1932

Abstract

Before the very recent discovery of umbra-like viruses (ULVs), the signature defining feature of all plant RNA viruses was the encoding of specialized RNA-binding movement proteins (MPs) for transiting their RNA genomes through gated plasmodesmata to establish systemic infections. The vast majority of ULVs share umbravirus-like RNA-dependent RNA polymerases and 3′-terminal structures, but they differ by not encoding cell-to-cell and long-distance MPs and by not relying on a helper virus for -encapsidation and plant-to-plant transmission. The recent finding that two groups of ULVs do not necessarily encode MPs is expanding our understanding of the minimum requirements for modern plant RNA viruses. ULV CY1 from citrus uses host protein PHLOEM PROTEIN 2 (PP2) for systemic movement, and related ULVs encode a capsid protein, thereby providing an explanation for the lack of helper viruses present in many ULV-infected plants. ULVs thus resemble the first viruses that infected plants, which were likely deposited from feeding organisms and would have similarly required the use of host proteins such as PP2 to exit initially infected cells.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-111821-122718
2024-09-26
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/virology/11/1/annurev-virology-111821-122718.html?itemId=/content/journals/10.1146/annurev-virology-111821-122718&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Simon AE, Makinen K, Li Y, Verchot J. 2023.. Plant viruses. . In Fields Virology, Vol. 4: Fundamentals, ed. P Howley, DM Knipe , pp. 494526. Philadelphia:: Wolters Kluwer Health
    [Google Scholar]
  2. 2.
    Folimonova SY, Tilsner J. 2018.. Hitchhikers, highway tolls and roadworks: the interactions of plant viruses with the phloem. . Curr. Opin. Plant Biol. 43::8288
    [Crossref] [Google Scholar]
  3. 3.
    Ji LH, Ding SW. 2001.. The suppressor of transgene RNA silencing encoded by Cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. . Mol. Plant-Microbe Interact. 14::71524
    [Crossref] [Google Scholar]
  4. 4.
    Jiao ZY, Tian YY, Cao YY, Wang J, Zhan BH, et al. 2021.. A novel pathogenicity determinant hijacks maize catalase 1 to enhance viral multiplication and infection. . New Phytol. 230::112641
    [Crossref] [Google Scholar]
  5. 5.
    Murphy AM, Zhou T, Carr JP. 2020.. An update on salicylic acid biosynthesis, its induction and potential exploitation by plant viruses. . Curr. Opin. Virol. 42::817
    [Crossref] [Google Scholar]
  6. 6.
    Medina-Puche L, Tan H, Dogra V, Wu MS, Rosas-Diaz T, et al. 2020.. A defense pathway linking plasma membrane and chloroplasts and co-opted by pathogens. . Cell 182::110924.e25
    [Crossref] [Google Scholar]
  7. 7.
    Kang SH, Sun YD, Atallah OO, Huguet-Tapia JC, Noble JD, Folimonova SY. 2019.. A long non-coding RNA of Citrus tristeza virus: role in the virus interplay with the host immunity. . Viruses 11::436
    [Crossref] [Google Scholar]
  8. 8.
    Venturuzzi AL, Rodriguez MC, Conti G, Leone M, Caro MD, et al. 2021.. Negative modulation of SA signaling components by the capsid protein of tobacco mosaic virus is required for viral long-distance movement. . Plant J. 106::896912
    [Crossref] [Google Scholar]
  9. 9.
    Zhang HH, Wang FM, Song WQ, Yang ZH, Li LL, et al. 2023.. Different viral effectors suppress hormone-mediated antiviral immunity of rice coordinated by OsNPR1. . Nat. Commun. 14::3011
    [Crossref] [Google Scholar]
  10. 10.
    Liu JH, Wu XY, Fang Y, Liu Y, Bello EO, et al. 2023.. A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity. . Nat. Commun. 14::3580
    [Crossref] [Google Scholar]
  11. 11.
    Butkovic A, Dolja VV, Koonin EV, Krupovic M. 2023.. Plant virus movement proteins originated from jelly-roll capsid proteins. . PLOS Biol. 21::e3002157
    [Crossref] [Google Scholar]
  12. 12.
    Liu L, Chen XM. 2018.. Intercellular and systemic trafficking of RNAs in plants. . Nat. Plants 4::86978
    [Crossref] [Google Scholar]
  13. 13.
    Gomez G, Pallas V. 2004.. A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with Hop stunt viroid RNA. . J. Virol. 78::1010410 Identified PP2 as the host RNA MP for a viroid.
