1932

Abstract

Interferon lambda (IFN-λ, type III IFN, IL-28/29) is a family of antiviral cytokines that are especially important at barrier sites, including the maternal-fetal interface. Recent discoveries have identified important roles for IFN-λ during pregnancy, particularly in the context of congenital infections. Here, we provide a comprehensive review of the activity of IFN-λ at the maternal-fetal interface, highlighting cell types that produce and respond to IFN-λ in the placenta, decidua, and endometrium. Further, we discuss the role of IFN-λ during infections with congenital pathogens including Zika virus, human cytomegalovirus, rubella virus, and . We discuss advances in experimental models that can be used to fill important knowledge gaps about IFN-λ-mediated immunity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-111821-101531
2024-09-26
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/virology/11/1/annurev-virology-111821-101531.html?itemId=/content/journals/10.1146/annurev-virology-111821-101531&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lazear HM, Schoggins JW, Diamond MS. 2019.. Shared and distinct functions of type I and type III interferons. . Immunity 50:(4):90723
    [Crossref] [Google Scholar]
  2. 2.
    Dowling JW, Forero A. 2022.. Beyond good and evil: molecular mechanisms of type I and III IFN functions. . J. Immunol. 208:(2):24756
    [Crossref] [Google Scholar]
  3. 3.
    Mesev EV, LeDesma RA, Ploss A. 2019.. Decoding type I and III interferon signalling during viral infection. . Nat. Microbiol. 4:(6):91424
    [Crossref] [Google Scholar]
  4. 4.
    Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, et al. 2003.. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. . Nat. Immunol. 4:(1):6977
    [Crossref] [Google Scholar]
  5. 5.
    Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, et al. 2003.. IL-28, IL-29 and their class II cytokine receptor IL-28R. . Nat. Immunol. 4:(1):6368
    [Crossref] [Google Scholar]
  6. 6.
    Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, et al. 2013.. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. . Nat. Genet. 45:(2):16471
    [Crossref] [Google Scholar]
  7. 7.
    Krause CD, Pestka S. 2015.. Cut, copy, move, delete: the study of human interferon genes reveal multiple mechanisms underlying their evolution in amniotes. . Cytokine 76:(2):48095
    [Crossref] [Google Scholar]
  8. 8.
    Kotenko SV, Durbin JE. 2017.. Contribution of type III interferons to antiviral immunity: location, location, location. . J. Biol. Chem. 292:(18):7295303
    [Crossref] [Google Scholar]
  9. 9.
    Wack A, Terczyńska-Dyla E, Hartmann R. 2015.. Guarding the frontiers: the biology of type III interferons. . Nat. Immunol. 16:(8):8029
    [Crossref] [Google Scholar]
  10. 10.
    Read SA, Wijaya R, Ramezani-Moghadam M, Tay E, Schibeci S, et al. 2019.. Macrophage coordination of the interferon lambda immune response. . Front. Immunol. 10::2674
    [Crossref] [Google Scholar]
  11. 11.
    Wells AI, Coyne CB. 2018.. Type III interferons in antiviral defenses at barrier surfaces. . Trends Immunol. 39:(10):84858
    [Crossref] [Google Scholar]
  12. 12.
    Blazek K, Eames HL, Weiss M, Byrne AJ, Perocheau D, et al. 2015.. IFN-λ resolves inflammation via suppression of neutrophil infiltration and IL-1β production. . J. Exp. Med. 212:(6):84553
    [Crossref] [Google Scholar]
  13. 13.
    Mennechet FJD, Uzé G. 2006.. Interferon-λ–treated dendritic cells specifically induce proliferation of FOXP3-expressing suppressor T cells. . Blood 107:(11):441723
    [Crossref] [Google Scholar]
  14. 14.
    Jordan WJ, Eskdale J, Srinivas S, Pekarek V, Kelner D, et al. 2007.. Human interferon lambda-1 (IFN-λ1/IL-29) modulates the Th1/Th2 response. . Genes Immun. 8:(3):25461
    [Crossref] [Google Scholar]
  15. 15.
    Yin Z, Dai J, Deng J, Sheikh F, Natalia M, et al. 2012.. Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells. . J. Immunol. 189:(6):273545
    [Crossref] [Google Scholar]
  16. 16.
