1932

Abstract

Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes acute and chronic arthritis. The virus reemerged in the Indian Ocean islands in 2005–2006 and is responsible for outbreaks in the Caribbean islands and the Americas since late 2013. Despite the wealth of research over the past 10 years, there are no commercially available antiviral drugs or vaccines. Treatment usually involves analgesics, anti-inflammatory drugs, and supportive care. Most studies have been focused on understanding the pathogenesis of CHIKV infection through clinical observation and with animal models. In this review, the clinical manifestations of CHIKV that define the disease and the use of relevant animal models, from mice to nonhuman primates, are discussed. Understanding key cellular factors in CHIKV infection and the interplay with the immune system will aid in the development of preventive and therapeutic approaches to combat this painful viral disease in humans.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-101416-041808
2017-09-29
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/virology/4/1/annurev-virology-101416-041808.html?itemId=/content/journals/10.1146/annurev-virology-101416-041808&mimeType=html&fmt=ahah

Literature Cited

  1. Strauss JH, Strauss EG. 1.  1994. The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58:491–562 [Google Scholar]
  2. Lumsden WH. 2.  1955. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–53. II. General description and epidemiology. Trans. R. Soc. Trop. Med. Hygiene 4933–57 [Google Scholar]
  3. Powers AM, Logue CH. 3.  2007. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J. Gen. Virol. 88:2363–77 [Google Scholar]
  4. Schwartz O, Albert ML. 4.  2010. Biology and pathogenesis of chikungunya virus. Nat. Rev. Microbiol. 8:491–500 [Google Scholar]
  5. Watanaveeradej V, Endy TP, Simasathien S, Kerdpanich A, Polprasert N. 5.  et al. 2006. Transplacental chikungunya virus antibody kinetics, Thailand. Emerg. Infect. Dis. 12:1770–72 [Google Scholar]
  6. Senanayake MP, Senanayake SM, Vidanage KK, Gunasena S, Lamabadusuriya SP. 6.  2009. Vertical transmission in chikungunya infection. Ceylon Med. J 5447–50 [Google Scholar]
  7. Kumarasamy V, Prathapa S, Zuridah H, Chem YK, Norizah I. 7.  et al. 2006. Re-emergence of chikungunya virus in Malaysia. Med. J. Malays 61221–25 [Google Scholar]
  8. Laras K, Sukri NC, Larasati RP, Bangs MJ, Kosim R. 8.  et al. 2005. Tracking the re-emergence of epidemic chikungunya virus in Indonesia. Trans. R. Soc. Trop. Med. Hygiene 99128–41 [Google Scholar]
  9. Ravi V. 9.  2006. Re-emergence of chikungunya virus in India. Indian J. Med. Microbiol 2483–84 [Google Scholar]
  10. Her Z, Kam YW, Lin RT, Ng LF. 10.  2009. Chikungunya: a bending reality. Microbes Infect 11:1165–76 [Google Scholar]
  11. Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L. 11.  et al. 2006. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLOS Med 3:e263 [Google Scholar]
  12. Pialoux G, Gauzere BA, Jaureguiberry S, Strobel M. 12.  2007. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 7:319–27 [Google Scholar]
  13. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. 13.  2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLOS Pathog 3:e201 [Google Scholar]
  14. Tsetsarkin KA, Chen R, Yun R, Rossi SL, Plante KS. 14.  et al. 2014. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat. Commun. 5:4084 [Google Scholar]
  15. Medlock JM, Schaffner KM, Versteirt F, Hendrickx G, Zeller H. 15.  et al. 2012. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector-Borne Zoonotic Dis 12:435–47 [Google Scholar]
  16. Salvador B, Zhou Y, Michault A, Muench MO, Simmons G. 16.  2009. Characterization of chikungunya pseudotyped viruses: identification of refractory cell lines and demonstration of cellular tropism differences mediated by mutations in E1 glycoprotein. Virology 393:33–41 [Google Scholar]
