of HCPro affects its binding of nonplant 21–22 nucleotide small RNAs, but not its preference for 5′-terminal adenines, or its effects on small RNA methylation. . New Phytol. 233:(5):226681
    [Crossref] [Google Scholar]
  95. 95.
    De S, Chavez-Calvillo G, Wahlsten M, Mäkinen K. 2018.. Disruption of the methionine cycle and reduced cellular gluthathione levels underlie potex–potyvirus synergism in Nicotiana benthamiana. . Mol. Plant Pathol. 19:(8):182035
    [Crossref] [Google Scholar]
  96. 96.
    Jamous RM, Boonrod K, Fuellgrabe MW, Ali-Shtayeh MS, Krczal G, Wassenegger M. 2011.. The helper component-proteinase of the Zucchini yellow mosaic virus inhibits the Hua Enhancer 1 methyltransferase activity in vitro. . J. Gen. Virol. 92:(Part 9):222226
    [Crossref] [Google Scholar]
  97. 97.
    Sanobar N, Lin P-C, Pan Z-J, Fang R-Y, Tjita V, et al. 2021.. Investigating the viral suppressor HC-Pro inhibiting small RNA methylation through functional comparison of HEN1 in angiosperm and bryophyte. . Viruses 13:(9):1837
    [Crossref] [Google Scholar]
  98. 98.
    Ivanov KI, Eskelin K, Bašić M, De S, Lõhmus A, et al. 2016.. Molecular insights into the function of the viral RNA silencing suppressor HCPro. . Plant J. 85:(1):3045
    [Crossref] [Google Scholar]
  99. 99.
    Cheng X, Wang A. 2017.. The potyvirus silencing suppressor protein VPg mediates degradation of SGS3 via ubiquitination and autophagy pathways. . J. Virol. 91:(1):e01478-16
    [Crossref] [Google Scholar]
  100. 100.
    Ala-Poikela M, Rajamäki M-L, Valkonen JPT. 2019.. A novel interaction network used by potyviruses in virus-host interactions at the protein level. . Viruses 11:(12):1158
    [Crossref] [Google Scholar]
  101. 101.
    Xu J, Yang J-Y, Niu Q-W, Chua N-H. 2006.. Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. . Plant Cell 18:(12):338698
    [Crossref] [Google Scholar]
  102. 102.
    De S, Pollari M, Varjosalo M, Mäkinen K. 2020.. Association of host protein VARICOSE with HCPro within a multiprotein complex is crucial for RNA silencing suppression, translation, encapsidation and systemic spread of potato virus A infection. . PLOS Pathog. 16:(10):e1008956
    [Crossref] [Google Scholar]
  103. 103.
    Pollari M, De S, Wang A, Mäkinen K. 2020.. The potyviral silencing suppressor HCPro recruits and employs host ARGONAUTE1 in pro-viral functions. . PLOS Pathog. 16:(10):e1008965
    [Crossref] [Google Scholar]
  104. 104.
    Hong S-F, Fang R-Y, Wei W-L, Jirawitchalert S, Pan Z-J, et al. 2023.. Development of an assay system for the analysis of host RISC activity in the presence of a potyvirus RNA silencing suppressor, HC-Pro. . Virol. J. 20:(1):10
    [Crossref] [Google Scholar]
  105. 105.
    Hafrén A, Üstün S, Hochmuth A, Svenning S, Johansen T, Hofius D. 2018.. Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HCpro. . Plant Physiol. 176:(1):64962
    [Crossref] [Google Scholar]
  106. 106.
    Chen H, Arsovski AA, Yu K, Wang A. 2016.. Genome-wide investigation using sRNA-Seq, degradome-Seq and transcriptome-Seq reveals regulatory networks of microRNAs and their target genes in soybean during Soybean mosaic virus infection. . PLOS ONE 11:(3):e0150582
    [Crossref] [Google Scholar]
  107. 107.
    Stare T, Ramšak Ž, Križnik M, Gruden K. 2019.. Multiomics analysis of tolerant interaction of potato with potato virus Y. . Sci. Data 6:(1):250
    [Crossref] [Google Scholar]
  108. 108.
    Li F, Wang A. 2018.. RNA decay is an antiviral defense in plants that is counteracted by viral RNA silencing suppressors. . PLOS Pathog. 14:(8):e1007228
    [Crossref] [Google Scholar]
  109. 109.