    Broggi A, Tan Y, Granucci F, Zanoni I. 2017.. IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function. . Nat. Immunol. 18:(10):108493
    [Crossref] [Google Scholar]
  17. 17.
    Ank N, West H, Bartholdy C, Eriksson K, Thomsen AR, Paludan SR. 2006.. Lambda interferon (IFN-λ), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. . J. Virol. 80:(9):45019
    [Crossref] [Google Scholar]
  18. 18.
    Ank N, Iversen MB, Bartholdy C, Staeheli P, Hartmann R, et al. 2008.. An important role for type III interferon (IFN-λ/IL-28) in TLR-induced antiviral activity. . J. Immunol. 180:(4):247485
    [Crossref] [Google Scholar]
  19. 19.
    Durbin RK, Kotenko SV, Durbin JE. 2013.. Interferon induction and function at the mucosal surface. . Immunol. Rev. 255:(1):2539
    [Crossref] [Google Scholar]
  20. 20.
    Crotta S, Davidson S, Mahlakoiv T, Desmet CJ, Buckwalter MR, et al. 2013.. Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. . PLOS Pathog. 9:(11):e1003773
    [Crossref] [Google Scholar]
  21. 21.
    Galani IE, Triantafyllia V, Eleminiadou E-E, Koltsida O, Stavropoulos A, et al. 2017.. Interferon-λ mediates non-redundant front-line antiviral protection against influenza virus infection without compromising host fitness. . Immunity 46:(5):87590.e6
    [Crossref] [Google Scholar]
  22. 22.
    Jewell NA, Cline T, Mertz SE, Smirnov SV, Flaño E, et al. 2010.. Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo. . J. Virol. 84:(21):1151522
    [Crossref] [Google Scholar]
  23. 23.
    Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, et al. 2014.. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. . Nat. Immunol. 15:(8):71726
    [Crossref] [Google Scholar]
  24. 24.
    Okabayashi T, Kojima T, Masaki T, Yokota S, Imaizumi T, et al. 2011.. Type-III interferon, not type-I, is the predominant interferon induced by respiratory viruses in nasal epithelial cells. . Virus Res. 160:(1–2):36066
    [Crossref] [Google Scholar]
  25. 25.
    Odendall C, Voak AA, Kagan JC. 2017.. Type III IFNs are commonly induced by bacteria-sensing TLRs and reinforce epithelial barriers during infection. . J. Immunol. 199:(9):327079
    [Crossref] [Google Scholar]
  26. 26.
    Doyle SE, Schreckhise H, Khuu-Duong K, Henderson K, Rosler R, et al. 2006.. Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytes. . Hepatology 44:(4):896906
    [Crossref] [Google Scholar]
  27. 27.
    Marcello T, Grakoui A, Barba-Spaeth G, Machlin ES, Kotenko SV, et al. 2006.. Interferons α and λ inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. . Gastroenterology 131:(6):188798
    [Crossref] [Google Scholar]
  28. 28.
    Zhou Z, Hamming OJ, Ank N, Paludan SR, Nielsen AL, Hartmann R. 2007.. Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. . J. Virol. 81:(14):774958
    [Crossref] [Google Scholar]
  29. 29.
    Bolen CR, Ding S, Robek MD, Kleinstein SH. 2014.. Dynamic expression profiling of type I and type III interferon-stimulated hepatocytes reveals a stable hierarchy of gene expression. . Hepatology 59:(4):126272
    [Crossref] [Google Scholar]
  30. 30.
    Jilg N, Lin W, Hong J, Schaefer EA, Wolski D, et al. 2014.. Kinetic differences in the induction of interferon stimulated genes by interferon-α and interleukin 28B are altered by infection with hepatitis C virus. . Hepatology 59:(4):125061
    [Crossref] [Google Scholar]
  31. 31.
    Kohli A, Zhang X, Yang J, Russell RS, Donnelly RP, et al. 2012.. Distinct and overlapping genomic profiles and antiviral effects of interferon-λ and -α on HCV-infected and noninfected hepatoma cells. . J. Viral Hepat. 19:(12):84353
    [Crossref] [Google Scholar]
  32. 32.