  17. Rezza G, Nicoletti L, Angelini R. 17.  et al. 2007. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–46 [Google Scholar]
  18. Leparc-Goffart I, Nougairède A, Cassadou S, Prat C, de Lamballerie X. 18.  2014. Chikungunya in the Americas. Lancet 383:514 [Google Scholar]
  19. Morens DM, Fauci AS. 19.  2014. Chikungunya at the door—déjà vu all over again?. N. Engl. J. Med. 371:885–87 [Google Scholar]
  20. Weaver SC, Lecuit M. 20.  2015. Chikungunya virus and the global spread of a mosquito-borne disease. N. Engl. J. Med. 372:1231–39 [Google Scholar]
  21. Lanciotti RS, Valadere AM. 21.  2014. Transcontinental movement of Asian genotype chikungunya virus. Emerg. Infect. Dis. 20:1400–2 [Google Scholar]
  22. Borgherini G, Poubeau P, Staikowsky F, Lory M, Le Moullec N. 22.  et al. 2007. Outbreak of chikungunya on Reunion Island: early clinical and laboratory features in 157 adult patients. Clin. Infect. Dis. 44:1401–7 [Google Scholar]
  23. Lakshmi V, Neeraja M, Subbalaxmi MV, Parida MM, Dash PK. 23.  et al. 2008. Clinical features and molecular diagnosis of chikungunya fever from South India. Clin. Infect. Dis. 46:1436–42 [Google Scholar]
  24. Ozden S, Huerre M, Riviere JP, Coffey LL, Afonso PV. 24.  et al. 2007. Human muscle satellite cells as targets of chikungunya virus infection. PLOS ONE 2:e527 [Google Scholar]
  25. Kam Y, Ong EK, Rénia L, Tong JC, Ng LF. 25.  2009. Immuno-biology of chikungunya and implications for disease intervention. Microbes Infect 11:1186–96 [Google Scholar]
  26. Borgherini G, Poubeau P, Jossaume A, Gouix A, Cotte L. 26.  et al. 2008. Persistent arthralgia associated with chikungunya virus: a study of 88 adult patients on Reunion Island. Clin. Infect. Dis. 47:469–75 [Google Scholar]
  27. Brighton SW, Simson IW. 27.  1984. A destructive arthropathy following chikungunya virus arthritis—a possible association. Clin. Rheumatol. 3:253–58 [Google Scholar]
  28. Fourie ED, Morrison JG. 28.  1979. Rheumatoid arthritic syndrome after chikungunya fever. S. Afr. Med. J 56130–32 [Google Scholar]
  29. Manimunda SP, Vijayachari P, Uppoor R, Sugunan AP, Singh SS. 29.  et al. 2010. Clinical progression of chikungunya fever during acute and chronic arthritic stages and the changes in joint morphology as revealed by imaging. Trans. R. Soc. Trop. Med. Hygiene 104392–99 [Google Scholar]
  30. Schilte C, Staikowsky F, Couderc T, Madec Y, Carpentier F. 30.  et al. 2013. Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLOS Negl. Trop. Dis. 7:e2137 [Google Scholar]
  31. Simon F, Parola P, Grandadam M, Fourcade S, Oliver M. 31.  et al. 2007. Chikungunya infection: an emerging rheumatism among travelers returned from Indian Ocean islands. Report of 47 cases. Medicine 86:123–37 [Google Scholar]
  32. Sissoko D, Malvy D, Ezzedine K, Renault P, Moscetti F. 32.  et al. 2009. Post-epidemic chikungunya disease on Reunion Island: course of rheumatic manifestations and associated factors over a 15-month period. PLOS Negl. Trop. Dis. 3:e389 [Google Scholar]
  33. Lemant J, Boisson V, Winer A, Thibault L, Andre H. 33.  et al. 2008. Serious acute chikungunya virus infection requiring intensive care during the Reunion Island outbreak in 2005–2006. Crit. Care Med. 36:2536–41 [Google Scholar]
  34. Mavalankar D, Shastri P, Raman P. 34.  2007. Chikungunya epidemic in India: a major public-health disaster. Lancet Infect. Dis. 7:306–7 [Google Scholar]
  35. Economopoulou A, Dominguez M, Helynck B, Sissoko D, Wichmann O. 35.  et al. 2009. Atypical chikungunya virus infections: clinical manifestations, mortality and risk factors for severe disease during the 2005–2006 outbreak on Reunion. Epidemiol. Infect. 137:534–41 [Google Scholar]
  36. Lebrun G, Chadda K, Reboux AH, Martinet O, Gauzere BA. 36.  2009. Guillain-Barré syndrome after chikungunya infection. Emerg. Infect. Dis. 15:495–96 [Google Scholar]
