1932

Abstract

Of the thousands of viruses infecting humans, only seven cause cancer in the general population. Tumor sequencing is now a common cancer medicine procedure, and so it seems likely that more human cancer viruses already would have been found if they exist. Here, we review cancer characteristics that can inform a dedicated search for new cancer viruses, focusing on Kaposi sarcoma herpesvirus and Merkel cell polyomavirus as the most recent examples of successful genomic and transcriptomic searches. We emphasize the importance of epidemiology in determining which cancers to examine and describe approaches to virus discovery. Barriers to virus discovery, such as novel genomes and viral suppression of messenger RNA expression, may exist that prevent virus discovery using existing approaches. Optimally virus hunting should be performed in such a way that if no virus is found, the tumor can be reasonably excluded from having an infectious etiology and new information about the biology of the tumor can be found.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-111821-103721
2024-09-26
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/virology/11/1/annurev-virology-111821-103721.html?itemId=/content/journals/10.1146/annurev-virology-111821-103721&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Tang KW, Larsson E. 2017.. Tumour virology in the era of high-throughput genomics. . Philos. Trans. R. Soc. B 372::20160265
    [Crossref] [Google Scholar]
  2. 2.
    Selitsky SR, Marron D, Hollern D, Mose LE, Hoadley KA, et al. 2020.. Virus expression detection reveals RNA-sequencing contamination in TCGA. . BMC Genom. 21::79
    [Crossref] [Google Scholar]
  3. 3.
    Cao QM, Boonchuen P, Chen TC, Lei S, Somboonwiwat K, Sarnow P. 2024.. Virus-derived circular RNAs populate hepatitis C virus-infected cells. . PNAS 121::e2313002121
    [Crossref] [Google Scholar]
  4. 4.
    Cantalupo PG, Katz JP, Pipas JM. 2015.. HeLa nucleic acid contamination in The Cancer Genome Atlas leads to the misidentification of human papillomavirus 18. . J. Virol. 89::405157
    [Crossref] [Google Scholar]
  5. 5.
    de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. 2020.. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. . Lancet Glob. Health 8::e18090
    [Crossref] [Google Scholar]
  6. 6.
    Shiramizu B, Herndier BG, McGrath MS. 1994.. Identification of a common clonal human immunodeficiency virus integration site in human immunodeficiency virus-associated lymphomas. . Cancer Res. 54::206972
    [Google Scholar]
  7. 7.
    Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. 2007.. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. . Lancet 370::5967
    [Crossref] [Google Scholar]
  8. 8.
    Frisch M, Biggar RJ, Engels EA, Goedert JJ, AIDS-Cancer Match Regist. Study Group. 2001.. Association of cancer with AIDS-related immunosuppression in adults. . JAMA 285::173645
    [Crossref] [Google Scholar]
  9. 9.
    Cent. Dis. Control Prev. 1994.. Update: trends in AIDS diagnosis and reporting under the expanded surveillance definition for adolescents and adults—United States, 1993. . MMWR Morb. Mortal. Wkly. Rep. 43::82631
    [Google Scholar]
  10. 10.
    IARC. 1996.. Human immunodeficiency viruses. . In Human Immunodeficiency Viruses and Human T-Cell Lymphotropic Viruses, pp. 31259. IARC Monog. Eval. Carcinog. Risks Hum. Vol. 67 . Lyon, Fr:.: IARC
    [Google Scholar]
  11. 11.
    Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, et al. 2003.. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. . Science 302::41519
    [Crossref] [Google Scholar]
  12. 12.
    Verdun N, Marks P. 2024.. Secondary cancers after chimeric antigen receptor T-cell therapy. . N. Engl. J. Med. 390:(7):58486
    [Crossref] [Google Scholar]
  13. 13.
    Monini P, de Lellis L, Rotola A, Di Luca D, Ravaioli T, et al. 1995.. Chimeric BK virus DNA episomes in a papillary urothelial bladder carcinoma. . Intervirology 38::3048
    [Crossref] [Google Scholar]
  14. 14.