    Chantarachot T, Sorenson RS, Hummel M, Ke H, Kettenburg AT, et al. 2020.. DHH1/DDX6-like RNA helicases maintain ephemeral half-lives of stress-response mRNAs. . Nat. Plants 6:(6):67585
    [Crossref] [Google Scholar]
  110. 110.
    Li Q, Liu N, Liu Q, Zheng X, Lu L, et al. 2021.. DEAD-box helicases modulate dicing body formation in Arabidopsis. . Sci. Adv. 7:(18):eabc6266
    [Crossref] [Google Scholar]
  111. 111.
    Chung BY, Miller WA, Atkins JF, Firth AE. 2008.. An overlapping essential gene in the Potyviridae. . PNAS 105:(15):5897902
    [Crossref] [Google Scholar]
  112. 112.
    Saha S, Hafren A, Mäkinen K. 2019.. Dynamics of protein accumulation from the 3′ end of viral RNA are different from those in the rest of the genome in potato virus A infection. . J. Virol. 93:(19):e00721-19
    [Crossref] [Google Scholar]
  113. 113.
    Xu T, Lei L, Shi J, Wang X, Chen J, et al. 2019.. Characterization of maize translational responses to sugarcane mosaic virus infection. . Virus Res. 259::97107
    [Crossref] [Google Scholar]
  114. 114.
    Eskelin K, Varjosalo M, Ravantti J, Mäkinen K. 2019.. Ribosome profiles and riboproteomes of healthy and Potato virus A- and Agrobacterium-infected Nicotiana benthamiana plants. . Mol. Plant Pathol. 20:(3):392409
    [Crossref] [Google Scholar]
  115. 115.
    Zafirov D, Giovinazzo N, Lecampion C, Field B, Ducassou JN, et al. 2023.. Arabidopsis eIF4E1 protects the translational machinery during TuMV infection and restricts virus accumulation. . PLOS Pathog. 19:(11):e1011417
    [Crossref] [Google Scholar]
  116. 116.
    Yang C, Zhang C, Dittman JD, Whitham SA. 2009.. Differential requirement of ribosomal protein S6 by plant RNA viruses with different translation initiation strategies. . Virology 390:(2):16373
    [Crossref] [Google Scholar]
  117. 117.
    Rajamäki M-L, Xi D, Sikorskaite-Gudziuniene S, Valkonen JPT, Whitham SA. 2017.. Differential requirement of the ribosomal protein S6 and ribosomal protein S6 kinase for plant-virus accumulation and interaction of S6 kinase with potyviral VPg. . Mol. Plant-Microbe Interact. 30:(5):37484
    [Crossref] [Google Scholar]
  118. 118.
    Martínez F, Daròs J-A. 2014.. Tobacco etch virus protein P1 traffics to the nucleolus and associates with the host 60S ribosomal subunits during infection. . J. Virol. 88:(18):1072537
    [Crossref] [Google Scholar]
  119. 119.
    Jaramillo-Mesa H, Rakotondrafara AM. 2023.. All eggs in one basket: how potyvirus infection is controlled at a single cap-independent translation event. . Semin. Cell Dev. Biol. 148–149::5161
    [Crossref] [Google Scholar]
  120. 120.
    Mailliot J, Martin F. 2018.. Viral internal ribosomal entry sites: four classes for one goal. . WIREs RNA 9:(2):e1458
    [Crossref] [Google Scholar]
  121. 121.
    Basso J, Dallaire P, Charest PJ, Devantier Y, Laliberté JF. 1994.. Evidence for an internal ribosome entry site within the 5′ non-translated region of turnip mosaic potyvirus RNA. . J. Gen. Virol. 75:(Part 11):315765
    [Crossref] [Google Scholar]
  122. 122.
    Besong-Ndika J, Ivanov KI, Hafrèn A, Michon T, Mäkinen K. 2015.. Cotranslational coat protein-mediated inhibition of potyviral RNA translation. . J. Virol. 89:(8):423748
    [Crossref] [Google Scholar]
  123. 123.
    Lõhmus A, Hafrén A, Mäkinen K. 2017.. Coat protein regulation by CK2, CPIP, HSP70, and CHIP is required for potato virus A replication and coat protein accumulation. . J. Virol. 91:(3):e01316-16
    [Crossref] [Google Scholar]
  124. 124.