  37. Oehler E, Fournier E, Leparc-Goffart I, Larre P, Cubizolle S. 37.  et al. 2015. Increase in cases of Guillain-Barré syndrome during a chikungunya outbreak, French Polynesia, 2014 to 2015. Eurosurveillance 20:30079 [Google Scholar]
  38. Soumahoro MK, Boëlle PY, Gauzere BA, Atsou K, Pelat C. 38.  et al. 2011. The chikungunya epidemic on La Réunion Island in 2005–2006: a cost-of-illness study. PLOS Negl. Trop. Dis. 5:e1197 [Google Scholar]
  39. Renault P, Balleydier E, D'Ortenzio E, Baville M, Filleul L. 39.  2012. Epidemiology of chikungunya infection on Reunion Island, Mayotte, and neighboring countries. Méd. Mal. Infect. 42:93–101 [Google Scholar]
  40. Cabié A, Ledrans M, Abel S. 40.  2015. Chikungunya virus infections. N. Engl. J. Med. 373:94–95 [Google Scholar]
  41. Gerardin P. 41.  2010. Paediatric features of dengue and chikungunya fevers. Arch. Pediatr. 17:86–90 [Google Scholar]
  42. Simarmata D, Ng DC, Kam YW, Lee B, Sum MS. 42.  et al. 2016. Early clearance of chikungunya virus in children is associated with a strong innate immune response. Sci. Rep. 6:26097 [Google Scholar]
  43. Le Bomin A, Hebert JC, Marty P, Delaunay P. 43.  2008. Confirmed chikungunya in children in Mayotte. Description of 50 patients hospitalized from February to June 2006. Med. Trop. 68:491–95 [Google Scholar]
  44. Lewthwaite P, Vasanthapuram R, Osborne JC, Begum A, Plank JL. 44.  et al. 2009. Chikungunya virus and central nervous system infections in children, India. Emerg. Infect. Dis. 15:329–31 [Google Scholar]
  45. Robin S, Ramful D, Le Seach F, Jaffar-Bandjee MC, Rigou G. 45.  et al. 2008. Neurologic manifestations of pediatric chikungunya infection. J. Child Neurol. 23:1028–35 [Google Scholar]
  46. Valamparampil JJ, Chirakkarot S, Letha S, Jayakumar C, Gopinathan KM. 46.  2009. Clinical profile of chikungunya in infants. Indian J. Pediatr. 76:151–55 [Google Scholar]
  47. Harley D, Sleigh A, Ritchie S. 47.  2001. Ross River virus transmission, infection, and disease: a cross-disciplinary review. Clin. Microbiol. Rev. 14:909–32 [Google Scholar]
  48. Levine B, Hardwick JM, Griffin DE. 48.  1994. Persistence of alphaviruses in vertebrate hosts. Trends Microbiol 2:25–28 [Google Scholar]
  49. Suhrbier A, La Linn M. 49.  2004. Clinical and pathologic aspects of arthritis due to Ross River virus and other alphaviruses. Curr. Opin. Rheumatol. 16:374–79 [Google Scholar]
  50. Tesh RB. 50.  1982. Arthritides caused by mosquito-borne viruses. Annu. Rev. Med. 33:31–40 [Google Scholar]
  51. Toivanen A. 51.  2008. Alphaviruses: an emerging cause of arthritis?. Curr. Opin. Rheumatol. 20:486–90 [Google Scholar]
  52. Chopra A, Anuradha V, Lagoo-Joshi V, Kunjir V, Salvi S. 52.  et al. 2008. Chikungunya virus aches and pains: an emerging challenge. Arthritis Rheum 58:2921–22 [Google Scholar]
  53. Malvy D, Ezzedine K, Mamani-Matsuda M, Autran B, Tolou H. 53.  et al. 2009. Destructive arthritis in a patient with chikungunya virus infection with persistent specific IgM antibodies. BMC Infect. Dis. 9:200 [Google Scholar]
  54. Couderc T, Chretien F, Schilte C, Disson O, Brigitte M. 54.  et al. 2008. A mouse model for chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLOS Pathog 4:e29 [Google Scholar]
  55. Puiprom O, Morales-Vargas RE, Potiwat R, Chaichana P, Ikuta K. 55.  et al. 2013. Characterization of chikungunya virus infection of a human keratinocyte cell line: role of mosquito salivary gland protein in suppressing the host immune response. Infect. Genet. Evol. 17:210–15 [Google Scholar]
  56. Schilte C, Couderc T, Chretien F, Sourisseau M, Gangneux N. 56.  et al. 2010. Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J. Exp. Med. 207:429–42 [Google Scholar]
  57. Couderc T, Gangneux N, Chrétien F, Caro V, Le Luong T. 57.  et al. 2012. Chikungunya virus infection of corneal grafts. J. Infect. Dis. 206:851–59 [Google Scholar]