    Voigt EA, Yin J. 2015.. Kinetic differences and synergistic antiviral effects between type I and type III interferon signaling indicate pathway independence. . J. Interf. Cytokine Res. 35:(9):73447
    [Crossref] [Google Scholar]
  33. 33.
    Mesev EV, Lin AE, Guare EG, Heller BL, Douam F, et al. 2023.. Membrane-proximal motifs encode differences in signaling strength between type I and III interferon receptors. . Sci. Signal. 16:(806):eadf5494
    [Crossref] [Google Scholar]
  34. 34.
    Philip DT, Goins NM, Catanzaro NJ, Misumi I, Whitmire JK, et al. 2024.. Interferon lambda restricts herpes simplex virus skin disease by suppressing neutrophil-mediated pathology. . mBio 2024::e02623-23
    [Google Scholar]
  35. 35.
    Jagger BW, Miner JJ, Cao B, Arora N, Smith AM, et al. 2017.. Gestational stage and IFN-λ signaling regulate ZIKV infection in utero. . Cell Host Microbe 22:(3):36676.e3
    [Crossref] [Google Scholar]
  36. 36.
    Caine EA, Scheaffer SM, Arora N, Zaitsev K, Artyomov MN, et al. 2019.. Interferon lambda protects the female reproductive tract against Zika virus infection. . Nat. Commun. 10:(1):280
    [Crossref] [Google Scholar]
  37. 37.
    Good C, Wells AI, Coyne CB. 2019.. Type III interferon signaling restricts enterovirus 71 infection of goblet cells. . Sci. Adv. 5:(3):eaau4255
    [Crossref] [Google Scholar]
  38. 38.
    Dekel N, Gnainsky Y, Granot I, Mor G. 2009.. Inflammation and implantation. . Am. J. Reprod. Immunol. 63:(1):1721
    [Crossref] [Google Scholar]
  39. 39.
    Abrahams VM, Kim YM, Straszewski SL, Romero R, Mor G. 2004.. Macrophages and apoptotic cell clearance during pregnancy. . Am. J. Reprod. Immunol. 51:(4):27582
    [Crossref] [Google Scholar]
  40. 40.
    Koga K, Mor G. 2010.. Toll-like receptors at the maternal-fetal interface in normal pregnancy and pregnancy disorders. . Am. J. Reprod. Immunol. 63:(6):587600
    [Crossref] [Google Scholar]
  41. 41.
    Mor G, Abrahams VM. 2002.. Immunology of implantation. . Immunol. Allergy Clin. North Am. 22:(3):54565
    [Crossref] [Google Scholar]
  42. 42.
    Romero R, Espinoza J, Gonçalves LF, Kusanovic JP, Friel LA, Nien JK. 2006.. Inflammation in preterm and term labour and delivery. . Semin. Fetal Neonatal Med. 11:(5):31726
    [Crossref] [Google Scholar]
  43. 43.
    Romero R, Espinoza J, Kusanovic J, Gotsch F, Hassan S, et al. 2006.. The preterm parturition syndrome. . BJOG Int. J. Obstet. Gynaecol. 113::1742
    [Crossref] [Google Scholar]
  44. 44.
    Mor G. 2008.. Inflammation and pregnancy: the role of toll-like receptors in trophoblast-immune interaction. . Ann. N. Y. Acad. Sci. 1127::12128
    [Crossref] [Google Scholar]
  45. 45.
    Casazza RL, Lazear HM, Miner JJ. 2020.. Protective and pathogenic effects of interferon signaling during pregnancy. . Viral Immunol. 33:(1):311
    [Crossref] [Google Scholar]
  46. 46.
    Bayer A, Delorme-Axford E, Sleigher C, Frey TK, Trobaugh DW, et al. 2015.. Human trophoblasts confer resistance to viruses implicated in perinatal infection. . Am. J. Obstet. Gynecol. 212:(1):71.e1e8
    [Crossref] [Google Scholar]
  47. 47.
    Bayer A, Lennemann NJ, Ouyang Y, Bramley JC, Morosky S, et al. 2016.. Type III interferons produced by human placental trophoblasts confer protection against Zika virus infection. . Cell Host Microbe 19:(5):70512
    [Crossref] [Google Scholar]
  48. 48.