    [Crossref] [Google Scholar]
  14. 14.
    Gomez G, Pallas V. 2001.. Identification of an in vitro ribonucleoprotein complex between a viroid RNA and a phloem protein from cucumber plants. . Mol. Plant-Microbe Interact. 14::91013
    [Crossref] [Google Scholar]
  15. 15.
    Taliansky ME, Robinson DJ. 2003.. Molecular biology of umbraviruses: phantom warriors. . J. Gen. Virol. 84::195160
    [Crossref] [Google Scholar]
  16. 16.
    Nagy PD. 2020.. Host protein chaperones, RNA helicases and the ubiquitin network highlight the arms race for resources between tombusviruses and their hosts. . Immunopathology 107::13358
    [Crossref] [Google Scholar]
  17. 17.
    Gao F, Simon AE. 2016.. Multiple cis-acting elements modulate programmed −1 ribosomal frameshifting in Pea enation mosaic virus. . Nucleic Acids Res. 44::87895
    [Crossref] [Google Scholar]
  18. 18.
    Ilyas M, Du Z, Simon A. 2021.. Opium poppy mosaic virus has an Xrn-resistant, translated subgenomic RNA and a BTE 3′ CITE. . J. Virol. 95::e02109-20
    [Crossref] [Google Scholar]
  19. 19.
    Gao F, Alekhina OM, Vassilenko KS, Simon AE. 2018.. Unusual dicistronic expression from closely spaced initiation codons in an umbravirus subgenomic RNA. . Nucleic Acids Res. 46::1172642
    [Crossref] [Google Scholar]
  20. 20.
    Chkuaseli T, White KA. 2023.. Dimerization of an umbravirus RNA genome activates subgenomic mRNA transcription. . Nucleic Acids Res. 51::8787804
    [Crossref] [Google Scholar]
  21. 21.
    Guan HC, Carpenter CD, Simon AE. 2000.. Analysis of cis-acting sequences involved in plus-strand synthesis of a turnip crinkle virus-associated satellite RNA identifies a new carmovirus replication element. . Virology 268::34554
    [Crossref] [Google Scholar]
  22. 22.
    May JP, Johnson PZ, Ilyas M, Gao F, Simon AE. 2020.. The multifunctional long-distance movement protein of Pea enation mosaic virus 2 protects viral and host transcripts from nonsense-mediated decay. . mBio 11::e00204-20
    [Crossref] [Google Scholar]
  23. 23.
    Ryabov EV, Robinson DJ, Taliansky M. 2001.. Umbravirus-encoded proteins both stabilize heterologous viral RNA and mediate its systemic movement in some plant species. . Virology 288::391400
    [Crossref] [Google Scholar]
  24. 24.
    Ryabov EV, Roberts IM, Palukaitis P, Taliansky M. 1999.. Host-specific cell-to-cell and long-distance movements of cucumber mosaic virus are facilitated by the movement protein of groundnut rosette virus. . Virology 260::98108
    [Crossref] [Google Scholar]
  25. 25.
    Liu JY, Carino E, Bera S, Gao F, May JP, Simon AE. 2021.. Structural analysis and whole genome mapping of a new type of plant virus subviral RNA: umbravirus-like associated RNAs. . Viruses 13::646 First biological and structural characterization of a ULV.
    [Crossref] [Google Scholar]
  26. 26.
    McCormack JC, Yuan X, Yingling YG, Kasprzak W, Zamora RE, et al. 2008.. Structural domains within the 3′ untranslated region of Turnip crinkle virus. . J. Virol. 82::870620
    [Crossref] [Google Scholar]
  27. 27.
    Kwon SJ, Bodaghi S, Dang T, Gadhave KR, Ho T, et al. 2021.. Complete nucleotide sequence, genome organization, and comparative genomic analyses of citrus yellow-vein associated virus (CYVaV). . Front. Microbiol. 12::683130 Identification of CYVaV (CY1) as a pathogen of citrus.
    [Crossref] [Google Scholar]
  28. 28.
    Pogany J, Fabian MR, White KA, Nagy PD. 2003.. A replication silencer element in a plus-strand RNA virus. . EMBO J. 22::560211
    [Crossref] [Google Scholar]
  29. 29.
    Zhang G, Zhang J, Simon AE. 2004.. Repression and derepression of minus-strand synthesis in a plus-strand RNA virus replicon. . J. Virol. 78::761933
    [Crossref] [Google Scholar]
  30. 30.
