1932

Abstract

Bacterial viruses known as phages rely on their hosts for replication and thus have developed an intimate partnership over evolutionary time. The survival of temperate phages, which can establish a chronic infection in which their genomes are maintained in a quiescent state known as a prophage, is tightly coupled with the survival of their bacterial hosts. As a result, prophages encode a diverse antiphage defense arsenal to protect themselves and the bacterial host in which they reside from further phage infection. Similarly, the survival and success of prophage-related elements such as phage-inducible chromosomal islands are directly tied to the survival and success of their bacterial host, and they also have been shown to encode numerous antiphage defenses. Here, we describe the current knowledge of antiphage defenses encoded by prophages and prophage-related mobile genetic elements.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100422-125123
2024-09-26
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/virology/11/1/annurev-virology-100422-125123.html?itemId=/content/journals/10.1146/annurev-virology-100422-125123&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Summers WC. 2023.. The American Phage Group: Founders of Molecular Biology. New Haven, CT:: Yale Univ. Press
    [Google Scholar]
  2. 2.
    Juhala RJ, Ford ME, Duda RL, Youlton A, Hatfull GF, Hendrix RW. 2000.. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. . J. Mol. Biol. 299:(1):2751
    [Crossref] [Google Scholar]
  3. 3.
    Brüssow H, Canchaya C, Hardt W-D. 2004.. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. . Microbiol. Mol. Biol. Rev. 68:(3):560602
    [Crossref] [Google Scholar]
  4. 4.
    Taylor VL, Fitzpatrick AD, Islam Z, Maxwell KL. 2019.. The diverse impacts of phage morons on bacterial fitness and virulence. . Adv. Virus Res. 103::131
    [Crossref] [Google Scholar]
  5. 5.
    Patel PH, Maxwell KL. 2023.. Prophages provide a rich source of antiphage defense systems. . Curr. Opin. Microbiol. 73::102321
    [Crossref] [Google Scholar]
  6. 6.
    Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, et al. 2018.. Systematic discovery of anti-phage defense systems in the microbial pan-genome. . Science 359:(6379):eaar4120
    [Crossref] [Google Scholar]
  7. 7.
    Wein T, Sorek R. 2022.. Bacterial origins of human cell-autonomous innate immune mechanisms. . Nat. Rev. Immunol. 22:(10):62938
    [Crossref] [Google Scholar]
  8. 8.
    Bernheim A, Millman A, Ofir G, Meitav G, Avraham C, et al. 2021.. Prokaryotic viperins produce diverse antiviral molecules. . Nature 589:(7840):12024
    [Crossref] [Google Scholar]
  9. 9.
    Morehouse BR, Govande AA, Millman A, Keszei AFA, Lowey B, et al. 2020.. STING cyclic dinucleotide sensing originated in bacteria. . Nature 586:(7829):42933
    [Crossref] [Google Scholar]
  10. 10.
    Twort FW. 1915.. An investigation on the nature of ultra-microscopic viruses. . Lancet 186:(4814):124143
    [Crossref] [Google Scholar]
  11. 11.
    d'Hérelle F. 1917.. Sur un microbe invisible antagoniste des bacilles dysentériques. . C.R. Acad. Sci. Paris 165::37375
    [Google Scholar]
  12. 12.
    Summers WC. 2012.. The strange history of phage therapy. . Bacteriophage 2:(2):13033
    [Crossref] [Google Scholar]
  13. 13.
    Davison WC. 1922.. The bacteriolysant therapy of bacillary dysentery in children: therapeutic application of bacteriolysants; d'Hérelle's phenomenon. . Am. J. Dis. Child 23:(6):53134
    [Crossref] [Google Scholar]
  14. 14.
    Gordillo Altamirano FL, Barr JJ. 2019.. Phage therapy in the postantibiotic era. . Clin. Microbiol. Rev. 32:(2):e00066-18
    [Crossref] [Google Scholar]
  15. 15.
    Muckenfuss RS, Korb C. 1928.. Studies on the bacteriophage of d'Hérelle: X. Toxin production by normal and by phage-resistant Shiga dysentery bacilli. . J. Exp. Med. 48:(2):27783
    [Crossref] [Google Scholar]
  16. 16.