    Abend JR, Jiang M, Imperiale MJ. 2009.. BK virus and human cancer: innocent until proven guilty. . Semin. Cancer Biol. 19::25260
    [Crossref] [Google Scholar]
  15. 15.
    Leiendecker L, Neumann T, Jung PS, Cronin SM, Steinacker TL, et al. 2023.. Human papillomavirus 42 drives digital papillary adenocarcinoma and elicits a germ cell-like program conserved in HPV-positive cancers. . Cancer Discov. 13::7084
    [Crossref] [Google Scholar]
  16. 16.
    Baltimore D. 1971.. Expression of animal virus genomes. . Bacteriol. Rev. 35::23541
    [Crossref] [Google Scholar]
  17. 17.
    Chang Y, Moore PS, Weiss RA. 2017.. Human oncogenic viruses: nature and discovery. . Philos. Trans. R. Soc. B 372::20160264
    [Crossref] [Google Scholar]
  18. 18.
    Moore PS, Chang Y. 2010.. Why do viruses cause cancer? Highlights of the first century of human tumour virology. . Nat. Rev. Cancer 10::87889
    [Crossref] [Google Scholar]
  19. 19.
    Epstein MA, Achong BG, Barr YM. 1964.. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. . Lancet 15::7023
    [Crossref] [Google Scholar]
  20. 20.
    Levine AJ. 2009.. The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53. . Virology 384:(2):28593
    [Crossref] [Google Scholar]
  21. 21.
    Levine AJ. 2020.. p53: 800 million years of evolution and 40 years of discovery. . Nat. Rev. Cancer 20::47180
    [Crossref] [Google Scholar]
  22. 22.
    Roetman JJ, Apostolova MKI, Philip M. 2022.. Viral and cellular oncogenes promote immune evasion. . Oncogene 41::92129
    [Crossref] [Google Scholar]
  23. 23.
    Corrales L, McWhirter SM, Dubensky TW Jr., Gajewski TF. 2016.. The host STING pathway at the interface of cancer and immunity. . J. Clin. Investig. 126::240411
    [Crossref] [Google Scholar]
  24. 24.
    Tanaka N, Taniguchi T. 2000.. The interferon regulatory factors and oncogenesis. . Semin. Cancer Biol. 10::7381
    [Crossref] [Google Scholar]
  25. 25.
    Moore PS, Chang Y. 1998.. Antiviral activity of tumor-suppressor pathways: clues from molecular piracy by KSHV. . Trends Genet. 14::14450
    [Crossref] [Google Scholar]
  26. 26.
    Moore PS, Chang Y. 2003.. Kaposi's sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin?. Annu. Rev. Microbiol. 57::60939
    [Crossref] [Google Scholar]
  27. 27.
    Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, et al. 2003.. Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. . Nature 424::51623
    [Crossref] [Google Scholar]
  28. 28.
    Lau L, Gray EE, Brunette RL, Stetson DB. 2015.. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. . Science 350::56871
    [Crossref] [Google Scholar]
  29. 29.
    Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, et al. 1985.. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. . Nature 314::11114
    [Crossref] [Google Scholar]
  30. 30.
    Zhang G, Chan B, Samarina N, Abere B, Weidner-Glunde M, et al. 2016.. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. . PNAS 113::E103443
    [Google Scholar]
  31. 31.
    Mariggio G, Koch S, Zhang G, Weidner-Glunde M, Ruckert J, et al. 2017.. Kaposi sarcoma herpesvirus (KSHV) latency-associated nuclear antigen (LANA) recruits components of the MRN (Mre11-Rad50-NBS1) repair complex to modulate an innate immune signaling pathway and viral latency. . PLOS Pathog. 13::e1006335
    [Crossref] [Google Scholar]
  32. 32.
    Kwun HJ, Chang Y, Moore PS. 2017.. Protein-mediated viral latency is a novel mechanism for Merkel cell polyomavirus persistence. . PNAS 114::E404047
    [Crossref] [Google Scholar]
  33. 33.