    Mikkelsen AA, Gao F, Carino E, Bera S, Simon AE. 2023.. −1 Programmed ribosomal frameshifting in Class 2 umbravirus-like RNAs uses multiple long-distance interactions to shift between active and inactive structures and destabilize the frameshift stimulating element. . Nucleic Acids Res. 51::1070018 Characterization of the recoding region(s) in CY1 revealed an “unzipping” mechanism for disrupting the recoding structure that impedes the progression of the ribosome.
    [Crossref] [Google Scholar]
  31. 31.
    Zhao FM, Li J, Hao XY, Liu HH, Qiao Q, et al. 2023.. Genomic characterization of two new viruses infecting Ageratum conyzoides in China. . Arch. Virol. 168::155
    [Crossref] [Google Scholar]
  32. 32.
    Belete MT, Kim SE, Kwon JA, Igori D, Choi EK, et al. 2023.. Molecular characterization of a novel umbra-like virus from Thuja orientalis (arborvitae) in South Korea. . Arch. Virol. 168::197
    [Crossref] [Google Scholar]
  33. 33.
    Chao SF, Wang HR, Zhang S, Chen GQ, Mao CH, et al. 2022.. Novel RNA viruses discovered in weeds in rice fields. . Viruses 14::2489
    [Crossref] [Google Scholar]
  34. 34.
    Belkina D, Karepova D, Porotikova E, Lifanov I, Vinogradova S. 2023.. Grapevine virome of the Don ampelographic collection in Russia has concealed five novel viruses. . Viruses 15::2429
    [Crossref] [Google Scholar]
  35. 35.
    Gao F, Kasprzak WK, Szarko C, Shapiro BA, Simon AE. 2014.. The 3′ untranslated region of Pea enation mosaic virus contains two T-shaped, ribosome-binding, cap-independent translation enhancers. . J. Virol. 88::11696712
    [Crossref] [Google Scholar]
  36. 36.
    Gao F, Simon AE. 2017.. Differential use of 3′CITEs by the subgenomic RNA of Pea enation mosaic virus 2. . Virology 10::194204
    [Crossref] [Google Scholar]
  37. 37.
    Stupina VA, Meskauskas A, McCormack JC, Yingling YG, Shapiro BA, et al. 2008.. The 3′ proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits. . RNA 14::237993
    [Crossref] [Google Scholar]
  38. 38.
    Johnson PZ, Reuning HM, Bera S, Gao F, Du ZY, Simon AE. 2022.. Novel 3′ proximal replication elements in umbravirus genomes. . Viruses 14::2615
    [Crossref] [Google Scholar]
  39. 39.
    Bera S, Ilyas M, Mikkelsen AA, Simon AE. 2023.. Conserved structure associated with different 3′ CITEs is important for translation of umbraviruses. . Viruses 15::638
    [Crossref] [Google Scholar]
  40. 40.
    Simon AE, Miller WA. 2013.. 3′ cap-independent translation enhancers of plant viruses. . Annu. Rev. Microbiol. 67::2142
    [Crossref] [Google Scholar]
  41. 41.
    Gao F, Gulay SP, Kasprzak W, Dinman JD, Shapiro BA, Simon AE. 2013.. The kissing-loop T-shaped structure translational enhancer of Pea enation mosaic virus can bind simultaneously to ribosomes and a 5′ proximal hairpin. . J. Virol. 87::119872002
    [Crossref] [Google Scholar]
  42. 42.
    Gao F, Kasprzak W, Stupina VA, Shapiro BA, Simon AE. 2012.. A ribosome-binding, 3′ translational enhancer has a T-shaped structure and engages in a long-distance RNA-RNA interaction. . J. Virol. 86::982842
    [Crossref] [Google Scholar]
  43. 43.
    Shvets D, Sandomirsky K, Porotikova E, Vinogradova S. 2022.. Metagenomic analysis of ampelographic collections of dagestan revealed the presence of two novel grapevine viruses. . Viruses 14::2623
    [Crossref] [Google Scholar]
  44. 44.
    Quito-Avila DF, Alvarez RA, Ibarra MA, Martin RR. 2015.. Detection and partial genome sequence of a new umbra-like virus of papaya discovered in Ecuador. . Euro. J. Plant Pathol. 143::199204 First report of a ULV.
    [Crossref] [Google Scholar]
  45. 45.
    Cornejo-Franco JF, Alvarez-Quinto RA, Quito-Avila DF. 2018.. Transmission of the umbra-like Papaya virus Q in Ecuador and its association with meleira-related viruses from Brazil. . Crop Protect. 110::99102
    [Crossref] [Google Scholar]
  46. 46.