    Henry JE, Henry RJ. 1946.. Studies on the relationship between bacteriophage and bacterial host cell. . J. Bacteriol. 52:(4):48186
    [Crossref] [Google Scholar]
  17. 17.
    Hunter GJE. 1947.. Phage-resistant and phage-carrying strains of lactic streptococci. . J. Hyg. 45:(3):30712
    [Crossref] [Google Scholar]
  18. 18.
    Kaiser AD, Jacob F. 1957.. Recombination between related temperate bacteriophages and the genetic control of immunity and prophage localization. . Virology 4:(3):50921
    [Crossref] [Google Scholar]
  19. 19.
    Kaiser AD. 1957.. Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. . Virology 3:(1):4261
    [Crossref] [Google Scholar]
  20. 20.
    Echols H. 1971.. Lysogeny: viral repression and site-specific recombination. . Annu. Rev. Biochem. 40::82754
    [Crossref] [Google Scholar]
  21. 21.
    Lederberg S. 1957.. Suppression of the multiplication of heterologous bacteriophages in lysogenic bacteria. . Virology 3:(3):496513
    [Crossref] [Google Scholar]
  22. 22.
    Arber W, Dussoix D. 1962.. Host specificity of DNA produced by Escherichia coli: I. Host controlled modification of bacteriophage λ. . J. Mol. Biol. 5:(1):1836
    [Crossref] [Google Scholar]
  23. 23.
    Glover SW, Schell J, Symonds N, Stacey KA. 1963.. The control of host-induced modification by phage P1. . Genet. Res. 4:(3):48082
    [Crossref] [Google Scholar]
  24. 24.
    Parma DH, Snyder M, Sobolevski S, Nawroz M, Brody E, Gold L. 1992.. The Rex system of bacteriophage lambda: tolerance and altruistic cell death. . Genes Dev. 6:(3):497510
    [Crossref] [Google Scholar]
  25. 25.
    Lindahl G, Sironi G, Bialy H, Calendar R. 1970.. Bacteriophage lambda; abortive infection of bacteria lysogenic for phage P2. . PNAS 66:(3):58794
    [Crossref] [Google Scholar]
  26. 26.
    Koonin EV, Senkevich TG, Dolja VV. 2006.. The ancient Virus World and evolution of cells. . Biol. Direct. 1:(1):29
    [Crossref] [Google Scholar]
  27. 27.
    Georjon H, Bernheim A. 2023.. The highly diverse antiphage defence systems of bacteria. . Nat. Rev. Microbiol. 21:(10):686700
    [Crossref] [Google Scholar]
  28. 28.
    Johnson MC, Laderman E, Huiting E, Zhang C, Davidson A, Bondy-Denomy J. 2022.. Core defense hotspots within Pseudomonas aeruginosa are a consistent and rich source of anti-phage defense systems. . Nucleic Acids Res. 51:(10):49955005
    [Crossref] [Google Scholar]
  29. 29.
    Rousset F, Depardieu F, Miele S, Dowding J, Laval A-L, et al. 2022.. Phages and their satellites encode hotspots of antiviral systems. . Cell Host Microbe 30:(5):74053.e5
    [Crossref] [Google Scholar]
  30. 30.
    Dedrick RM, Jacobs-Sera D, Bustamante CAG, Garlena RA, Mavrich TN, et al. 2017.. Prophage-mediated defence against viral attack and viral counter-defence. . Nat. Microbiol. 2:(3):16251
    [Crossref] [Google Scholar]
  31. 31.
    Vassallo CN, Doering CR, Littlehale ML, Teodoro GIC, Laub MT. 2022.. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. . Nat. Microbiol. 7:(10):156879
    [Crossref] [Google Scholar]
  32. 32.
    Bernheim A, Sorek R. 2020.. The pan-immune system of bacteria: antiviral defence as a community resource. . Nat. Rev. Microbiol. 18:(2):11319
    [Crossref] [Google Scholar]
  33. 33.
    Koonin EV, Makarova KS, Wolf YI. 2017.. Evolutionary genomics of defense systems in archaea and bacteria. . Annu. Rev. Microbiol. 71::23361
    [Crossref] [Google Scholar]
  34. 34.
    van Houte S, Buckling A, Westra ER. 2016.. Evolutionary ecology of prokaryotic immune mechanisms. . Microbiol. Mol. Biol. Rev. 80:(3):74563
    [Crossref] [Google Scholar]
  35. 35.
