This review discusses recent progress made in developing a vaccine and novel treatments for human immunodeficiency virus (HIV). It highlights the shortcomings of the RV144 vaccination trial [ALVAC-HIV (vCP1521) and AIDSVAX B/E] and the current standard of care and proposes that engineered expression of broadly neutralizing antibodies (bNAbs) against HIV-1 could overcome these shortcomings. Current developments in three major lines of research on HIV prevention and treatment using bNAbs are reviewed: firstly, the use of sequential immunogens to activate B cells to express bNAbs; secondly, the delivery of novel and extremely potent bNAbs through passive administration; and finally, the use of gene transfer using adeno-associated viral vectors to deliver bNAbs.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. UNAIDS. 2015. How AIDS Changed Everything. MGD6: 15 Years, 15 Lessons of Hope from the AIDS Response. Geneva: UNAIDS
  2. Hecht R, Bollinger L, Stover J, McGreevey W, Muhib F. 2.  et al. 2009. Critical choices in financing the response to the global HIV/AIDS pandemic. Health Aff 28:1591–605 [Google Scholar]
  3. Günthard HF, Aberg JA, Eron JJ, Hoy JF, Telenti A. 3.  et al. 2014. Antiretroviral treatment of adult HIV infection. JAMA 312:410 [Google Scholar]
  4. Okwundu CI. 4.  2012. Antiretroviral pre-exposure prophylaxis (PrEP) for preventing HIV in high-risk individuals. J. Evid.-Based Med. 5:186 [Google Scholar]
  5. Li H, Marley G, Ma W, Wei C, Lackey M. 5.  et al. 2017. The role of ARV associated adverse drug reactions in influencing adherence among HIV-infected individuals: a systematic review and qualitative meta-synthesis. AIDS Behav 21:341–51 [Google Scholar]
  6. Abara WE, Adekeye OA, Xu J, Rust G. 6.  2017. Adherence to combination antiretroviral treatment and clinical outcomes in a Medicaid sample of older HIV-infected adults. AIDS Care 29:441–48 [Google Scholar]
  7. Kim JH, Excler JL, Michael NL. 7.  2015. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu. Rev. Med. 66:423–37 [Google Scholar]
  8. Flynn NM, Forthal DN, Harro CD, Judson FN, Mayer KH. 8.  et al. 2005. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis. 191:654–65 [Google Scholar]
  9. Pitisuttithum P, Gilbert P, Gurwith M, Heyward W, Martin M. 9.  et al. 2006. Randomized, double‐blind, placebo‐controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV‐1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis. 194:1661–71 [Google Scholar]
  10. Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R. 10.  et al. 2008. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372:1881–93 [Google Scholar]
  11. Gray GE, Allen M, Moodie Z, Churchyard G, Bekker LG. 11.  et al. 2011. Safety and efficacy of the HVTN 503/Phambili study of a clade-B-based HIV-1 vaccine in South Africa: a double-blind, randomised, placebo-controlled test-of-concept phase 2b study. Lancet Infect. Dis. 11:507–15 [Google Scholar]
  12. Hammer SM, Sobieszczyk ME, Janes H, Karuna ST, Mulligan MJ. 12.  et al. 2013. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N. Engl. J. Med. 369:2083–92 [Google Scholar]
  13. 13. Ministr. Public Health Thai AIDS Vaccine Eval. Group. 2011. Screening and evaluation of potential volunteers for a phase III trial in Thailand of a candidate preventive HIV vaccine (RV148). Vaccine 29:4285–92 [Google Scholar]
  14. Jaworski JP, Vendrell A, Chiavenna SM. 14.  2016. Neutralizing monoclonal antibodies to fight HIV-1: on the threshold of success. Front. Immunol. 7:661 [Google Scholar]