    Cornejo-Franco JF, Flores F, Mollov D, Quito-Avila DF. 2021.. An umbra-related virus found in babaco (Vasconcellea × heilbornii). . Arch. Virol. 166::232124
    [Crossref] [Google Scholar]
  47. 47.
    Cornejo-Franco JF, Medina-Salguero A, Flores F, Chica E, Grinstead S, et al. 2020.. Exploring the virome of Vasconcellea × heilbornii: the first step towards a sustainable production program for babaco in Ecuador. . Euro. J. Plant Pathol. 157::96168
    [Crossref] [Google Scholar]
  48. 48.
    Sá Antunes TF, Amaral RJV, Ventura JA, Godinho MT, Amaral JG, et al. 2016.. The dsRNA virus papaya meleira virus and an ssRNA virus are associated with papaya sticky disease. . PLOS ONE 11::e0155240
    [Crossref] [Google Scholar]
  49. 49.
    Maciel-Zambolim E, Kunieda-Alonso S, Matsuoka K, De Carvalho MG, Zerbini FM. 2003.. Purification and some properties of Papaya meleira virus, a novel virus infecting papayas in Brazil. . Plant Pathol. 52::38994
    [Crossref] [Google Scholar]
  50. 50.
    Rodrigues C, Ventura J, Maffia L. 1989.. Distribuição e transmissão da meleira em pomares de mamão no Espírito Santo. . Fitopatol. Bras. 29::27681
    [Google Scholar]
  51. 51.
    Kitajima EW, Rodrigues CH, Silveira JS, Alves F, Ventura JA, et al. 1993.. Association of isometric viruslike particles, restricted to lacticifers, with “meleira” (sticky disease) of papaya (Carica papaya). . Fitopatol. Bras. 18::11822
    [Google Scholar]
  52. 52.
    Abreu EFM, Daltro CB, Nogueira EOPL, Andrade EC, Aragão FJL. 2015.. Sequence and genome organization of papaya meleira virus infecting papaya in Brazil. . Arch. Virol. 160::314347
    [Crossref] [Google Scholar]
  53. 53.
    Zamudio-Moreno E, Ramirez-Prado JH, Moreno-Valenzuela OA, Lopez-Ochoa LA. 2015.. Early diagnosis of a Mexican variant of papaya meleira virus (PMeV-Mx) by RT-PCR. . Genet. Mol. Res. 14::114554
    [Crossref] [Google Scholar]
  54. 54.
    Quito-Avila DF, Reyes-Proaño E, Cañada G, Cornejo-Franco JF, Alvarez-Quinto R, et al. 2023.. Papaya sticky disease caused by virus “couples”: a challenge for disease detection and management. . Plant Dis. 107::164963
    [Crossref] [Google Scholar]
  55. 55.
    Felker P, Bunch R, Russo G, Preston K, Tine JA, et al. 2019.. Biology and chemistry of an Umbravirus like 2989 bp single stranded RNA as a possible causal agent for Opuntia stunting disease (engrosamiento de cladodios)—a review. . J. Prof. Assoc. Cactus Dev. 21::131 First paper to describe Group 2/Class 2 ULVs, including the lack of a detectable helper virus and association with an important disease of opuntia.
    [Google Scholar]
  56. 56.
    Chiginsky J, Langemeier K, MacWilliams J, Albrecht T, Cranshaw W, et al. 2021.. First insights into the virus and viroid communities in hemp (Cannabis sativa). . Front. Agron. 3:. https://doi.org/10.3389/fagro.2021.778433
    [Crossref] [Google Scholar]
  57. 57.
    Weathers LG. 1960.. Yellow-vein disease of citrus and studies of interactions between yellow-vein and other viruses of citrus. . Virology 11::75364
    [Crossref] [Google Scholar]
  58. 58.
    Weathers L. 1957.. A vein-yellowing disease of citrus caused by a graft-transmissible virus. . Plant Dis. Rep. 41::74142
    [Google Scholar]
  59. 59.
    Ying X, Bera S, Liu J, Toscano-Morales R, Jang C, et al. 2024.. Umbravirus-like RNA viruses are capable of independent systemic plant infection in the absence of encoded movement proteins. . PLOS Biol. 22:(4):e3002600 Report of the discovery that ORF5 in Group 2/Class 2 ULVs codes for a capsid protein associated with 14 nM VLPs, and that CY1 uses host PP2 for phloem-restricted movement.