    Egido JE, Costa AR, Aparicio-Maldonado C, Haas P-J, Brouns SJJ. 2022.. Mechanisms and clinical importance of bacteriophage resistance. . FEMS Microbiol. Rev. 46:(1):fuab048
    [Crossref] [Google Scholar]
  36. 36.
    Chung I-Y, Jang H-J, Bae H-W, Cho Y-H. 2014.. A phage protein that inhibits the bacterial ATPase required for type IV pilus assembly. . PNAS 111:(31):115038
    [Crossref] [Google Scholar]
  37. 37.
    Shah M, Taylor VL, Bona D, Tsao Y, Stanley SY, et al. 2021.. A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa. . Mol. Cell 81:(3):57183.e6
    [Crossref] [Google Scholar]
  38. 38.
    Schmidt AK, Fitzpatrick AD, Schwartzkopf CM, Faith DR, Jennings LK, et al. 2022.. A filamentous bacteriophage protein inhibits type IV pili to prevent superinfection of Pseudomonas aeruginosa. . mBio 13:(1):e02441-21
    [Crossref] [Google Scholar]
  39. 39.
    Wang W, Li Y, Tang K, Lin J, Gao X, et al. 2022.. Filamentous prophage capsid proteins contribute to superinfection exclusion and phage defence in Pseudomonas aeruginosa. . Environ. Microbiol. 24:(9):428598
    [Crossref] [Google Scholar]
  40. 40.
    Kuzio J, Kropinski AM. 1983.. O-antigen conversion in Pseudomonas aeruginosa PAO1 by bacteriophage D3. . J. Bacteriol. 155:(1):20312
    [Crossref] [Google Scholar]
  41. 41.
    Newton GJ, Daniels C, Burrows LL, Kropinski AM, Clarke AJ, Lam JS. 2001.. Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. . Mol. Microbiol. 39:(5):123747
    [Google Scholar]
  42. 42.
    Kropinski AM, Kovalyova IV, Billington SJ, Patrick AN, Butts BD, et al. 2007.. The genome of ε15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage. . Virology 369:(2):23444
    [Crossref] [Google Scholar]
  43. 43.
    Perry LL, San Miguel P, Minocha U, Terekhov AI, Shroyer ML, et al. 2009.. Sequence analysis of Escherichia coli O157:H7 bacteriophage PhiV10 and identification of a phage-encoded immunity protein that modifies the O157 antigen. . FEMS Microbiol. Lett. 292:(2):18286
    [Crossref] [Google Scholar]
  44. 44.
    Wright A. 1971.. Mechanism of conversion of the Salmonella O antigen by bacteriophage ε34. . J. Bacteriol. 105:(3):92736
    [Crossref] [Google Scholar]
  45. 45.
    Mavris M, Manning PA, Morona R. 1997.. Mechanism of bacteriophage SfII-mediated serotype conversion in Shigella flexneri. . Mol. Microbiol. 26:(5):93950
    [Crossref] [Google Scholar]
  46. 46.
    Allison GE, Angeles D, Tran-Dinh N, Verma NK. 2002.. Complete genomic sequence of SfV, a serotype-converting temperate bacteriophage of Shigella flexneri. . J. Bacteriol. 184:(7):197487
    [Crossref] [Google Scholar]
  47. 47.
    Guan S, Bastin DA, Verma NK. 1999.. Functional analysis of the O antigen glucosylation gene cluster of Shigella flexneri bacteriophage SfX. . Microbiology 145:(Part 5):126373
    [Crossref] [Google Scholar]
  48. 48.
    Vander Byl C, Kropinski A. 2000.. Sequence of the genome of Salmonella bacteriophage P22. . J. Bacteriol. 182:(22):647281
    [Crossref] [Google Scholar]
  49. 49.
    Kim M, Ryu S. 2011.. Characterization of a T5-like coliphage, SPC35, and differential development of resistance to SPC35 in Salmonella enterica serovar Typhimurium and Escherichia coli. . Appl. Environ. Microbiol. 77:(6):204250
    [Crossref] [Google Scholar]
  50. 50.