  15. Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD. 15.  et al. 2012. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 366:1275–86 [Google Scholar]
  16. Day TA, Kublin JG. 16.  2013. Lessons learned from HIV vaccine clinical efficacy trials. Curr. HIV Res. 11:441–49 [Google Scholar]
  17. Yates NL, Liao HX, Fong Y, deCamp A, Vandergrift NA. 17.  et al. 2014. Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination. Sci. Transl. Med. 6:228ra39 [Google Scholar]
  18. Bar KJ, Li H, Chamberland A, Tremblay C, Routy JP. 18.  et al. 2010. Wide variation in the multiplicity of HIV-1 infection among injection drug users. J. Virol. 84:6241–47 [Google Scholar]
  19. Gray G. 19.  2016. A pivotal phase 2b/3 multisite, randomized, double-blind, placebo-controlled clinical trial to evaluate the safety and efficacy of ALVAC-HIV (vCP2438) and bivalent subtype C gp120/MF59 in preventing HIV-1 infection in adults in South Africa US Clinical Trial NCT02968849 Natl. Inst. Allergy Infect. Dis. Washington, DC: https://clinicaltrials.gov/show/NCT02968849
  20. Burton D, Pyati J, Koduri R, Sharp S, Thornton G. 20.  et al. 1994. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266:1024–27 [Google Scholar]
  21. Muster T, Steindl F, Purtscher M, Trkola A, Klima A. 21.  et al. 1993. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J. Virol. 67:6642–47 [Google Scholar]
  22. Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A. 22.  et al. 1996. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol. 70:1100–8 [Google Scholar]
  23. Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO. 23.  et al. 2001. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J. Virol. 75:10892–905 [Google Scholar]
  24. Ruprecht RM, Baba TW, Liska V, Hofmann-Lehmann R, Vlasak J. 24.  et al. 2000. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian–human immunodeficiency virus infection. Nat. Med. 6:200–6 [Google Scholar]
  25. Hessell AJ, Hangartner L, Hunter M, Havenith CEG, Beurskens FJ. 25.  et al. 2007. Fc receptor but not complement binding is important in antibody protection against HIV. Nature 449:101–4 [Google Scholar]
  26. Hessell AJ, Poignard P, Hunter M, Hangartner L, Tehrani DM. 26.  et al. 2009. Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nat. Med. 15:951–54 [Google Scholar]
  27. Hessell AJ, Rakasz EG, Poignard P, Hangartner L, Landucci G. 27.  et al. 2009. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLOS Pathog 5:e1000433 [Google Scholar]
  28. Hessell AJ, Rakasz EG, Tehrani DM, Huber M, Weisgrau KL. 28.  et al. 2010. Broadly neutralizing monoclonal antibodies 2F5 and 4E10 directed against the human immunodeficiency virus type 1 gp41 membrane-proximal external region protect against mucosal challenge by simian-human immunodeficiency virus SHIVBa-L. J. Virol. 84:1302–13 [Google Scholar]
  29. Mascola JR, Lewis MG, Stiegler G, Harris D, VanCott TC. 29.  et al. 1999. Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J. Virol. 73:4009–18 [Google Scholar]
  30. Haynes BF, Fleming J, St. Clair EW, Katinger H, Stiegler G. 30.  et al. 2005. Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 308:1906–8 [Google Scholar]
  31. Burton DR, Poignard P, Stanfield RL, Wilson IA. 31.  2012. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 337:183–86 [Google Scholar]
  32. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R. 32.  et al. 2011. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477:466–70 [Google Scholar]