    [Crossref] [Google Scholar]
  60. 60.
    Jarugula S, Wagstaff C, Mitra A, Crowder DW, Gang DR, Naidu RA. 2023.. First reports of beet curly top virus, citrus yellow vein-associated virus, and hop latent viroid in industrial hemp (Cannabis sativa) in Washington State. . Plant Dis. 107:. https://doi.org/10.1094/PDIS-12-22-2981-PDN
    [Crossref] [Google Scholar]
  61. 61.
    Liu JY, Simon AE. 2022.. Identification of novel 5′ and 3′ translation enhancers in umbravirus-like coat protein-deficient RNA replicons. . J. Virol. 96::e0173621 Characterization of a novel 3′CITE associated with Group 2/Class 2 ULVs.
    [Crossref] [Google Scholar]
  62. 62.
    Wang X, Olmedo-Velarde A, Larrea-Sarmiento A, Simon AE, Kong A, et al. 2021.. Genome characterization of fig umbra-like virus. . Virus Genes 57::56670
    [Crossref] [Google Scholar]
  63. 63.
    Fox A, Gibbs AJ, Fowkes AR, Pufal H, McGreig S, et al. 2022.. Enhanced apiaceous potyvirus phylogeny, novel viruses, and new country and host records from sequencing Apiaceae samples. . Plants 11::1951
    [Crossref] [Google Scholar]
  64. 64.
    Schönegger D, Marais A, Babalola BM, Faure C, Lefebvre M, et al. 2023.. Carrot populations in France and Spain host a complex virome rich in previously uncharacterized viruses. . PLOS ONE 18::e0290108
    [Crossref] [Google Scholar]
  65. 65.
    Lappe RR, Elmore MG, Lozier ZR, Jander G, Miller WA, Whitham SA. 2022.. Metagenomic identification of novel viruses of maize and teosinte in North America. . BMC Genom. 23::767
    [Crossref] [Google Scholar]
  66. 66.
    Quito-Avila DF, Reyes-Proano EG, Mendoza A, Margaria P, Menzel W, et al. 2022.. Two new umbravirus-like associated RNAs (ulaRNAs) discovered in maize and johnsongrass from Ecuador. . Arch. Virol. 167::209398
    [Crossref] [Google Scholar]
  67. 67.
    Adams IP, Braidwood LA, Stomeo F, Phiri N, Uwumukiza B, et al. 2017.. Characterizing maize viruses associated with maize lethal necrosis symptoms in sub Saharan Africa. . bioRxiv 161489. https://doi.org/10.1101/161489
  68. 68.
    Tahir MN, Bolus S, Grinstead SC, McFarlane SA, Mollov D. 2021.. A new virus of the family Tombusviridae infecting sugarcane. . Arch. Virol. 166::96165
    [Crossref] [Google Scholar]
  69. 69.
    Olmedo-Velarde A, Loristo J, Kong A, Waisen P, Wang KH, et al. 2022.. Examination of the virome of taro plants affected by a lethal disease, the alomae-bobone virus complex, in Papua New Guinea. . Viruses 14::1410
    [Crossref] [Google Scholar]
  70. 70.
    Redila CD, Prakash V, Nouri S. 2021.. Metagenomics analysis of the wheat virome identifies novel plant and fungal-associated viral sequences. . Viruses 13::2457
    [Crossref] [Google Scholar]
  71. 71.
    Nouri S, Zarzynska-Nowak A, Prakash V. 2024.. Construction and biological characterization of a cDNA infectious clone of wheat umbra-like virus in wheat and Nicotiana benthamiana. . Virology 589::109929 First report that a ULV is independently infectious.
    [Crossref] [Google Scholar]
  72. 72.
    Koloniuk I, Pribylova J, Cmejla R, Valentova L, Franova J. 2022.. Identification and characterization of a novel umbra-like virus, strawberry virus A, infecting strawberry plants. . Plants 11::643
    [Crossref] [Google Scholar]
  73. 73.
    Maclot F, Debue V, Malmstrom CM, Filloux D, Roumagnac P, et al. 2023.. Long-term anthropogenic management and associated loss of plant diversity deeply impact virome richness and composition of Poaceae communities. . Microbiol. Spectr. 11::e0485022
    [Crossref] [Google Scholar]
  74. 74.