    Decker K, Krauel V, Meesmann A, Heller KJ. 1994.. Lytic conversion of Escherichia coli by bacteriophage T5: blocking of the FhuA receptor protein by a lipoprotein expressed early during infection. . Mol. Microbiol. 12:(2):32132
    [Crossref] [Google Scholar]
  51. 51.
    van den Berg B, Silale A, Baslé A, Brandner AF, Mader SL, Khalid S. 2022.. Structural basis for host recognition and superinfection exclusion by bacteriophage T5. . PNAS 119:(42):e2211672119
    [Crossref] [Google Scholar]
  52. 52.
    Ragunathan PT, Vanderpool CK. 2019.. Cryptic-prophage-encoded small protein DicB protects Escherichia coli from phage infection by inhibiting inner membrane receptor proteins. . J. Bacteriol. 201:(23):e00475-19
    [Crossref] [Google Scholar]
  53. 53.
    Balasubramanian D, Ragunathan PT, Fei J, Vanderpool CK. 2016.. A prophage-encoded small RNA controls metabolism and cell division in Escherichia coli. . mSystems 1:(1):e00021-15
    [Crossref] [Google Scholar]
  54. 54.
    Sun X, Göhler A, Heller KJ, Neve H. 2006.. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis. . Virology 350:(1):14657
    [Crossref] [Google Scholar]
  55. 55.
    Ali Y, Koberg S, Heßner S, Sun X, Rabe B, et al. 2014.. Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. . Front. Microbiol. 5::80107
    [Crossref] [Google Scholar]
  56. 56.
    Bebeacua C, Lorenzo Fajardo JC, Blangy S, Spinelli S, Bollmann S, et al. 2013.. X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target. . Mol. Microbiol. 89:(1):15265
    [Crossref] [Google Scholar]
  57. 57.
    Leavitt JC, Woodbury BM, Gilcrease EB, Bridges CM, Teschke CM, Casjens SR. 2024.. Bacteriophage P22 SieA-mediated superinfection exclusion. . mBio 15:(2):e02169-2
    [Crossref] [Google Scholar]
  58. 58.
    Kliem M, Dreiseikelmann B. 1989.. The superimmunity gene sim of bacteriophage P1 causes superinfection exclusion. . Virology 171::35055
    [Crossref] [Google Scholar]
  59. 59.
    McGrath S, Fitzgerald GF, van Sinderen D. 2002.. Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. . Mol. Microbiol. 43:(2):50920
    [Crossref] [Google Scholar]
  60. 60.
    Mahony J, McGrath S, Fitzgerald GF, van Sinderen D. 2008.. Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes. . Appl. Environ. Microbiol. 74:(20):620615
    [Crossref] [Google Scholar]
  61. 61.
    Ko C, Hatfull GF. 2018.. Mycobacteriophage Fruitloop gp52 inactivates Wag31 (DivIVA) to prevent heterotypic superinfection. . Mol. Microbiol. 108:(4):44360
    [Crossref] [Google Scholar]
  62. 62.
    Cumby N, Edwards AM, Davidson AR, Maxwell KL. 2012.. The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein. . J. Bacteriol. 194:(18):501219
    [Crossref] [Google Scholar]
  63. 63.
    Ptashne M. 2004.. A Genetic Switch: Phage Lambda Revisited. Cold Spring Harbor, NY:: Cold Spring Harbor. , 3rd ed..
    [Google Scholar]
  64. 64.
    Bair CL, Black LW. 2007.. A type IV modification dependent restriction nuclease that targets glucosylated hydroxymethyl cytosine modified DNAs. . J. Mol. Biol. 366:(3):76878
    [Crossref] [Google Scholar]
  65. 65.
    Faure G, Shmakov SA, Yan WX, Cheng DR, Scott DA, et al. 2019.. CRISPR-Cas in mobile genetic elements: counter-defence and beyond. . Nat. Rev. Microbiol. 17:(8):51325
    [Crossref] [Google Scholar]
  66. 66.
    Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L, et al. 2020.. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. . Nucleic Acids Res. 48:(4):200012
    [Crossref] [Google Scholar]
  67. 67.
    Al-Shayeb B, Skopintsev P, Soczek KM, Stahl EC, Li Z, et al. 2022.. Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. . Cell 185:(24):457486.e16
    [Crossref] [Google Scholar]
  68. 68.