  33. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P. 33.  et al. 2009. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326:285–89 [Google Scholar]
  34. Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR. 34.  et al. 2010. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329:856–61 [Google Scholar]
  35. Huang J, Ofek G, Laub L, Louder MK, Doria-Rose NA. 35.  et al. 2012. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491:406–12 [Google Scholar]
  36. Simek MD, Rida W, Priddy FH, Pung P, Carrow E. 36.  et al. 2009. Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J. Virol. 83:7337–48 [Google Scholar]
  37. Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F. 37.  et al. 2011. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333:1633–37 [Google Scholar]
  38. Zhou T, Georgiev I, Wu X, Yang ZY, Dai K. 38.  et al. 2010. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329:811–17 [Google Scholar]
  39. Bonsignori M, Hwang KK, Chen X, Tsao CY, Morris L. 39.  et al. 2011. Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated common ancestors. J. Virol. 85:9998–10009 [Google Scholar]
  40. Falkowska E, Ramos A, Feng Y, Zhou T, Moquin S. 40.  et al. 2012. PGV04, an HIV-1 gp120 CD4 binding site antibody, is broad and potent in neutralization but does not induce conformational changes characteristic of CD4. J. Virol. 86:4394–403 [Google Scholar]
  41. Rudicell RS, Kwon YD, Ko SY, Pegu A, Louder MK. 41.  et al. 2014. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J. Virol. 88:12669–82 [Google Scholar]
  42. Sok D, van Gils MJ, Pauthner M, Julien JP, Saye-Francisco KL. 42.  et al. 2014. Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. PNAS 111:17624–29 [Google Scholar]
  43. Huang J, Kang BH, Ishida E, Zhou T, Griesman T. 43.  et al. 2016. Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth. Immunity 45:1108–21 [Google Scholar]
  44. Kepler TB, Liao HX, Alam SM, Bhaskarabhatla R, Zhang R. 44.  et al. 2014. Immunoglobulin gene insertions and deletions in the affinity maturation of HIV-1 broadly reactive neutralizing antibodies. Cell Host Microbe 16:304–13 [Google Scholar]
  45. Mouquet H, Klein F, Scheid JF, Warncke M, Pietzsch J. 45.  et al. 2011. Memory B cell antibodies to HIV-1 gp140 cloned from individuals infected with clade A and B viruses. PLOS ONE 6:e24078 [Google Scholar]
  46. Xiao X, Chen W, Feng Y, Dimitrov DS. 46.  2009. Maturation pathways of cross-reactive HIV-1 neutralizing antibodies. Viruses 1:802–17 [Google Scholar]
  47. Wu X, Zhou T, Zhu J, Zhang B, Georgiev I. 47.  et al. 2011. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333:1593–602 [Google Scholar]
  48. Corti D, Langedijk JPM, Hinz A, Seaman MS, Vanzetta F. 48.  et al. 2010. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLOS ONE 5:e8805 [Google Scholar]
  49. Haynes BF, Shaw GM, Korber B, Kelsoe G, Sodroski J. 49.  et al. 2016. HIV-host interactions: implications for vaccine design. Cell Host Microbe 19:292–303 [Google Scholar]
  50. Kelsoe G, Haynes BF. 50.  2017. Host controls of HIV broadly neutralizing antibody development. Immunol. Rev. 275:79–88 [Google Scholar]
  51. Haynes BF, Moody MA, Verkoczy L, Kelsoe G, Alam SM. 51.  2005. Antibody polyspecificity and neutralization of HIV-1: a hypothesis. Hum. Antib. 14:59–67 [Google Scholar]
  52. Haynes BF, Kelsoe G, Harrison SC, Kepler TB. 52.  2012. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat. Biotechnol. 30:423–33 [Google Scholar]
  53. Hoot S, McGuire AT, Cohen KW, Strong RK, Hangartner L. 53.  et al. 2013. Recombinant HIV envelope proteins fail to engage germline versions of anti-CD4bs bNAbs. PLOS Pathog 9:e1003106 [Google Scholar]