    Kuhlmann MM, Chattopadhyay M, Stupina VA, Gao F, Simon AE. 2016.. An RNA element that facilitates programmed ribosomal readthrough in Turnip crinkle virus adopts multiple conformations. . J. Virol. 90::857591
    [Crossref] [Google Scholar]
  75. 75.
    Newburn LR, Nicholson BL, Yosefi M, Cimino PA, White KA. 2014.. Translational readthrough in Tobacco necrosis virus-D. . Virology 450::25865
    [Crossref] [Google Scholar]
  76. 76.
    Cimino PA, Nicholson BL, Wu B, Xu W, White KA. 2011.. Multifaceted regulation of translational readthrough by RNA replication elements in a tombusvirus. . PLOS Pathog. 7:(12):e1002423
    [Crossref] [Google Scholar]
  77. 77.
    Wheatley NM, Sundberg CD, Gidaniyan SD, Cascio D, Yeates TO. 2014.. Structure and identification of a pterin dehydratase-like protein as a ribulose-bisphosphate carboxylase/oxygenase (RuBisCO) assembly factor in the α-carboxysome. . J. Biol. Chem. 289::797381
    [Crossref] [Google Scholar]
  78. 78.
    Feiz L, Williams-Carrier R, Belcher S, Montano M, Barkan A, Stern DB. 2014.. A protein with an inactive pterin-4a-carbinolamine dehydratase domain is required for Rubisco biogenesis in plants. . Plant J. 80::86269
    [Crossref] [Google Scholar]
  79. 79.
    Haupt S, Stroganova T, Ryabov E, Kim SH, Fraser G, et al. 2005.. Nucleolar localization of potato leafroll virus capsid proteins. . J. Gen. Virol. 86::289196
    [Crossref] [Google Scholar]
  80. 80.
    Dolja VV, Koonin EV. 2018.. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. . Virus Res. 244::3652
    [Crossref] [Google Scholar]
  81. 81.
    Shi M, Lin XD, Tian JH, Chen LJ, Chen X, et al. 2016.. Redefining the invertebrate RNA virosphere. . Nature 540::53943
    [Crossref] [Google Scholar]
  82. 82.
    Paraskevopoulou S, Käfer S, Zirkel F, Donath A, Petersen M, et al. 2021.. Viromics of extant insect orders unveil the evolution of the flavi-like superfamily. . Virus Evol. 7::veab030
    [Crossref] [Google Scholar]
  83. 83.
    Barredo E, DeGennaro M. 2020.. Not just from blood: mosquito nutrient acquisition from nectar sources. . Trends Parasitol. 36::47384
    [Crossref] [Google Scholar]
  84. 84.
    Wu W, Yi G, Lv X, Mao Q, Wei T. 2024.. Leafhopper salivary vitellogenin mediates virus transmission to plant phloem. . Nat. Commun. Biol. 15::3
    [Crossref] [Google Scholar]
  85. 85.
    Chen XF, Yu JT, Wang W, Lu H, Kang L, Cui F. 2020.. A plant virus ensures viral stability in the hemolymph of vector insects through suppressing prophenoloxidase activation. . mBio 11::e01453-20
    [Google Scholar]
  86. 86.
    Ruiz-Padilla A, Rodríguez-Romero J, Gómez-Cid I, Pacifico D, Ayllón MA. 2021.. Novel mycoviruses discovered in the mycovirome of a necrotrophic fungus. . mBio 12::e03705-20
    [Crossref] [Google Scholar]
  87. 87.
    Guo PG, Zheng YC, Peng DX, Liu LJ, Dai LJ, et al. 2018.. Identification and expression characterization of the Phloem Protein 2 (PP2) genes in ramie (Boehmeria nivea L. Gaudich). . Sci. Rep. 8::10734
    [Crossref] [Google Scholar]
  88. 88.
    Dinant S, Clark AM, Zhu YM, Vilaine F, Palauqui JC, et al. 2003.. Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms. . Plant Phys. 131::11428
    [Crossref] [Google Scholar]
  89. 89.
    Owens RA, Blackburn M, Ding B. 2001.. Possible involvement of the phloem lectin in long-distance viroid movement. . Mol. Plant-Microbe Interact. 14::9059
    [Crossref] [Google Scholar]
  90. 90.
    Wu Z, Liu JY, Feng XW, Zhang YL, Liu L, Niu GY. 2023.. Identification and molecular characteristics of a novel single-stranded RNA virus isolated from Culex tritaeniorhynchus in China. . Microbiol. Spectr. 11:(4):e0053623
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-111821-122718
Loading
/content/journals/10.1146/annurev-virology-111821-122718
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error