    Pausch P, Al-Shayeb B, Bisom-Rapp E, Tsuchida CA, Li Z, et al. 2020.. CRISPR-CasΦ from huge phages is a hypercompact genome editor. . Science 369:(6501):33337
    [Crossref] [Google Scholar]
  69. 69.
    Seed KD, Lazinski DW, Calderwood SB, Camilli A. 2013.. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. . Nature 494:(7438):48991
    [Crossref] [Google Scholar]
  70. 70.
    Medvedeva S, Liu Y, Koonin EV, Severinov K, Prangishvili D, Krupovic M. 2019.. Virus-borne mini-CRISPR arrays are involved in interviral conflicts. . Nat. Commun. 10:(1):5204
    [Crossref] [Google Scholar]
  71. 71.
    Odegrip R, Nilsson AS, Haggård-Ljungquist E. 2006.. Identification of a gene encoding a functional reverse transcriptase within a highly variable locus in the P2-like coliphages. . J. Bacteriol. 188:(4):164347
    [Crossref] [Google Scholar]
  72. 72.
    Lopatina A, Tal N, Sorek R. 2020.. Abortive infection: bacterial suicide as an antiviral immune strategy. . Annu. Rev. Virol. 7::37184
    [Crossref] [Google Scholar]
  73. 73.
    Fernández-García L, Wood TK. 2023.. Phage-defense systems are unlikely to cause cell suicide. . Viruses 15:(9):1795
    [Crossref] [Google Scholar]
  74. 74.
    Aframian N, Eldar A. 2023.. Abortive infection antiphage defense systems: separating mechanism and phenotype. . Trends Microbiol. 31:(10):100312
    [Crossref] [Google Scholar]
  75. 75.
    Matz K, Schmandt M, Gussin GN. 1982.. The rex gene of bacteriophage λ is really two genes. . Genetics 102:(3):31927
    [Crossref] [Google Scholar]
  76. 76.
    Wong S, Alattas H, Slavcev RA. 2021.. A snapshot of the λ T4rII exclusion (Rex) phenotype in Escherichia coli. . Curr. Genet. 67:(5):73945
    [Crossref] [Google Scholar]
  77. 77.
    Montgomery MT, Guerrero Bustamante CA, Dedrick RM, Jacobs-Sera D, Hatfull GF. 2019.. Yet more evidence of collusion: a new viral defense system encoded by Gordonia phage CarolAnn. . mBio 10:(2):e02417-18
    [Crossref] [Google Scholar]
  78. 78.
    Gentile GM, Wetzel KS, Dedrick RM, Montgomery MT, Garlena RA, et al. 2019.. More evidence of collusion: a new prophage-mediated viral defense system encoded by mycobacteriophage Sbash. . mBio 10:(2):e00196-19
    [Crossref] [Google Scholar]
  79. 79.
    Mageeney CM, Mohammed HT, Dies M, Anbari S, Cudkevich N, et al. 2020.. Mycobacterium phage Butters-encoded proteins contribute to host defense against viral attack. . mSystems 5:(5):e00534-20
    [Crossref] [Google Scholar]
  80. 80.
    Kuntová L, Mašlaňová I, Obořilová R, Šimečková H, Finstrlová A, et al. 2023.. Staphylococcus aureus prophage-encoded protein causes abortive infection and provides population immunity against kayviruses. . mBio 14:(2):e02490-22
    [Crossref] [Google Scholar]
  81. 81.
    Myung H, Calendar R. 1995.. The old exonuclease of bacteriophage P2. . J. Bacteriol. 177:(3):497501
    [Crossref] [Google Scholar]
  82. 82.
    Brégégère F. 1976.. Bacteriophage P2-lambda interference: II. Effects on the host under the control of lambda genes O and P. . J. Mol. Biol. 104:(2):41120
    [Crossref] [Google Scholar]
  83. 83.
    Brégégère F. 1974.. Bacteriophage P2-λ interference: Inhibition of protein synthesis involves transfer RNA inactivation. . J. Mol. Biol. 90:(3):45967
    [Crossref] [Google Scholar]
  84. 84.