    Delorme-Axford E, Donker RB, Mouillet J-F, Chu T, Bayer A, et al. 2013.. Human placental trophoblasts confer viral resistance to recipient cells. . PNAS 110:(29):1204853
    [Crossref] [Google Scholar]
  49. 49.
    Ouyang Y, Bayer A, Chu T, Tyurin VA, Kagan VE, et al. 2016.. Isolation of human trophoblastic extracellular vesicles and characterization of their cargo and antiviral activity. . Placenta 47::8695
    [Crossref] [Google Scholar]
  50. 50.
    Corry J, Arora N, Good CA, Sadovsky Y, Coyne CB. 2017.. Organotypic models of type III interferon-mediated protection from Zika virus infections at the maternal-fetal interface. . PNAS 114:(35):943338
    [Crossref] [Google Scholar]
  51. 51.
    Yang L, Semmes EC, Ovies C, Megli C, Permar S, et al. 2022.. Innate immune signaling in trophoblast and decidua organoids defines differential antiviral defenses at the maternal-fetal interface. . eLife 11::e79794
    [Crossref] [Google Scholar]
  52. 52.
    Casazza RL, Philip DT, Lazear HM. 2022.. Interferon lambda signals in maternal tissues to exert protective and pathogenic effects in a gestational stage-dependent manner. . mBio 13:(3):e03857-21
    [Crossref] [Google Scholar]
  53. 53.
    Wickramage I, VanWye J, Max K, Lockhart JH, Hortu I, et al. 2023.. SINE RNA of the imprinted miRNA clusters mediates constitutive type III interferon expression and antiviral protection in hemochorial placentas. . Cell Host Microbe 31:(7):118599.e10
    [Crossref] [Google Scholar]
  54. 54.
    Bierne H, Travier L, Mahlakõiv T, Tailleux L, Subtil A, et al. 2012.. Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta. . PLOS ONE 7:(6):e39080
    [Crossref] [Google Scholar]
  55. 55.
    Male V, Moffett A. 2023.. Natural killer cells in the human uterine mucosa. . Annu. Rev. Immunol. 41::12751
    [Crossref] [Google Scholar]
  56. 56.
    Wang Y, Li T, Chen Y, Wei H, Sun R, Tian Z. 2017.. Involvement of NK cells in IL-28B–mediated immunity against influenza virus infection. . J. Immunol. 199:(3):101220
    [Crossref] [Google Scholar]
  57. 57.
    Lasfar A, de la Torre A, Abushahba W, Cohen-Solal KA, Castaneda I, et al. 2016.. Concerted action of IFN-α and IFN-λ induces local NK cell immunity and halts cancer growth. . Oncotarget 7:(31):4925967
    [Crossref] [Google Scholar]
  58. 58.
    Zanoni I, Granucci F, Broggi A. 2017.. Interferon (IFN)-λ takes the helm: immunomodulatory roles of type III IFNs. . Front. Immunol. 8::1661
    [Crossref] [Google Scholar]
  59. 59.
    Semmes EC, Coyne CB. 2022.. Innate immune defenses at the maternal-fetal interface. . Curr. Opin. Immunol. 74::6067
    [Crossref] [Google Scholar]
  60. 60.
    Hou W, Wang X, Ye L, Zhou L, Yang Z-Q, et al. 2009.. Lambda interferon inhibits human immunodeficiency virus type 1 infection of macrophages. . J. Virol. 83:(8):383442
    [Crossref] [Google Scholar]
  61. 61.
    Reyes L, Golos TG. 2018.. Hofbauer cells: their role in healthy and complicated pregnancy. . Front. Immunol. 9::2628
    [Crossref] [Google Scholar]
  62. 62.
    Wei R, Lai N, Zhao L, Zhang Z, Zhu X, et al. 2021.. Dendritic cells in pregnancy and pregnancy-associated diseases. . Biomed. Pharmacother. 133::110921
    [Crossref] [Google Scholar]
  63. 63.
    Rivera A. 2019.. Interferon lambda's new role as regulator of neutrophil function. . J. Interf. Cytokine Res. 39:(10):60917
    [Crossref] [Google Scholar]
  64. 64.
    Bert S, Ward EJ, Nadkarni S. 2021.. Neutrophils in pregnancy: new insights into innate and adaptive immune regulation. . Immunology 164:(4):66576
    [Crossref] [Google Scholar]
  65. 65.