    Schulz F, Abergel C, Woyke T. 2022.. Giant virus biology and diversity in the era of genome-resolved metagenomics. . Nat. Rev. Microbiol. 20::72136
    [Crossref] [Google Scholar]
  34. 34.
    Tisza MJ, Pastrana DV, Welch NL, Stewart B, Peretti A, et al. 2020.. Discovery of several thousand highly diverse circular DNA viruses. . eLife 9::e51971
    [Crossref] [Google Scholar]
  35. 35.
    Woolhouse MEJ, Brierley L. 2018.. Epidemiological characteristics of human-infective RNA viruses. . Sci. Data 5::180017
    [Crossref] [Google Scholar]
  36. 36.
    Bellas C, Hackl T, Plakolb MS, Koslova A, Fischer MG, Sommaruga R. 2023.. Large-scale invasion of unicellular eukaryotic genomes by integrating DNA viruses. . PNAS 120::e2300465120
    [Crossref] [Google Scholar]
  37. 37.
    Pellett PE, Ablashi DV, Ambros PF, Agut H, Caserta MT, et al. 2012.. Chromosomally integrated human herpesvirus 6: questions and answers. . Rev. Med. Virol. 22::14455
    [Crossref] [Google Scholar]
  38. 38.
    Rous P. 1910.. A transmissible avian neoplasm. (Sarcoma of the common fowl. .) J. Exp. Med. 12::696705
    [Crossref] [Google Scholar]
  39. 39.
    Stehelin D, Varmus HE, Bishop JM, Vogt PK. 1976.. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. . Nature 260::17073
    [Crossref] [Google Scholar]
  40. 40.
    Bishop JM. 1990.. Retroviruses and oncogenes II. . Biosci. Rep. 10::47391
    [Crossref] [Google Scholar]
  41. 41.
    Ernberg I, Klein G. 2007.. Effects on apoptosis, cell cycle and transformation, and comparative aspects of EBV with other DNA tumor viruses. . In Human Herpesviruses: Biology, Therapy and Immunoprophylaxis, ed. A Arvin, G Campadelli-Fiume, E Mocarski, PS Moore, B Roizman, et al. , pp. 51439. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  42. 42.
    Rous P. 1910.. An experimental comparison of transplanted tumor and a transplanted normal tissue capable of growth. . J. Exp. Med. 12::34466
    [Crossref] [Google Scholar]
  43. 43.
    Rous P. 1911.. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. . J. Exp. Med. 13::397411
    [Crossref] [Google Scholar]
  44. 44.
    Purchase HG. 1965.. Rous sarcoma and its helper viruses (a review). . Avian Dis. 9::12745
    [Crossref] [Google Scholar]
  45. 45.
    Rubin H. 2011.. The early history of tumor virology: Rous, RIF, and RAV. . PNAS 108::1438996
    [Crossref] [Google Scholar]
  46. 46.
    Voisset C, Weiss RA, Griffiths DJ. 2008.. Human RNA “rumor” viruses: the search for novel human retroviruses in chronic disease. . Microbiol. Mol. Biol. Rev. 72::15796
    [Crossref] [Google Scholar]
  47. 47.
    Weiss RA, Vogt PK. 2011.. 100 years of Rous sarcoma virus. . J. Exp. Med. 208::235155
    [Crossref] [Google Scholar]
  48. 48.
    Weiss RA. 2006.. The discovery of endogenous retroviruses. . Retrovirology 3::67
    [Crossref] [Google Scholar]
  49. 49.
    Wasylishen AR, Sun C, Moyer SM, Qi Y, Chau GP, et al. 2020.. Daxx maintains endogenous retroviral silencing and restricts cellular plasticity in vivo. . Sci. Adv. 6::eaba8415
    [Crossref] [Google Scholar]
  50. 50.