    LeRoux M, Srikant S, Teodoro GIC, Zhang T, Littlehale ML, et al. 2022.. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. . Nat. Microbiol. 7:(7):102840
    [Crossref] [Google Scholar]
  85. 85.
    Owen SV, Wenner N, Dulberger CL, Rodwell EV, Bowers-Barnard A, et al. 2021.. Prophages encode phage-defense systems with cognate self-immunity. . Cell Host Microbe 29:(11):162033.e8
    [Crossref] [Google Scholar]
  86. 86.
    Jurėnas D, Fraikin N, Goormaghtigh F, Van Melderen L. 2022.. Biology and evolution of bacterial toxin-antitoxin systems. . Nat. Rev. Microbiol. 20:(6):33550
    [Crossref] [Google Scholar]
  87. 87.
    Harms A, Brodersen DE, Mitarai N, Gerdes K. 2018.. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. . Mol. Cell 70:(5):76884
    [Crossref] [Google Scholar]
  88. 88.
    Gerdes K, Rasmussen PB, Molin S. 1986.. Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. . PNAS 83:(10):311620
    [Crossref] [Google Scholar]
  89. 89.
    Ogura T, Hiraga S. 1983.. Mini-F plasmid genes that couple host cell division to plasmid proliferation. . PNAS 80:(15):478488
    [Crossref] [Google Scholar]
  90. 90.
    Kelly A, Arrowsmith TJ, Went SC, Blower TR. 2023.. Toxin-antitoxin systems as mediators of phage defence and the implications for abortive infection. . Curr. Opin. Microbiol. 73::102293
    [Crossref] [Google Scholar]
  91. 91.
    Pecota DC, Wood TK. 1996.. Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. . J. Bacteriol. 178:(7):204450
    [Crossref] [Google Scholar]
  92. 92.
    Jimmy S, Saha CK, Kurata T, Stavropoulos C, Oliveira SRA, et al. 2020.. A widespread toxin−antitoxin system exploiting growth control via alarmone signaling. . PNAS 117:(19):1050010
    [Crossref] [Google Scholar]
  93. 93.
    Zhang T, Tamman H, Coppieters't Wallant K, Kurata T, LeRoux M, et al. 2022.. Direct activation of a bacterial innate immune system by a viral capsid protein. . Nature 612:(7938):13240
    [Crossref] [Google Scholar]
  94. 94.
    Guo Y, Tang K, Sit B, Gu J, Chen R, et al. 2022.. Dual control of lysogeny and phage defense by a phosphorylation-based toxin/antitoxin system. . bioRxiv 2022.09.05.506569
  95. 95.
    Atanasiu C, Su T-J, Sturrock SS, Dryden DTF. 2002.. Interaction of the ocr gene 0.3 protein of bacteriophage T7 with EcoKI restriction/modification enzyme. . Nucleic Acids Res. 30:(18):393644
    [Crossref] [Google Scholar]
  96. 96.
    Tock MR, Dryden DTF. 2005.. The biology of restriction and anti-restriction. . Curr. Opin. Microbiol. 8:(4):46672
    [Crossref] [Google Scholar]
  97. 97.
    Isaev A, Drobiazko A, Sierro N, Gordeeva J, Yosef I, et al. 2020.. Phage T7 DNA mimic protein Ocr is a potent inhibitor of BREX defence. . Nucleic Acids Res. 48:(10):5397406
    [Crossref] [Google Scholar]
  98. 98.
    Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. 2012.. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. . 493(7432):42932
  99. 99.
    Pawluk A, Bondy-Denomy J, Cheung VHW, Maxwell KL, Davidson AR. 2014.. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Psuedomonas aeruginosa. . mBio 5:(2):e00896
    [Crossref] [Google Scholar]
  100. 100.
    Pawluk A, Staals RHJ, Taylor C, Watson BNJ, Saha S, et al. 2016.. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. . Nat. Microbiol. 1:(8):16085
    [Crossref] [Google Scholar]
  101. 101.
    Bondy-Denomy J, Davidson AR, Doudna JA, Fineran PC, Maxwell KL, et al. 2018.. A unified resource for tracking anti-CRISPR names. . CRISPR J. 1:(5):3045
    [Crossref] [Google Scholar]
  102. 102.