  58. Panning M, Grywna K, van Esbroeck M, Emmerich P, Drosten C. 58.  2008. Chikungunya fever in travelers returning to Europe from the Indian Ocean region, 2006. Emerg. Infect. Dis. 14:416–22 [Google Scholar]
  59. Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F. 59.  et al. 2007. Characterization of reemerging chikungunya virus. PLOS Pathog 3:e89 [Google Scholar]
  60. Krejbich-Trotot P, Denizot M, Hoarau JJ, Jaffar-Bandjee MC, Das T. 60.  et al. 2011. Chikungunya virus mobilizes the apoptotic machinery to invade host cell defenses. FASEB J 25:314–25 [Google Scholar]
  61. Long KM, Heise MT. 61.  2015. Protective and pathogenic responses to chikungunya virus infections. Curr. Trop. Med. Rep 213–21 [Google Scholar]
  62. Krejbich-Trotot P, Gay B, Li-Pat-Yuen G, Hoarau JJ, Jaffar-Bandjee MC. 62.  et al. 2011. Chikungunya triggers an autophagic process which promotes viral replication. Virol. J. 8:432 [Google Scholar]
  63. Judith D, Mostowy S, Bourai M, Gangneux N, Lelek M. 63.  et al. 2013. Species-specific impact of the autophagy machinery on chikungunya virus infection. EMBO Rep 14:534–44 [Google Scholar]
  64. Akira S, Takeda K. 64.  2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4:499–511 [Google Scholar]
  65. Stetson DB, Medzhitov R. 65.  2006. Type I interferons in host defense. Immunity 25:373–81 [Google Scholar]
  66. Gifford GE, Heller E. 66.  1963. Effect of actinomycin D on interferon production by ‘active’ and ‘inactive’ chikungunya virus in chick cells. Nature 200:50–51 [Google Scholar]
  67. Ng LF, Chow A, Sun YJ, Kwek DJ, Lim PL. 67.  et al. 2009. IL-1β, IL-6, and RANTES as biomarkers of chikungunya severity. PLOS ONE 4:e4261 [Google Scholar]
  68. Chow A, Her Z, Ong EKS, Chen JM, Dimatatac F. 68.  et al. 2011. Persistent arthralgia induced by chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J. Infect. Dis. 203:149–57 [Google Scholar]
  69. Hoarau JJ, Jaffar-Bandjee MC, Trotot PK, Das T, Li-Pat-Yuen G. 69.  et al. 2010. Persistent chronic inflammation and infection by chikungunya arthritogenic alphavirus in spite of a robust host immune response. J. Immunol. 184:5914–27 [Google Scholar]
  70. Brehin AC, Casademont I, Frenkiel MP, Julier C, Sakuntabhai A. 70.  et al. 2009. The large form of human 2′,5′-oligoadenylate synthetase (OAS3) exerts antiviral effect against chikungunya virus. Virology 384:216–22 [Google Scholar]
  71. Rudd PA, Wilson J, Gardner J, Larcher T, Babarit C. 71.  et al. 2012. Interferon response factors 3 and 7 protect against chikungunya virus hemorrhagic fever and shock. J. Virol. 86:9888–98 [Google Scholar]
  72. Schilte C, Buckwalter MR, Laird ME, Diamond MS, Schwartz O. 72.  et al. 2012. Cutting edge: independent roles for IRF-3 and IRF-7 in hematopoietic and nonhematopoietic cells during host response to chikungunya infection. J. Immunol. 188:2967–71 [Google Scholar]
  73. Teng TS, Foo SS, Simamarta D, Lum FM, Teo TH. 73.  et al. 2012. Viperin restricts chikungunya virus replication and pathology. J. Clin. Investig. 122:4447–60 [Google Scholar]
  74. Chandak NH, Kashyap RS, Kabra D, Karandikar P, Saha SS. 74.  et al. 2009. Neurological complications of chikungunya virus infection. Neurol. India 57:177–801 [Google Scholar]
  75. Gardner J, Anraku I, Le TT, Larcher T, Major L. 75.  et al. 2010. Chikungunya virus arthritis in adult wild-type mice. J. Virol. 84:8021–32 [Google Scholar]
  76. Ziegler SA, Lu L, da Rosa AP, Xiao SY, Tesh RB. 76.  2008. An animal model for studying the pathogenesis of chikungunya virus infection. Am. J. Trop. Med. Hygiene 79133–39 [Google Scholar]
  77. Teo TH, Lum FM, Claser C, Lulla V, Lulla A. 77.  et al. 2013. A pathogenic role for CD4+ T cells during chikungunya virus infection in mice. J. Immunol. 190:259–69 [Google Scholar]
  78. Morrison TE, Oko L, Montgomery SA, Whitmore AC, Lotstein AR. 78.  et al. 2011. A mouse model of chikungunya virus-induced musculoskeletal inflammatory disease: evidence of arthritis, tenosynovitis, myositis, and persistence. Am. J. Pathol. 178:32–40 [Google Scholar]