    Kanholm T, Rentia U, Hadley M, Karlow JA, Cox OL, et al. 2023.. Oncogenic transformation drives DNA methylation loss and transcriptional activation at transposable element loci. . Cancer Res. 83::258499
    [Crossref] [Google Scholar]
  51. 51.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. 2001.. Initial sequencing and analysis of the human genome. . Nature 409::860921
    [Crossref] [Google Scholar]
  52. 52.
    Harms PW, Harms KL, Moore PS, DeCaprio JA, Nghiem P, et al. 2018.. The biology and treatment of Merkel cell carcinoma: current understanding and research priorities. . Nat. Rev. Clin. Oncol. 15::76376
    [Crossref] [Google Scholar]
  53. 53.
    IARC. 1997.. Epstein-Barr virus and Kaposi's sarcoma herpesvirus/human herpesvirus 8. . In Human Immunodeficiency Viruses and Human T-Cell Lymphotropic Viruses, pp. 375492. IARC Monog. Eval. Carcinog. Risks Hum. Vol. 70 . Lyon, Fr:.: IARC
    [Google Scholar]
  54. 54.
    Koch R. 1884.. An address on cholera and its bacillus. . Br. Med. J. 2::45359
    [Crossref] [Google Scholar]
  55. 55.
    Naccache SN, Hackett J Jr., Delwart EL, Chiu CY. 2014.. Concerns over the origin of NIH-CQV, a novel virus discovered in Chinese patients with seronegative hepatitis. . PNAS 111::E976
    [Crossref] [Google Scholar]
  56. 56.
    Hill AB. 1965.. Environment and disease: association or causation?. Proc. R. Soc. Med. 58::295300
    [Google Scholar]
  57. 57.
    Moore PS, Chang Y. 2014.. The conundrum of causality in tumor virology: the cases of KSHV and MCV. . Semin. Cancer Biol. 26::412
    [Crossref] [Google Scholar]
  58. 58.
    Sarid R, Olsen SJ, Moore PS. 1999.. Kaposi's sarcoma-associated herpesvirus: epidemiology, virology, and molecular biology. . Adv. Virus Res. 52::139232
    [Crossref] [Google Scholar]
  59. 59.
    Mason WS, Jilbert AR, Litwin S. 2021.. Hepatitis B virus DNA integration and clonal expansion of hepatocytes in the chronically infected liver. . Viruses 13::210
    [Crossref] [Google Scholar]
  60. 60.
    Yeh SH, Li CL, Lin YY, Ho MC, Wang YC, et al. 2023.. Hepatitis B virus DNA integration drives carcinogenesis and provides a new biomarker for HBV-related HCC. . Cell Mol. Gastroenterol. Hepatol. 15::92129
    [Crossref] [Google Scholar]
  61. 61.
    Mitchell JK, Lemon SM, McGivern DR. 2015.. How do persistent infections with hepatitis C virus cause liver cancer?. Curr. Opin. Virol. 14::1018
    [Crossref] [Google Scholar]
  62. 62.
    Goodwin EC, DiMaio D. 2000.. Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. . PNAS 97::1251318
    [Crossref] [Google Scholar]
  63. 63.
    Houben R, Shuda M, Weinkam R, Schrama D, Feng H, et al. 2010.. Merkel cell polyomavirus-infected Merkel cell carcinoma cells require expression of viral T antigens. . J. Virol. 84::706472
    [Crossref] [Google Scholar]
  64. 64.
    Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, et al. 2022.. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. . Science 375::296301
    [Crossref] [Google Scholar]
  65. 65.
    Neri A, Barriga F, Inghirami G, Knowles DM, Neequaye J, et al. 1991.. Epstein-Barr virus infection precedes clonal expansion in Burkitt's and acquired immunodeficiency syndrome-associated lymphoma. . Blood 77::109295
    [Crossref] [Google Scholar]
  66. 66.
    Miyashita EM, Yang B, Lam KMC, Crawford DH, Thorley-Lawson DA. 1995.. A novel form of Epstein-Barr virus latency in normal B cells in vivo. . Cell 80::593601
    [Crossref] [Google Scholar]
  67. 67.