    Yockey LJ, Iwasaki A. 2018.. Interferons and proinflammatory cytokines in pregnancy and fetal development. . Immunity 49:(3):397412
    [Crossref] [Google Scholar]
  66. 66.
    Major J, Crotta S, Llorian M, McCabe TM, Gad HH, et al. 2020.. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. . Science 369:(6504):71217
    [Crossref] [Google Scholar]
  67. 67.
    Gómez-Herranz M, Taylor J, Sloan RD. 2023.. IFITM proteins: understanding their diverse roles in viral infection, cancer, and immunity. . J. Biol. Chem. 299:(1):102741
    [Crossref] [Google Scholar]
  68. 68.
    Zani A, Zhang L, McMichael TM, Kenney AD, Chemudupati M, et al. 2019.. Interferon-induced transmembrane proteins inhibit cell fusion mediated by trophoblast syncytins. . J. Biol. Chem. 294:(52):1984451
    [Crossref] [Google Scholar]
  69. 69.
    Buchrieser J, Degrelle SA, Couderc T, Nevers Q, Disson O, et al. 2019.. IFITM proteins inhibit placental syncytiotrophoblast formation and promote fetal demise. . Science 365:(6449):17680
    [Crossref] [Google Scholar]
  70. 70.
    Degrelle SA, Buchrieser J, Dupressoir A, Porrot F, Loeuillet L, et al. 2023.. IFITM1 inhibits trophoblast invasion and is induced in placentas associated with IFN-mediated pregnancy diseases. . iScience 26:(7):107147
    [Crossref] [Google Scholar]
  71. 71.
    Coyne CB, Lazear HM. 2016.. Zika virus—reigniting the TORCH. . Nat. Rev. Microbiol. 14:(11):70715
    [Crossref] [Google Scholar]
  72. 72.
    Dick GWA, Kitchen SF, Haddow AJ. 1952.. Zika virus (I). Isolations and serological specificity. . Trans. R. Soc. Trop. Med. Hyg. 46:(5):50920
    [Crossref] [Google Scholar]
  73. 73.
    Simpson DIH. 1964.. Zika virus infection in man. . Trans. R. Soc. Trop. Med. Hyg. 58:(4):33948
    [Crossref] [Google Scholar]
  74. 74.
    Bearcroft WGC. 1956.. Zika virus infection experimentally induced in a human volunteer. . Trans. R. Soc. Trop. Med. Hyg. 50:(5):43841
    [Crossref] [Google Scholar]
  75. 75.
    Ospina ML, Tong VT, Gonzalez M, Valencia D, Mercado M, et al. 2020.. Zika virus disease and pregnancy outcomes in Colombia. . N. Engl. J. Med. 383:(6):53745
    [Crossref] [Google Scholar]
  76. 76.
    Roth NM, Reynolds MR, Lewis EL, Woodworth KR, Godfred-Cato S, et al. 2022.. Zika-associated birth defects reported in pregnancies with laboratory evidence of confirmed or possible Zika virus infection—U.S. Zika Pregnancy and Infant Registry, December 1, 2015–March 31, 2018. . MMWR Morb. Mortal. Wkly. Rep. 71:(3):7379
    [Crossref] [Google Scholar]
  77. 77.
    Chen J, Liang Y, Yi P, Xu L, Hawkins HK, et al. 2017.. Outcomes of congenital Zika Disease depend on timing of infection and maternal-fetal interferon action. . Cell Rep. 21:(6):158899
    [Crossref] [Google Scholar]
  78. 78.
    Weisblum Y, Oiknine-Djian E, Vorontsov OM, Haimov-Kochman R, Zakay-Rones Z, et al. 2017.. Zika virus infects early- and midgestation human maternal decidual tissues, inducing distinct innate tissue responses in the maternal-fetal interface. . J. Virol. 91::e01905-16
    [Google Scholar]
  79. 79.
    Fang MZ, Jackson SS, O'Brien TR. 2020.. IFNL4: notable variants and associated phenotypes. . Gene 730::144289
    [Crossref] [Google Scholar]
  80. 80.