  54. Sanders RW, van Gils MJ, Derking R, Sok D, Ketas TJ. 54.  et al. 2015. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science 349:aac4223 [Google Scholar]
  55. Briney B, Sok D, Jardine JG, Kulp DW, Skog P. 55.  et al. 2016. Tailored immunogens direct affinity maturation toward HIV neutralizing antibodies. Cell 166:1459–70 [Google Scholar]
  56. Jardine JG, Ota T, Sok D, Pauthner M, Kulp DW. 56.  et al. 2015. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science 349:156–61 [Google Scholar]
  57. Martin-Gayo E, Cronin J, Hickman T, Ouyang Z, Lindqvist M. 57.  et al. 2017. Circulating CXCR5+CXCR3+PD-1lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth. JCI Insight 2:e89574 [Google Scholar]
  58. Steichen JM, Kulp DW, Tokatlian T, Escolano A, Dosenovic P. 58.  et al. 2016. HIV vaccine design to target germline precursors of glycan-dependent broadly neutralizing antibodies. Immunity 45:483–96 [Google Scholar]
  59. Schoofs T, Klein F, Braunschweig M, Kreider EF, Feldmann A. 59.  et al. 2016. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science 352:997–1001 [Google Scholar]
  60. Wei X, Decker JM, Wang S, Hui H, Kappes JC. 60.  et al. 2003. Antibody neutralization and escape by HIV-1. Nature 422:307–12 [Google Scholar]
  61. Caskey M, Klein F, Lorenzi JCC, Seaman MS, West AP. 61.  et al. 2015. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522:487–91 [Google Scholar]
  62. Pegu A, Yang Z, Boyington JC, Wu L, Ko SY. 62.  et al. 2014. Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Sci. Transl. Med. 6:243ra88 [Google Scholar]
  63. Bar KJ, Sneller MC, Harrison LJ, Justement JS, Overton ET. 63.  et al. 2016. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. N. Engl. J. Med. 375:2037–50 [Google Scholar]
  64. Corey L, Cohen M. 64.  2017. A phase 2b study to evaluate the safety and efficacy of VRC01 broadly neutralizing monoclonal antibody in reducing acquisition of HIV-1 infection in women in sub-Saharan Africa US Clinical Trial NCT02568215 Natl. Inst. Allergy Infect. Dis. Washington, DC: https://clinicaltrials.gov/show/NCT02568215
  65. Wagh K, Bhattacharya T, Williamson C, Robles A, Bayne M. 65.  et al. 2016. Optimal combinations of broadly neutralizing antibodies for prevention and treatment of HIV-1 clade C infection. PLOS Pathog 12:e1005520 [Google Scholar]
  66. Kong R, Louder MK, Wagh K, Bailer RT, deCamp A. 66.  et al. 2015. Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes. J. Virol. 89:2659–71 [Google Scholar]
  67. Asokan M, Rudicell RS, Louder M, McKee K, O'Dell S. 67.  et al. 2015. Bispecific antibodies targeting different epitopes on the HIV-1 envelope exhibit broad and potent neutralization. J. Virol. 89:12501–12 [Google Scholar]
  68. Bournazos S, Gazumyan A, Seaman MS, Nussenzweig MC, Ravetch JV. 68.  2016. Bispecific anti-HIV-1 antibodies with enhanced breadth and potency. Cell 165:1609–20 [Google Scholar]
  69. Huang Y, Yu J, Lanzi A, Yao X, Andrews CD. 69.  et al. 2016. Engineered bispecific antibodies with exquisite HIV-1-neutralizing activity. Cell 165:1621–31 [Google Scholar]
  70. Pegu A, Asokan M, Wu L, Wang K, Hataye J. 70.  et al. 2015. Activation and lysis of human CD4 cells latently infected with HIV-1. Nat. Commun. 6:8447 [Google Scholar]
  71. Sun M, Pace CS, Yao X, Yu F, Padte NN. 71.  et al. 2014. Rational design and characterization of the novel, broad and potent bispecific HIV-1 neutralizing antibody iMabm36. JAIDS 66:473–83 [Google Scholar]