    Feng H, Shuda M, Chang Y, Moore PS. 2008.. Clonal integration of a polyomavirus in human Merkel cell carcinoma. . Science 319::1096100
    [Crossref] [Google Scholar]
  68. 68.
    Shuda M, Feng H, Kwun HJ, Rosen ST, Gjoerup O, et al. 2008.. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. . PNAS 105::1627277
    [Crossref] [Google Scholar]
  69. 69.
    Popper KR. 1959.. The Logic of Scientific Discovery. New York:: Basic Books
    [Google Scholar]
  70. 70.
    Dittmer DP, Krown SE, Mitsuyasu R. 2017.. Exclusion of Kaposi sarcoma from analysis of cancer burden. . JAMA Oncol. 3::1429
    [Crossref] [Google Scholar]
  71. 71.
    Young LS, Yap LF, Murray PG. 2016.. Epstein-Barr virus: more than 50 years old and still providing surprises. . Nat. Rev. Cancer 16::789802
    [Crossref] [Google Scholar]
  72. 72.
    Ganem D, Prince AM. 2004.. Hepatitis B virus infection—natural history and clinical consequences. . N. Engl. J. Med. 350::111829
    [Crossref] [Google Scholar]
  73. 73.
    Vahlne A. 2009.. A historical reflection on the discovery of human retroviruses. . Retrovirology 6::40
    [Crossref] [Google Scholar]
  74. 74.
    zur Hausen H. 2009.. Papillomaviruses in the causation of human cancers—a brief historical account. . Virology 384::26065
    [Crossref] [Google Scholar]
  75. 75.
    Ghany MG, Lok ASF, Dienstag JL, Feinstone SM, Hoofnagle JH, et al. 2021.. The 2020 Nobel Prize for Medicine or Physiology for the discovery of hepatitis C virus: a triumph of curiosity and persistence. . Hepatology 74::281323
    [Crossref] [Google Scholar]
  76. 76.
    Kaposi M. 1872.. Idiopathic multiple pigmented sarcoma of the skin, transl. 1982 , in CA 32:34247 ( from German )
    [Google Scholar]
  77. 77.
    Penn I. 1997.. Kaposi's sarcoma in transplant recipients. . Transplantation 64::66973
    [Crossref] [Google Scholar]
  78. 78.
    Cook-Mozaffari P, Newton R, Beral V, Burkitt DP. 1998.. The geographical distribution of Kaposi's sarcoma and of lymphomas in Africa before the AIDS epidemic. . Br. J. Cancer 78::152128
    [Crossref] [Google Scholar]
  79. 79.
    Jaffe HW, Choi K, Thomas PA, Haverkos HW, Auerbach DM, et al. 1983.. National case-control study of Kaposi's sarcoma and Pneumocystis carinii pneumonia in homosexual men: part 1, epidemiologic results. . Ann. Intern. Med. 99::14551
    [Crossref] [Google Scholar]
  80. 80.
    Giraldo G, Beth E, Kyalwazi SK. 1984.. Role of cytomegalovirus in Kaposi's sarcoma. . IARC Sci. Publ. 63::583606
    [Google Scholar]
  81. 81.
    Huang YQ, Li JJ, Rush MG, Poiesz BJ, Nicolaides A, et al. 1992.. HPV-16-related DNA sequences in Kaposi's sarcoma. . Lancet 339::51518
    [Crossref] [Google Scholar]
  82. 82.
    Wang RY, Shih JW, Weiss SH, Grandinetti T, Pierce PF, et al. 1993.. Mycoplasma penetrans infection in male homosexuals with AIDS: high seroprevalence and association with Kaposi's sarcoma. . Clin. Infect. Dis. 17::72429
    [Crossref] [Google Scholar]
  83. 83.
    Beral V, Peterman TA, Berkelman RL, Jaffe HW. 1990.. Kaposi's sarcoma among persons with AIDS: a sexually transmitted infection?. Lancet 335::12328
    [Crossref] [Google Scholar]
  84. 84.