  79. Hawman DW, Stoermer KA, Montgomery SA, Pal P, Oko L. 79.  et al. 2013. Chronic joint disease caused by persistent chikungunya virus infection is controlled by the adaptive immune response. J. Virol. 87:13878–88 [Google Scholar]
  80. Couderc T, Khandoudi N, Grandadam M, Visse C, Gangneux N. 80.  et al. 2009. Prophylaxis and therapy for chikungunya virus infection. J. Infect. Dis. 200:516–23 [Google Scholar]
  81. Suckling AJ, Jagelman S, Webb HE. 81.  1978. A comparison of brain lysosomal enzyme activities in four experimental togavirus encephalitides. J. Neurol. Sci. 35:355–64 [Google Scholar]
  82. Wang E, Volkova E, Adams AP, Forrester N, Xiao SY. 82.  et al. 2008. Chimeric alphavirus vaccine candidates for chikungunya. Vaccine 26:5030–39 [Google Scholar]
  83. Labadie K, Larcher T, Joubert C, Mannioui A, Delache B. 83.  et al. 2010. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J. Clin. Investig. 120:894–906 [Google Scholar]
  84. Roy CJ, Adams AP, Wang E, Plante K, Gorchakov R. 84.  et al. 2014. Chikungunya vaccine candidate is highly attenuated and protects nonhuman primates against telemetrically monitored disease following a single dose. J. Infect. Dis. 209:1891–99 [Google Scholar]
  85. Messaoudi I, Vomaske J, Totonchy T, Kreklywich CN, Haberthur K. 85.  et al. 2013. Chikungunya virus infection results in higher and persistent viral replication in aged rhesus macaques due to defects in anti-viral immunity. PLOS Negl. Trop. Dis. 7:e2343 [Google Scholar]
  86. Akahata W, Yang ZY, Andersen H, Sun S, Holdaway HA. 86.  et al. 2010. A virus-like particle vaccine for epidemic chikungunya virus protects nonhuman primates against infection. Nat. Med. 16:334–38 [Google Scholar]
  87. Chen CI, Clark DC, Pesavento P, Lerche NW, Luciw PA. 87.  et al. 2010. Comparative pathogenesis of epidemic and enzootic chikungunya viruses in a pregnant rhesus macaque model. Am. J. Trop. Med. Hygiene 831249–58 [Google Scholar]
  88. Borgherini G, Poubeau P, Paganin F. 88.  2009. Chikungunya epidemic in Reunion Island. Epidemiol. Infect. 137:542–43 [Google Scholar]
  89. Higgs S, Ziegler SA. 89.  2010. A nonhuman primate model of chikungunya disease. J. Clin. Investig. 120:657–60 [Google Scholar]
  90. Wauquier N, Becquart P, Nkoghe D, Padilla C, Ndjoyi-Mbiguino A. 90.  et al. 2011. The acute phase of chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J. Infect. Dis. 204:115–23 [Google Scholar]
  91. Kelvin AA, Banner D, Silvi G, Moro ML, Spataro N. 91.  et al. 2011. Inflammatory cytokine expression is associated with chikungunya virus resolution and symptom severity. PLOS Negl. Trop. Dis. 5:e1279 [Google Scholar]
  92. Fitzpatrick FA, Stringfellow DA. 92.  1980. Virus and interferon effects on cellular prostaglandin biosynthesis. J. Immunol. 125:431–37 [Google Scholar]
  93. Malfait AM, Schnitzer TJ. 93.  2013. Towards a mechanism-based approach to pain management in osteoarthritis. Nat. Rev. Rheumatol. 9:654–64 [Google Scholar]
  94. Chirathaworn C, Poovorawan Y, Lertmaharit S, Wuttirattanakowit N. 94.  2013. Cytokine levels in patients with chikungunya virus infection. Asian Pac. J. Trop. Med. 6:631–34 [Google Scholar]
  95. Reddy V, Mani RS, Desai A, Ravi V. 95.  2014. Correlation of plasma viral loads and presence of chikungunya IgM antibodies with cytokine/chemokine levels during acute chikungunya virus infection. J. Med. Virol 861393–401 [Google Scholar]
  96. Teng TS, Kam YW, Lee B, Happuarachi HC, Wimal A. 96.  et al. 2015. A systematic meta-analysis of immune signatures in patients with acute chikungunya virus infection. J. Infect. Dis. 211:1925–35 [Google Scholar]
  97. Her Z, Malleret B, Chan M, Ong EKS, Wong SC. 97.  et al. 2010. Active infection of human blood monocytes by chikungunya virus triggers an innate immune response. J. Immunol. 184:5903–13 [Google Scholar]