  72. Ferrari G, Haynes BF, Koenig S, Nordstrom JL, Margolis DM, Tomaras GD. 72.  2016. Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection. Nat. Rev. Drug Discov. 15:823–34 [Google Scholar]
  73. Keizer RJ, Huitema ADR, Schellens JHM, Beijnen JH. 73.  2010. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 49:493–507 [Google Scholar]
  74. dos Santos Coura R, Nardi NB. 74.  2007. The state of the art of adeno-associated virus-based vectors in gene therapy. Virol. J. 4:99 [Google Scholar]
  75. Daya S, Berns KI. 75.  2008. Gene therapy using adeno-associated virus vectors. Clin. Microbiol. Rev. 21:583–93 [Google Scholar]
  76. Nowrouzi A, Penaud-Budloo M, Kaeppel C, Appelt U, Le Guiner C. 76.  et al. 2012. Integration frequency and intermolecular recombination of rAAV vectors in non-human primate skeletal muscle and liver. Mol. Ther. 20:1177–86 [Google Scholar]
  77. Penaud-Budloo M, Le Guiner C, Nowrouzi A, Toromanoff A, Chérel Y. 77.  et al. 2008. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J. Virol. 82:7875–85 [Google Scholar]
  78. Schnepp BC, Clark KR, Klemanski DL, Pacak CA, Johnson PR. 78.  2003. Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J. Virol. 77:3495–504 [Google Scholar]
  79. Blacklow NR, Hoggan MD, Kapikian AZ, Austin JB, Rowe WP. 79.  1968. Epidemiology of adenovirus-associated virus infection in a nursery population. Am. J. Epidemiol. 88:368–78 [Google Scholar]
  80. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O. 80.  et al. 2010. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene. Ther. 21:704–12 [Google Scholar]
  81. Hastie E, Samulski RJ. 81.  2015. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success—a personal perspective. Hum. Gene. Ther. 26:257–65 [Google Scholar]
  82. Maguire AM, Russell SR. 82.  2017. A safety and efficacy study in subjects with Leber congenital amaurosis (LCA) using adeno-associated viral vector to deliver the gene for human RPE65 to the retinal pigment epithelium (RPE) [AAV2-hRPE65v2-301] US Clinical Trial NCT00999609 Spark Therapeutics Philadelphia: https://clinicaltrials.gov/show/NCT00999609
  83. Bruno MJ, Deakin M, Ruszniewski PB, Bulk NV, de Wal J. 83.  et al. 2012. Alipogene tiparvovec gene therapy reduces the risk of acute pancreatitis in patients with lipoprotein lipase deficiency. Gastroenterology 142:S112 [Google Scholar]
  84. Wu Z, Yang H, Colosi P. 84.  2010. Effect of genome size on AAV vector packaging. Mol. Ther. 18:80–86 [Google Scholar]
  85. Dong JY, Fan PD, Frizzell RA. 85.  1996. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum. Gene. Ther. 7:2101–12 [Google Scholar]
  86. Wu J, Zhao W, Zhong L, Han Z, Li B. 86.  et al. 2007. Self-complementary recombinant adeno-associated viral vectors: packaging capacity and the role of Rep proteins in vector purity. Hum. Gene. Ther. 18:171–82 [Google Scholar]
  87. McCarty DM, Monahan PE, Samulski RJ. 87.  2001. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene. Ther. 8:1248–54 [Google Scholar]
  88. Lewis AD, Chen R, Montefiori DC, Johnson PR, Clark KR. 88.  2002. Generation of neutralizing activity against human immunodeficiency virus type 1 in serum by antibody gene transfer. J. Virol. 76:8769–75 [Google Scholar]
  89. Johnson WE, Sanford H, Schwall L, Burton DR, Parren PWHI. 89.  et al. 2003. Assorted mutations in the envelope gene of simian immunodeficiency virus lead to loss of neutralization resistance against antibodies representing a broad spectrum of specificities. J. Virol. 77:9993–10003 [Google Scholar]