    Lisitsyn N, Lisitsyn N, Wigler M. 1993.. Cloning the differences between two complex genomes. . Science 259::94651
    [Crossref] [Google Scholar]
  85. 85.
    Li J, Yen C, Liaw D, Podsypanina K, Bose S, et al. 1997.. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. . Science 275::194347
    [Crossref] [Google Scholar]
  86. 86.
    Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, et al. 1994.. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. . Science 265::186569
    [Crossref] [Google Scholar]
  87. 87.
    Moore PS, Chang Y. 1995.. Detection of herpesvirus-like DNA sequences in Kaposi's sarcoma in patients with and without HIV infection. . N. Engl. J. Med. 332::118185
    [Crossref] [Google Scholar]
  88. 88.
    Chang Y, Ziegler J, Wabinga H, Katangole-Mbidde E, Boshoff C, et al. 1996.. Kaposi's sarcoma-associated herpesvirus and Kaposi's sarcoma in Africa. . Arch. Intern. Med. 156::2024
    [Crossref] [Google Scholar]
  89. 89.
    Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. 1995.. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. . N. Engl. J. Med. 332::118691
    [Crossref] [Google Scholar]
  90. 90.
    Cesarman E, Moore PS, Rao PH, Inghirami G, Knowles DM, Chang Y. 1995.. In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpesvirus-like (KSHV) DNA sequences. . Blood 86::270814
    [Crossref] [Google Scholar]
  91. 91.
    Moore PS, Gao SJ, Dominguez G, Cesarman E, Lungu O, et al. 1996.. Primary characterization of a herpesvirus agent associated with Kaposi's sarcoma. . J. Virol. 70::54958
    [Crossref] [Google Scholar]
  92. 92.
    Gao S-J, Kingsley L, Hoover DR, Spira TJ, Rinaldo CR, et al. 1996.. Seroconversion to antibodies against Kaposi's sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi's sarcoma. . N. Eng. J. Med. 335::23341
    [Crossref] [Google Scholar]
  93. 93.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990.. Basic local alignment search tool. . J. Mol. Biol. 215::40310
    [Crossref] [Google Scholar]
  94. 94.
    Kedes DH, Operskalski E, Busch M, Kohn R, Flood J, Ganem D. 1996.. The seroepidemiology of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. . Nat. Med. 2::91824
    [Crossref] [Google Scholar]
  95. 95.
    Gao SJ, Kingsley L, Li M, Zheng W, Parravicini C, et al. 1996.. KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma. . Nat. Med. 2::92528
    [Crossref] [Google Scholar]
  96. 96.
    Cohen J. 1995.. Controversy: Is KS really caused by new herpesvirus?. Science 268::184748
    [Crossref] [Google Scholar]
  97. 97.
    Moore PS. 1998.. Human herpesvirus 8 variants. . Lancet 351::67980
    [Crossref] [Google Scholar]
  98. 98.
    Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, et al. 1995.. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. . Blood 86::127680
    [Crossref] [Google Scholar]
  99. 99.
    Uldrick TS, Wang V, O'Mahony D, Aleman K, Wyvill KM, et al. 2010.. An interleukin-6-related systemic inflammatory syndrome in patients co-infected with Kaposi sarcoma-associated herpesvirus and HIV but without multicentric Castleman disease. . Clin. Infect. Dis. 51::35058
    [Crossref] [Google Scholar]
  100. 100.
    Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, et al. 1996.. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). . PNAS 93::1486267
    [Crossref] [Google Scholar]
  101. 101.
    Gao SJ, Boshoff C, Jayachandra S, Weiss RA, Chang Y, Moore PS. 1997.. KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway. . Oncogene 15::197985
    [Crossref] [Google Scholar]
  102. 102.
    Chatterjee M, Osborne J, Bestetti G, Chang Y, Moore PS. 2002.. Viral IL-6-induced cell proliferation and immune evasion of interferon activity. . Science 298::143235
    [Crossref] [Google Scholar]
  103. 103.