  98. Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P. 98.  et al. 1997. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6:315–25 [Google Scholar]
  99. Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW. 99.  et al. 1998. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med. 187:601–8 [Google Scholar]
  100. Chen W, Foo SS, Rulli NE, Taylor A, Sheng KC. 100.  et al. 2014. Arthritogenic alphaviral infection perturbs osteoblast function and triggers pathologic bone loss. PNAS 111:6040–45 [Google Scholar]
  101. Poo YS, Nakaya H, Gardner J, Larcher T, Schroder WA. 101.  et al. 2014. Ccr2 deficientcy promotes exacerbated chronic erosive neutrophil-dominated chikungunya virus arthritis. J. Virol. 88:6862–72 [Google Scholar]
  102. Rulli NE, Rolph MS, Srikiatkhachorn A, Anantapreecha S, Guglielmotti A. 102.  et al. 2011. Protection from arthritis and myositis in a mouse model of acute chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis. J. Infect. Dis. 204:1026–30 [Google Scholar]
  103. Chen W, Foo SS, Taylor A, Lulla A, Merits A. 103.  et al. 2014. Bindarit, an inhibitor of monocyte chemotactic proteins (MCPs) synthesis, protects against bone loss induced by chikungunya virus infection. J. Virol. 89:581–93 [Google Scholar]
  104. Roques P, Gras G, Labadie K, Larcher T, Cherel Y. 104.  et al. 2011. Chikungunya virus infection involved monocytes and during chronic phase of the disease persisted in tissue macrophages. Eur. J. Clin. Investig. 41:23–52 [Google Scholar]
  105. Rinaldo CR Jr., Overall JC Jr., Glasgow LA. 105.  1975. Viral replication and interferon production in fetal and adult ovine leukocytes and spleen cells. Infect. Immun. 12:1070–77 [Google Scholar]
  106. Stoermer KA, Burrack A, Oko L, Montgomery SA, Borst LB. 106.  et al. 2012. Genetic ablation of arginase 1 in macrophages and neutrophils enhances clearance of an arthritogenic alphavirus. J. Immunol. 189:4047–59 [Google Scholar]
  107. Burrack KS, Tan JJ, McCarthy MK, Her Z, Berger JN. 107.  et al. 2015. Myeloid cell Arg1 inhibits control of arthritogenic alphavirus infection by suppressing antiviral T cells. PLOS Pathog 11:e1005191 [Google Scholar]
  108. Nakaya H, Gardner J, Poo YS, Major L, Pulendran B. 108.  et al. 2012. Gene profiling of chikungunya virus arthritis in a mouse model reveals significant overlap with rheumatoid arthritis. Arthritis Rheum 64:3553–63 [Google Scholar]
  109. Hoarau JJ, Gay F, Pelle O, Samri A, Jaffar-Bandjee MC. 109.  et al. 2013. Identical strength of the T cell responses against E2, nsP1 and capsid CHIKV proteins in recovered and chronic patients after the epidemics of 2005–2006 in La Reunion Island. PLOS ONE 8:e84695 [Google Scholar]
  110. Petitdemange C, Becquart P, Wauquier N, Beziat V, Debre P. 110.  et al. 2011. Unconventional repertoire profile is imprinted during acute chikungunya infection for natural killer cells polarization toward cytotoxicity. PLOS Pathog 7:e1002268 [Google Scholar]
  111. Petitdemange C, Wauquier N, Devilliers H, Yssel H, Mombo I. 111.  et al. 2016. Longitudinal analysis of natural killer cells in dengue virus-infected patients in comparison to chikungunya and chikungunya/dengue virus-infected patients. PLOS Negl. Trop. Dis. 10:e0004499 [Google Scholar]
  112. Her Z, Lum FM, Chow A, Leo YS, Rénia L. 112.  et al. 2012. J. Infect. Dis. 206:457–59
  113. Phuklia W, Kasisith J, Modhiran N, Rodpai E, Thannagith M. 113.  et al. 2013. Osteoclastogenesis induced by CHIKV-infected fibroblast-like synoviocytes: a possible interplay between synoviocytes and monocytes/macrophages in CHIKV-induced arthralgia/arthritis. Virus Res 177:179–88 [Google Scholar]
  114. Kam YW, Simarmata D, Chow A, Her Z, Teng TS. 114.  et al. 2012. Early appearance of neutralizing immunoglobulin G3 antibodies is associated with chikungunya virus clearance and long-term clinical protection. J. Infect. Dis. 205:1147–54 [Google Scholar]