    Rossi ÁD, Faucz FR, Melo A, de Azevedo GS, Pezzuto P, et al. 2021.. Association between maternal non-coding interferon-λ polymorphisms and congenital Zika syndrome in a cohort from Brazilian northeast. . Viruses 13:(11):2253
    [Crossref] [Google Scholar]
  81. 81.
    Beltran PMJ, Cristea IM. 2014.. The life cycle and pathogenesis of human cytomegalovirus infection: lessons from proteomics. . Expert Rev. Proteom. 11:(6):697711
    [Crossref] [Google Scholar]
  82. 82.
    Pesch MH, Kuboushek K, McKee MM, Thorne MC, Weinberg JB. 2021.. Congenital cytomegalovirus infection. . BMJ 373::n1212
    [Crossref] [Google Scholar]
  83. 83.
    Fowler KB, Boppana SB. 2018.. Congenital cytomegalovirus infection. . Semin. Perinatol. 42:(3):14954
    [Crossref] [Google Scholar]
  84. 84.
    Manuel O, Wójtowicz A, Bibert S, Mueller NJ, van Delden C, et al. 2015.. Influence of IFNL3/4 polymorphisms on the incidence of cytomegalovirus infection after solid-organ transplantation. . J. Infect. Dis. 211:(6):90614
    [Crossref] [Google Scholar]
  85. 85.
    Egli A, Levin A, Santer DM, Joyce M, O'Shea D, et al. 2014.. Immunomodulatory function of interleukin 28B during primary infection with cytomegalovirus. . J. Infect. Dis. 210:(5):71727
    [Crossref] [Google Scholar]
  86. 86.
    Fernández-Ruiz M, Corrales I, Arias M, Campistol JM, Giménez E, et al. 2015.. Association between individual and combined SNPs in genes related to innate immunity and incidence of CMV infection in seropositive kidney transplant recipients. . Am. J. Transplant. 15:(5):132335
    [Crossref] [Google Scholar]
  87. 87.
    Lambert N, Strebel P, Orenstein W, Icenogle J, Poland GA. 2015.. Rubella. . Lancet 385:(9984):2297307
    [Crossref] [Google Scholar]
  88. 88.
    Kanai M, Kamiya H, Okuno H, Sunagawa T, Tanaka-Taya K, et al. 2022.. Epidemiology of congenital rubella syndrome related to the 2012–2013 rubella epidemic in Japan. . J. Pediatr. Infect. Dis. Soc. 11:(9):4003
    [Crossref] [Google Scholar]
  89. 89.
    Plotkin SA. 2021.. Rubella eradication: not yet accomplished, but entirely feasible. . J. Infect. Dis. 224:(Supplement_4):S36066
    [Crossref] [Google Scholar]
  90. 90.
    Plotkin SA. 2006.. The history of rubella and rubella vaccination leading to elimination. . Clin. Infect. Dis. 43:(Supplement_3):S16468
    [Crossref] [Google Scholar]
  91. 91.
    Vynnycky E, Knapp JK, Papadopoulos T, Cutts FT, Hachiya M, et al. 2023.. Estimates of the global burden of Congenital Rubella Syndrome, 1996–2019. . Int. J. Infect. Dis. 137::14956
    [Crossref] [Google Scholar]
  92. 92.
    Baltimore RS, Nimkin K, Sparger KA, Pierce VM, Plotkin SA. 2018.. Case 4-2018: a newborn with thrombocytopenia, cataracts, and hepatosplenomegaly. . N. Engl. J. Med. 378:(6):56472
    [Crossref] [Google Scholar]
  93. 93.
    Hammoud RA, Murphy JR, Pérez N. 2018.. Imported congenital rubella syndrome, United States, 2017. . Emerg. Infect. Dis. 24:(4):800801
    [Crossref] [Google Scholar]
  94. 94.
    Tanne JH. 2024.. Measles in the US: Philadelphia reports outbreak and travellers through DC airports warned of possible exposure. . BMJ 384::q111
    [Crossref] [Google Scholar]
  95. 95.
    Lefebvre M, Gross L, Ollivier R, Bailly S, Coste-Burel M, et al. 2023.. Measles in vulnerable populations: an outbreak in Roma settlements of Loire-Atlantique, France, 2019. . J. Méd. Virol. 95:(12):e29321
    [Crossref] [Google Scholar]
  96. 96.