    Desrosiers RC, Sasseville VG, Czajak SC, Zhang X, Mansfield KG, et al. 1997.. A herpesvirus of rhesus monkeys related to the human Kaposi's sarcoma-associated herpesvirus. . J. Virol. 71::976469
    [Crossref] [Google Scholar]
  104. 104.
    Rose TM, Strand KB, Schultz ER, Schaefer G, Rankin GW Jr., et al. 1997.. Identification of two homologs of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in retroperitoneal fibromatosis of different macaque species. . J. Virol. 71::413844
    [Crossref] [Google Scholar]
  105. 105.
    Lacoste V, Mauclere P, Dubreuil G, Lewis J, Georges-Courbot MC, Gessain A. 2000.. KSHV-like herpesviruses in chimps and gorillas. . Nature 407::15152
    [Crossref] [Google Scholar]
  106. 106.
    Lacoste V, Mauclere P, Dubreuil G, Lewis J, Georges-Courbot MC, Gessain A. 2001.. A novel γ2-herpesvirus of the Rhadinovirus 2 lineage in chimpanzees. . Genome Res. 11::151119
    [Crossref] [Google Scholar]
  107. 107.
    Wong SW, Bergquam EP, Swanson RM, Lee FW, Shiigi SM, et al. 1999.. Induction of B cell hyperplasia in simian immunodeficiency virus-infected rhesus macaques with the simian homologue of Kaposi's sarcoma-associated herpesvirus. . J. Exp. Med. 190::82740
    [Crossref] [Google Scholar]
  108. 108.
    Hayward GS. 1999.. KSHV strains: the origins and global spread of the virus. . Semin. Cancer Biol. 9::18799
    [Crossref] [Google Scholar]
  109. 109.
    Casper C, Corey L, Cohen JI, Damania B, Gershon AA, et al. 2022.. KSHV (HHV8) vaccine: promises and potential pitfalls for a new anti-cancer vaccine. . NPJ Vaccines 7::108
    [Crossref] [Google Scholar]
  110. 110.
    Geris JM, Spector LG, Pfeiffer RM, Limaye AP, Yu KJ, Engels EA. 2022.. Cancer risk associated with cytomegalovirus infection among solid organ transplant recipients in the United States. . Cancer 128::398594
    [Crossref] [Google Scholar]
  111. 111.
    Parsonnet J. 1999.. Introduction. . In Microbes and Malignancy, ed. J Parsonnet , pp. 318. New York:: Oxford Univ. Press
    [Google Scholar]
  112. 112.
    Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. 1995.. Serial analysis of gene expression. . Science 270::48487
    [Crossref] [Google Scholar]
  113. 113.
    Feng H, Taylor JL, Benos PV, Newton R, Waddell K, et al. 2007.. Human transcriptome subtraction by using short sequence tags to search for tumor viruses in conjunctival carcinoma. . J. Virol. 81::1133240
    [Crossref] [Google Scholar]
  114. 114.
    Xu Y, Stange-Thomann N, Weber G, Bo R, Dodge S, et al. 2003.. Pathogen discovery from human tissue by sequence-based computational subtraction. . Genomics 81::32935
    [Crossref] [Google Scholar]
  115. 115.
    Engels EA, Frisch M, Goedert JJ, Biggar RJ, Miller RW. 2002.. Merkel cell carcinoma and HIV infection. . Lancet 359::49798
    [Crossref] [Google Scholar]
  116. 116.
    Chang Y, Moore PS. 2012.. Merkel cell carcinoma: a virus-induced human cancer. . Annu. Rev. Pathol. 7::12344
    [Crossref] [Google Scholar]
  117. 117.
    Pastrana DV, Tolstov YL, Becker JC, Moore PS, Chang Y, Buck CB. 2009.. Quantitation of human seroresponsiveness to Merkel cell polyomavirus. . PLOS Pathog. 5::e1000578
    [Crossref] [Google Scholar]
  118. 118.