  115. Kam YW, Lum FM, Teo TH, Lee WW, Simarmata D. 115.  et al. 2012. Early neutralizing IgG response to chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. EMBO Mol. Med. 4:330–43 [Google Scholar]
  116. Kam YK, Pok KY, Eng KE, Tan LK, Kaur S. 116.  et al. 2015. Sero-prevalence and cross-reactivity of chikungunya virus specific anti-E2EP3 antibodies in arbovirus-infected patients. PLOS Negl. Trop. Dis. 9:e3445 [Google Scholar]
  117. Pierro A, Rossini G, Gaibani P, Finarelli AC, Morro ML. 117.  et al. 2015. Persistence of anti-chikungunya virus-specific antibodies in a cohort of patients followed from the acute phase of infection after the 2007 outbreak in Italy. New Microbes New Infect 7:23–25 [Google Scholar]
  118. Kam YW, Lee WW, Simarmata D, Harjanto S, Teng TS. 118.  et al. 2012. Longitudinal analysis of the human antibody response to chikungunya virus infection: implications for serodiagnosis and vaccine development. J. Virol. 86:13005–15 [Google Scholar]
  119. Lum FM, Teo TH, Lee WW, Kam YW, Renia L. 119.  et al. 2013. An essential role of antibodies in the control of chikungunya virus infection. J. Immunol. 190:6295–302 [Google Scholar]
  120. Warter L, Lee CY, Thiagarajan R, Grandadam M, Lebecque S. 120.  et al. 2011. Chikungunya virus envelope-specific human monoclonal antibodies with broad neutralization potency. J. Immunol. 186:3258–64 [Google Scholar]
  121. Goh LY, Hobson-Peters J, Prow NA, Gardner J, Bierlefeldt. 121.  et al. 2013. Neutralizing monoclonal antibodies to the E2 protein of chikungunya virus protects against disease in a mouse model. Clin. Immunol. 149:487–97 [Google Scholar]
  122. Goh LY, Hobson-Peters J, Prow NA, Gardner J, Bierlefeldt. 122.  et al. 2015. Monoclonal antibodies specific for the capsid protein of chikungunya virus suitable for multiple applications. J. Gen. Virol. 96:507–12 [Google Scholar]
  123. Pal P, Dowd KA, Brien JD, Edeling MA, Gorlatov S. 123.  et al. 2013. Development of a highly protective combination monoclonal antibody therapy against chikungunya virus. PLOS Pathog 9:e1003312 [Google Scholar]
  124. Selvarajah S, Sexton NR, Kahle KM, Fong RH, Mattia KA. 124.  et al. 2013. A neutralizing monoclonal antibody targeting the acid-sensitive region in chikungunya virus E2 protects from disease. PLOS Negl. Trop. Dis. 7:e2423 [Google Scholar]
  125. Chattopadhyay S, Kumar A, Mamidi P, Nayak TK, Das I. 125.  et al. 2014. Development and characterization of monoclonal antibody against non-structural protein-2 of chikungunya virus and its application. J. Virol. Methods 199:86–94 [Google Scholar]
  126. Chua CL, Chan YF, Sam IC. 126.  2014. Characterisation of mouse monoclonal antibodies targeting linear epitopes on chikungunya virus E2 glycoprotein. J. Virol. Methods 195:126–33 [Google Scholar]
  127. Masrinoul P, Puiprom O, Tanaka A, Kuwahara M, Chaihana P. 127.  et al. 2014. Monoclonal antibody targeting chikungunya virus envelope 1 protein inhibits virus release. Virology 465:111–17 [Google Scholar]
  128. Ahola T, Courderc T, Ng LF, Hallengärd D, Powers A. 128.  et al. 2015. Therapeutics and vaccines against chikungunya virus. Vector-Borne Zoonotic Dis 15:250–57 [Google Scholar]
  129. Bréhin AC, Rubrecht L, Navarro-Sanchez ME, Maréchal V, Frenkiel MP. 129.  et al. 2008. Production and characterization of mouse monoclonal antibodies reactive to chikungunya envelope E2 glycoprotein. Virology 371:185–95 [Google Scholar]
  130. Lee CY, Kam YW, Fric J, Malleret B, Koh EG. 130.  et al. 2011. Chikungunya virus neutralization antigens and direct cell-to-cell transmission are revealed by human antibody-escape mutants. PLOS Pathog 7:e1002390 [Google Scholar]
  131. Metz SW, Martina BE, van den Doel P, Geertsema C, Osterhaus ADME. 131.  et al. 2013. Chikungunya virus-like particles are more immunogenic in a lethal AG129 mouse model compared to glycoprotein E1 or E2 subunits. Vaccine 31:6092–96 [Google Scholar]