    Mahase E. 2023.. Measles: Unvaccinated children may need to isolate as threat of outbreak looms in London. . BMJ 382::p2139
    [Crossref] [Google Scholar]
  97. 97.
    Tiller EC, Masters NB, Raines KL, Mathis AD, Crooke SN, et al. 2023.. Notes from the field: measles outbreak—Central Ohio, 2022–2023. . MMWR Morb. Mortal. Wkly. Rep. 72:(31):84749
    [Crossref] [Google Scholar]
  98. 98.
    Zobel S, Lorenz M, Frascaroli G, Böhnke J, Bilz NC, et al. 2018.. Rubella virus strain-associated differences in the induction of oxidative stress are independent of their interferon activation. . Viruses 10:(10):540
    [Crossref] [Google Scholar]
  99. 99.
    Carver DH, Seto DS, Marcus PI, Rodrigues L. 1967.. Rubella virus replication in the brains of suckling mice. . J. Virol. 1:(5):108990
    [Crossref] [Google Scholar]
  100. 100.
    Radoshevich L, Cossart P. 2018.. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. . Nat. Rev. Microbiol. 16:(1):3246
    [Crossref] [Google Scholar]
  101. 101.
    Vázquez-Boland JA, Krypotou E, Scortti M. 2017.. Listeria placental infection. . mBio 8:(3):e00949-17
    [Crossref] [Google Scholar]
  102. 102.
    Johnson D, Carbonetti N. 2023.. Roles and effects of interferon lambda signaling in the context of bacterial infections. . J. Interf. Cytokine Res. 43:(9):36369
    [Crossref] [Google Scholar]
  103. 103.
    Alphonse N, Dickenson RE, Alrehaili A, Odendall C. 2022.. Functions of IFNλs in anti-bacterial immunity at mucosal barriers. . Front. Immunol. 13::857639
    [Crossref] [Google Scholar]
  104. 104.
    Megli CJ, Coyne CB. 2022.. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. . Nat. Rev. Microbiol. 20:(2):6782
    [Crossref] [Google Scholar]
  105. 105.
    Ander SE, Diamond MS, Coyne CB. 2019.. Immune responses at the maternal-fetal interface. . Sci. Immunol. 4:(31):eaat6114
    [Crossref] [Google Scholar]
  106. 106.
    Roberts RM, Green JA, Schulz LC. 2016.. The evolution of the placenta. . Reproduction 152:(5):R17989
    [Crossref] [Google Scholar]
  107. 107.
    de Weerd NA, Ogungbola O, Liu X, Matthews AY, Ismail A, et al. 2023.. Characterization of monoclonal antibodies to measure cell surface protein levels of human interferon-lambda receptor 1. . J. Interf. Cytokine Res. 43:(9):40313
    [Crossref] [Google Scholar]
  108. 108.
    Santer DM, Minty GES, Golec DP, Lu J, May J, et al. 2020.. Differential expression of interferon-lambda receptor 1 splice variants determines the magnitude of the antiviral response induced by interferon-lambda 3 in human immune cells. . PLOS Pathog. 16:(4):e1008515
    [Crossref] [Google Scholar]
  109. 109.
    Woolf NK, Jaquish DV, Koehrn FJ. 2007.. Transplacental murine cytomegalovirus infection in the brain of SCID mice. . Virol. J. 4:(1):26
    [Crossref] [Google Scholar]
  110. 110.
    Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, et al. 2016.. A mouse model of Zika virus pathogenesis. . Cell Host Microbe 19:(5):72030
    [Crossref] [Google Scholar]
  111. 111.
    Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, et al. 2016.. Zika virus targets human STAT2 to inhibit type I interferon signaling. . Cell Host Microbe 19:(6):88290
    [Crossref] [Google Scholar]
  112. 112.
    Gorman MJ, Caine EA, Zaitsev K, Begley MC, Weger-Lucarelli J, et al. 2018.. An immunocompetent mouse model of Zika virus infection. . Cell Host Microbe 23:(5):67285.e6
    [Crossref] [Google Scholar]
  113. 113.
    Li M, Brokaw A, Furuta AM, Coler B, Obregon-Perko V, et al. 2021.. Non-human primate models to investigate mechanisms of infection-associated fetal and pediatric injury, teratogenesis and stillbirth. . Front. Genet. 12::680342
    [Crossref] [Google Scholar]
  114. 114.