    Harold A, Amako Y, Hachisuka J, Bai Y, Li MY, et al. 2019.. Conversion of Sox2-dependent Merkel cell carcinoma to a differentiated neuron-like phenotype by T antigen inhibition. . PNAS 116::2010414
    [Crossref] [Google Scholar]
  119. 119.
    Nicoll MP, Proenca JT, Efstathiou S. 2012.. The molecular basis of herpes simplex virus latency. . FEMS Microbiol. Rev. 36::684705
    [Crossref] [Google Scholar]
  120. 120.
    Li T, Ju E, Gao SJ. 2019.. Kaposi sarcoma-associated herpesvirus miRNAs suppress CASTOR1-mediated mTORC1 inhibition to promote tumorigenesis. . J. Clin. Investig. 129::331023
    [Crossref] [Google Scholar]
  121. 121.
    Toptan T, Abere B, Nalesnik MA, Swerdlow SH, Ranganathan S, et al. 2018.. Circular DNA tumor viruses make circular RNAs. . PNAS 115::E873745
    [Crossref] [Google Scholar]
  122. 122.
    Abere B, Zhou H, Li J, Cao S, Toptan T, et al. 2020.. Merkel cell polyomavirus encodes circular RNAs (circRNAs) enabling a dynamic circRNA/microRNA/mRNA regulatory network. . mBio 11::e03059-20
    [Google Scholar]
  123. 123.
    Kwun HJ, da Silva SR, Shah I, Blake N, Moore PS, Chang Y. 2007.. KSHV LANA1 mimics EBV EBNA1 immune evasion through central repeat domain effects on protein processing. . J. Virol. 81::822535
    [Crossref] [Google Scholar]
  124. 124.
    Yin Y, Manoury B, Fahraeus R. 2003.. Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. . Science 301::137174
    [Crossref] [Google Scholar]
  125. 125.
    Tellam J, Fogg MH, Rist M, Connolly G, Tscharke D, et al. 2007.. Influence of translation efficiency of homologous viral proteins on the endogenous presentation of CD8+ T cell epitopes. . J. Exp. Med. 204::52532
    [Crossref] [Google Scholar]
  126. 126.
    Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, et al. 1995.. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. . Nature 375::68588
    [Crossref] [Google Scholar]
  127. 127.
    Kwun HJ, da Silva SR, Qin H, Ferris RL, Tan R, et al. 2011.. The central repeat domain 1 of Kaposi's sarcoma-associated herpesvirus (KSHV) latency associated-nuclear antigen 1 (LANA1) prevents cis MHC class I peptide presentation. . Virology 412::35765
    [Crossref] [Google Scholar]
  128. 128.
    Toptan T, Cantrell PS, Zeng X, Liu Y, Sun M, et al. 2020.. Proteomic approach to discover human cancer viruses from formalin-fixed tissues. . JCI Insight 5:(22):e143003
    [Crossref] [Google Scholar]
  129. 129.
    Vanderbilt CM, Bowman AS, Middha S, Petrova-Drus K, Tang YW, et al. 2022.. Defining novel DNA virus-tumor associations and genomic correlates using prospective clinical tumor/normal matched sequencing data. . J. Mol. Diagn. 24::51528
    [Crossref] [Google Scholar]
  130. 130.
    Woolhouse M, Scott F, Hudson Z, Howey R, Chase-Topping M. 2012.. Human viruses: discovery and emergence. . Philos. Trans. R. Soc. B 367:(1604):286471
    [Crossref] [Google Scholar]
  131. 131.
    Vajdic CM, van Leeuwen MT. 2009.. Cancer incidence and risk factors after solid organ transplantation. . Int. J. Cancer 125:(8):174754
    [Crossref] [Google Scholar]
  132. 132.
    Zur Hausen H. 1999.. Viruses in human cancers. . Eur. J. Cancer 35:(8):117481
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-111821-103721
Loading
/content/journals/10.1146/annurev-virology-111821-103721
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error