  132. Hallengard D, Kakoulidou M, Lulla A, Kummerer BM, Johansson DX. 132.  et al. 2014. Novel attenuated chikungunya vaccine candidates elicit protective immunity in C57BL/6 mice. J. Virol. 88:2858–66 [Google Scholar]
  133. García-Arriaza J, Cepeda V, Hallengärd D, Sorzano, Kümmerer BM. 133.  et al. 2014. A novel poxvirus-based vaccine, MVA-CHIKV, is highly immunogenic and protects mice against chikungunya infection. J. Virol. 88:3527–47 [Google Scholar]
  134. van den Doel P, Volz A, Roose JM, Sewbalaksing VD, Pijlman GP. 134.  et al. 2014. Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of chikungunya virus protects AG129 mice against lethal challenge. PLOS Negl. Trop. Dis. 8:e3101 [Google Scholar]
  135. Chang LJ, Dowd KA, Mendoza FH, Saunders JG, Sitar S. 135.  et al. 2014. Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet 384:2046–52 [Google Scholar]
  136. Poo YS, Rudd PA, Gardber J, Wilson JA, Larcher T. 136.  et al. 2014. Multiple immune factors are involved in controlling acute and chronic chikungunya virus infection. PLOS Negl. Trop. Dis. 8:e3354 [Google Scholar]
  137. Teo TH, Her Z, Tan JJ, Lum FM, Lee WW. 137.  et al. 2015. Caribbean and La Réunion chikungunya virus isolates differ in their capacity to induce proinflammatory Th1 and NK cell responses and acute joint pathology. J. Virol. 89:7955–69 [Google Scholar]
  138. Soden M, Vasudevan H, Roberts B, Coelen R, Hamlin G. 138.  et al. 2000. Detection of viral ribonucleic acid and histologic analysis of inflamed synovium in Ross River virus infection. Arthritis Rheum 43:365–69 [Google Scholar]
  139. Yun NE, Peng BH, Bertke AS, Borisevich V, Smith JK. 139.  et al. 2009. CD4+ T cells provide protection against acute lethal encephalitis caused by Venezuelan equine encephalitis virus. Vaccine 27:4064–73 [Google Scholar]
  140. Kulcsar KA, Baxter VK, Greene IP, Griffin DE. 140.  2014. Interleukin 10 modulation of pathogenic Th17 cells during fatal alphavirus encephalomyelitis. PNAS 111:16053–58 [Google Scholar]
  141. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K. 141.  et al. 1999. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Investig. 103:1345–52 [Google Scholar]
  142. Chabaud M, Garnero P, Dayer JM, Guerne PA, Fossiez F. 142.  et al. 2000. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine 12:1092–99 [Google Scholar]
  143. Dhaeze T, Stinissen P, Liston A, Hellings N. 143.  2015. Humoral autoimmunity: a failure of regulatory T cells?. Autoimmun. Rev. 14:735–41 [Google Scholar]
  144. Belkaid Y. 144.  2007. Regulatory T cells and infection: a dangerous necessity. Nat. Rev. Immunol. 7:875–88 [Google Scholar]
  145. Lee WW, Teo TH, Her Z, Lum FM, Kam YW. 145.  et al. 2015. Expanding regulatory T cells alleviates chikungunya virus-induced pathology in mice. J. Virol. 89:7893–904 [Google Scholar]
  146. Lee WW, Teo TH, Lum FM, Andiappan AK, Amrun SN. 146.  et al. 2016. Virus infection drives IL-2 antibody complexes into pro-inflammatory agonists in mice. Sci. Rep. 6:37603 [Google Scholar]
  147. Battaglia M, Stabilini A, Migliavacca B, Horejs-Hoeck J, Kaupper T. 147.  et al. 2006. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J. Immunol. 177:8338–47 [Google Scholar]
  148. Teo TH, Chan YH, Lee WW, Lum FM, Amrun SN. 148.  et al. 2017. Fingolimod treatment abrogates chikungunya virus-induced arthralgia. Sci. Transl. Med. 9:eaal1333 [Google Scholar]
  149. Miner JJ, Cook LE, Hong JP, Smith AM, Richner JM. 149.  et al. 2017. Therapy with CTLA4-Ig and an antiviral monoclonal antibody controls chikungunya virus arthritis. Sci. Transl. Med. 9:eaah3438 [Google Scholar]
/content/journals/10.1146/annurev-virology-101416-041808
Loading
/content/journals/10.1146/annurev-virology-101416-041808
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error