    Caine EA, Jagger BW, Diamond MS. 2018.. Animal models of Zika virus infection during pregnancy. . Viruses 10:(11):598
    [Crossref] [Google Scholar]
  115. 115.
    Gurung S, Reuter N, Preno A, Dubaut J, Nadeau H, et al. 2019.. Zika virus infection at mid-gestation results in fetal cerebral cortical injury and fetal death in the olive baboon. . PLOS Pathog. 15:(1):e1007507
    [Crossref] [Google Scholar]
  116. 116.
    Gurung S, Nadeau H, Maxted M, Peregrine J, Reuter D, et al. 2020.. Maternal Zika virus (ZIKV) infection following vaginal inoculation with ZIKV-infected semen in timed-pregnant olive baboons. . J. Virol. 94:(11):e00058-20
    [Crossref] [Google Scholar]
  117. 117.
    Saron WAA, Shanmugam K, Tung C-C, Patmanathan RK, Rathore APS, et al. 2023.. Exacerbated Zika virus–induced neuropathology and microcephaly in fetuses of dengue-immune nonhuman primates. . Sci. Transl. Med. 15:(719):eadd2420
    [Crossref] [Google Scholar]
  118. 118.
    Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, Studholme C, Boldenow E, . 2016.. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. . Nat. Med. 22:(11):125659
    [Crossref] [Google Scholar]
  119. 119.
    Bialas KM, Tanaka T, Tran D, Varner V, Cisneros De La Rosa E, et al. 2015.. Maternal CD4+ T cells protect against severe congenital cytomegalovirus disease in a novel nonhuman primate model of placental cytomegalovirus transmission. . PNAS 112:(44):1364550
    [Crossref] [Google Scholar]
  120. 120.
    Wolfe B, Wiepz GJ, Schotzko M, Bondarenko GI, Durning M, et al. 2017.. Acute fetal demise with first trimester maternal infection resulting from Listeria monocytogenes in a nonhuman primate model. . mBio 8:(1):e01938-16
    [Crossref] [Google Scholar]
  121. 121.
    Choi KY, El-Hamdi N, McGregor A. 2022.. Endothelial cell infection by guinea pig cytomegalovirus is a lytic or persistent infection depending on tissue origin but requires viral pentamer complex and pp65 tegument protein. . J. Virol. 96:(17):e00831-22
    [Crossref] [Google Scholar]
  122. 122.
    El-Hamdi NS, Choi KY, McGregor A. 2020.. Guinea pig cytomegalovirus trimer complex gH/gL/gO uses PDGFRA as universal receptor for cell fusion and entry. . Virology 548::23649
    [Crossref] [Google Scholar]
  123. 123.
    de Almeida W, Deniz BF, dos Santos AS, Faustino AM, Junior OVR, et al. 2023.. Zika virus affects neurobehavioral development, and causes oxidative stress associated to blood-brain barrier disruption in a rat model of congenital infection. . Brain Behav. Immun. 112::2941
    [Crossref] [Google Scholar]
  124. 124.
    McMillen CM, Boyles DA, Kostadinov SG, Hoehl RM, Schwarz MM, et al. 2022.. Congenital Rift Valley fever in Sprague Dawley rats is associated with diffuse infection and pathology of the placenta. . PLOS Negl. Trop. Dis. 16:(10):e0010898
    [Crossref] [Google Scholar]
  125. 125.
    Udenze D, Trus I, Lipsit S, Napper S, Karniychuk U. 2023.. Offspring affected with in utero Zika virus infection retain molecular footprints in the bone marrow and blood cells. . Emerg. Microbes Infect. 12:(1):2147021
    [Crossref] [Google Scholar]
  126. 126.
    dos Santos AS, da Costa MG, Faustino AM, de Almeida W, Danilevicz CK, et al. 2024.. Neuroinflammation, blood-brain barrier dysfunction, hippocampal atrophy and delayed neurodevelopment: contributions for a rat model of congenital Zika syndrome. . Exp. Neurol. 374::114699
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-111821-101531
Loading
/content/journals/10.1146/annurev-virology-111821-101531
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error