    Hwang S, Maxwell KL. 2023.. Diverse mechanisms of CRISPR-Cas9 inhibition by type II anti-CRISPR proteins. . J. Mol. Biol. 435:(7):168041
    [Crossref] [Google Scholar]
  103. 103.
    Yin P, Zhang Y, Yang L, Feng Y. 2023.. Non-canonical inhibition strategies and structural basis of anti-CRISPR proteins targeting type I CRISPR-Cas systems. . J. Mol. Biol. 435:(7):167996
    [Crossref] [Google Scholar]
  104. 104.
    Marino ND. 2023.. Phage against the machine: discovery and mechanism of type V anti-CRISPRs. . J. Mol. Biol. 435:(7):168054
    [Crossref] [Google Scholar]
  105. 105.
    Yirmiya E, Leavitt A, Lu A, Ragucci AE, Avraham C, et al. 2024.. Phages overcome bacterial immunity via diverse anti-defence proteins. . Nature 625:(7994):35259
    [Crossref] [Google Scholar]
  106. 106.
    Antine SP, Johnson AG, Mooney SE, Leavitt A, Mayer ML, et al. 2024.. Structural basis of Gabija anti-phage defence and viral immune evasion. . Nature 625:(7994):36065
    [Crossref] [Google Scholar]
  107. 107.
    Pham TT, Jacobs-Sera D, Pedulla ML, Hendrix RW, Hatfull GF. 2007.. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. . Microbiology 153:(8):271123
    [Crossref] [Google Scholar]
  108. 108.
    Botelho J. 2023.. Defense systems are pervasive across chromosomally integrated mobile genetic elements and are inversely correlated to virulence and antimicrobial resistance. . Nucleic Acids Res. 51:(9):438597
    [Crossref] [Google Scholar]
  109. 109.
    de Sousa JAM, Fillol-Salom A, Penadés JR, Rocha EPC. 2023.. Identification and characterization of thousands of bacteriophage satellites across bacteria. . Nucleic Acids Res. 51:(6):275977
    [Crossref] [Google Scholar]
  110. 110.
    Ruzin A, Lindsay J, Novick RP. 2001.. Molecular genetics of SaPI1—a mobile pathogenicity island in Staphylococcus aureus. . Mol. Microbiol. 41:(2):36577
    [Crossref] [Google Scholar]
  111. 111.
    Penadés JR, Christie GE. 2015.. The phage-inducible chromosomal islands: a family of highly evolved molecular parasites. . Annu. Rev. Virol. 2::181201
    [Crossref] [Google Scholar]
  112. 112.
    Alqurainy N, Miguel-Romero L, Moura de Sousa J, Chen J, Rocha EPC, et al. 2023.. A widespread family of phage-inducible chromosomal islands only steals bacteriophage tails to spread in nature. . Cell Host Microbe 31:(1):6982.e5
    [Crossref] [Google Scholar]
  113. 113.
    Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP. 1998.. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. . Mol. Microbiol. 29:(2):52743
    [Crossref] [Google Scholar]
  114. 114.
    Novick RP, Christie GE, Penadés JR. 2010.. The phage-related chromosomal islands of Gram-positive bacteria. . Nat. Rev. Microbiol. 8:(8):54151
    [Crossref] [Google Scholar]
  115. 115.
    Ram G, Chen J, Ross HF, Novick RP. 2014.. Precisely modulated pathogenicity island interference with late phage gene transcription. . PNAS 111:(40):1453641
    [Crossref] [Google Scholar]
  116. 116.
    Ram G, Chen J, Kumar K, Ross HF, Ubeda C, et al. 2012.. Staphylococcal pathogenicity island interference with helper phage reproduction is a paradigm of molecular parasitism. . PNAS 109:(40):163005
    [Crossref] [Google Scholar]
  117. 117.
    Chen J, Ram G, Penadés JR, Brown S, Novick RP. 2015.. Pathogenicity island-directed transfer of unlinked chromosomal virulence genes. . Mol. Cell 57:(1):13849
    [Crossref] [Google Scholar]
  118. 118.
    Fillol-Salom A, Rostøl JT, Ojiogu AD, Chen J, Douce G, et al. 2022.. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. . Cell 185:(17):324862.e20
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-100422-125123
Loading
/content/journals/10.1146/annurev-virology-100422-125123
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error