  90. Ashkenazi A, Chamow SM. 90.  1997. Immunoadhesins as research tools and therapeutic agents. Curr. Opin. Immunol. 9:195–200 [Google Scholar]
  91. Capon DJ, Chamow SM, Mordenti J, Marsters SA, Gregory T. 91.  et al. 1989. Designing CD4 immunoadhesins for AIDS therapy. Nature 337:525–31 [Google Scholar]
  92. Johnson PR, Schnepp BC, Zhang J, Connell MJ, Greene SM. 92.  et al. 2009. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat. Med. 15:901–6 [Google Scholar]
  93. Limberis MP, Adam VS, Wong G, Gren J, Kobasa D. 93.  et al. 2013. Intranasal antibody gene transfer in mice and ferrets elicits broad protection against pandemic influenza. Sci. Transl. Med. 5:187r72 [Google Scholar]
  94. Allaway GP, Ryder AM, Beaudry GA, Maddon PJ. 94.  1993. Synergistic inhibition of HIV-1 envelope-mediated cell fusion by CD4-based molecules in combination with antibodies to gp120 or gp41. AIDS Res. Hum. Retrovir. 9:581–87 [Google Scholar]
  95. Denton PW, Estes JD, Sun Z, Othieno FA, Wei BL. 95.  et al. 2008. Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLOS Med 5:e16 [Google Scholar]
  96. Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. 96.  2011. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 481:81–84 [Google Scholar]
  97. Balazs AB, Ouyang Y, Hong CM, Chen J, Nguyen SM. 97.  et al. 2014. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat. Med. 20:296–300 [Google Scholar]
  98. Saunders KO, Wang L, Joyce MG, Yang ZY, Balazs AB. 98.  et al. 2015. Broadly neutralizing human immunodeficiency virus type 1 antibody gene transfer protects nonhuman primates from mucosal simian-human immunodeficiency virus infection. J. Virol. 89:8334–45 [Google Scholar]
  99. Fuchs SP, Martinez-Navio JM, Piatak M, Lifson JD, Gao G, Desrosiers RC. 99.  2015. AAV-delivered antibody mediates significant protective effects against SIVmac239 challenge in the absence of neutralizing activity. PLOS Pathog 11:e1005090 [Google Scholar]
  100. Gardner MR, Kattenhorn LM, Kondur HR, von Schaewen M, Dorfman T. 100.  et al. 2015. AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature 519:87–91 [Google Scholar]
  101. Kessler M, Goldsmith D, Schellekens H. 101.  2006. Immunogenicity of biopharmaceuticals. Nephrol. Dial. Transplant. 21:Suppl. 5v9–12 [Google Scholar]
  102. Deal CE, Balazs AB. 102.  2015. Vectored antibody gene delivery for the prevention or treatment of HIV infection. Curr. Opin. HIV AIDS 10:190–97 [Google Scholar]
  103. Lewis DJM. 103.  2016. Safety and immunogenicity study of rAAV1-PG9DP recombinant AAV vector coding for PG9 antibody in healthy male adults US Clinical Trial NCT01937455 Int. AIDS Vaccine Initiat. New York: https://clinicaltrials.gov/show/NCT01937455
  104. Brady JM, Baltimore D, Balazs AB. 104.  2017. Antibody gene transfer with adeno-associated viral vectors as a method for HIV prevention. Immunol. Rev. 275:324–33 [Google Scholar]
  105. Parren PW, Marx PA, Hessell AJ, Luckay A, Harouse J. 105.  et al. 2001. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J. Virol. 75:8340–47 [Google Scholar]
  106. Shingai M, Donau OK, Plishka RJ, Buckler-White A, Mascola JR. 106.  et al. 2014. Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. J. Exp. Med. 211:2061–74 [Google Scholar]
  107. Moldt B, Le KM, Carnathan DG, Whitney JB, Schultz N. 107.  et al. 2016. Neutralizing antibody affords comparable protection against vaginal and rectal simian/human immunodeficiency virus challenge in macaques. AIDS 30:1543–51 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error