    Hafrén A, Hofius D, Rönnholm G, Sonnewald U, Mäkinen K. 2010.. HSP70 and its cochaperone CPIP promote potyvirus infection in Nicotiana benthamiana by regulating viral coat protein functions. . Plant Cell 22:(2):52335
    [Crossref] [Google Scholar]
  125. 125.
    Hofius D, Maier AT, Dietrich C, Jungkunz I, Börnke F, et al. 2007.. Capsid protein-mediated recruitment of host DnaJ-like proteins is required for Potato virus Y infection in tobacco plants. . J. Virol. 81:(21):1187080
    [Crossref] [Google Scholar]
  126. 126.
    Valli A, Gallo A, Calvo M, de Jesús Pérez J, García JA. 2014.. A novel role of the potyviral helper component proteinase contributes to enhance the yield of viral particles. . J. Virol. 88:(17):980818
    [Crossref] [Google Scholar]
  127. 127.
    Gallo A, Valli A, Calvo M, García JA. 2018.. A functional link between RNA replication and virion assembly in the potyvirus Plum pox virus. . J. Virol. 92:(9):e02179-17
    [Crossref] [Google Scholar]
  128. 128.
    Saha S, Lõhmus A, Dutta P, Pollari M, Mäkinen K. 2022.. Interplay of HCPro and CP in the regulation of potato virus A RNA expression and encapsidation. . Viruses 14:(6):1233
    [Crossref] [Google Scholar]
  129. 129.
    Hafrén A, Eskelin K, Mäkinen K. 2013.. Ribosomal protein P0 promotes Potato virus A infection and functions in viral translation together with VPg and eIF(iso)4E. . J. Virol. 87:(8):430212
    [Crossref] [Google Scholar]
  130. 130.
    Cuesta R, Yuste-Calvo C, Gil-Cartón D, Sánchez F, Ponz F, Valle M. 2019.. Structure of Turnip mosaic virus and its viral-like particles. . Sci. Rep. 9:(1):15396
    [Crossref] [Google Scholar]
  131. 131.
    Chase O, Javed A, Byrne MJ, Thuenemann EC, Lomonossoff GP, et al. 2023.. CryoEM and stability analysis of virus-like particles of potyvirus and ipomovirus infecting a common host. . Commun. Biol. 6:(1):433
    [Crossref] [Google Scholar]
  132. 132.
    Kežar A, Kavčič L, Polák M, Nováček J, Gutiérrez-Aguirre I, et al. 2019.. Structural basis for the multitasking nature of the potato virus Y coat protein. . Sci. Adv. 5:(7):eaaw3808
    [Crossref] [Google Scholar]
  133. 133.
    Zamora M, Méndez-López E, Agirrezabala X, Cuesta R, Lavín JL, et al. 2017.. Potyvirus virion structure shows conserved protein fold and RNA binding site in ssRNA viruses. . Sci. Adv. 3:(9):eaao2182
    [Crossref] [Google Scholar]
  134. 134.
    Torrance L, Andreev IA, Gabrenaite-Verhovskaya R, Cowan G, Mäkinen K, Taliansky ME. 2006.. An unusual structure at one end of potato potyvirus particles. . J. Mol. Biol. 357:(1):18
    [Crossref] [Google Scholar]
  135. 135.
    Tavert-Roudet G, Anne A, Barra A, Chovin A, Demaille C, Michon T. 2017.. The potyvirus particle recruits the plant translation initiation factor eIF4E by means of the VPg covalently linked to the viral RNA. . Mol. Plant-Microbe Interact. 30:(9):75462
    [Crossref] [Google Scholar]
  136. 136.
    Ala-Poikela M, Goytia E, Haikonen T, Rajamäki M-L, Valkonen JPT. 2011.. Helper component proteinase of the genus Potyvirus is an interaction partner of translation initiation factors eIF(iso)4E and eIF4E and contains a 4E binding motif. . J. Virol. 85:(13):678494
    [Crossref] [Google Scholar]
  137. 137.
    Seo J-K, Kang S-H, Seo BY, Jung JK, Kim K-H. 2010.. Mutational analysis of interaction between coat protein and helper component-proteinase of Soybean mosaic virus involved in aphid transmission. . Mol. Plant Pathol. 11:(2):26576
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-100422-034124
Loading
/content/journals/10.1146/annurev-virology-100422-034124
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error