1932

Abstract

Xenotropic murine leukemia virus (MLV)-related virus (XMRV) was first described in 2006 in some human prostate cancers. But it drew little attention until 2009, when it was also found, as infectious virus and as MLV-related DNA, in samples from people suffering from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This discovery was rapidly followed by efforts of the international research community to understand the significance of the association and its potential to spread widely as an important human pathogen. Within a few years, efforts by researchers worldwide failed to repeat these findings, and mounting evidence for laboratory contamination with mouse-derived virus and viral DNA sequences became accepted as the explanation for the initial findings. As researchers engaged in these studies, we present here a historical review of the rise and fall of XMRV as a human pathogen, and we discuss the lessons learned from these events.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-111821-125122
2024-09-26
2025-02-08
Loading full text...

Full text loading...

/deliver/fulltext/virology/11/1/annurev-virology-111821-125122.html?itemId=/content/journals/10.1146/annurev-virology-111821-125122&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Rosenberg N, Jolicoeur P. 1997.. Retroviral pathogenesis. . In Retroviruses, ed. JM Coffin, SH Hughes, HE Varmus . New York:: Cold Spring Harb.
    [Google Scholar]
  2. 2.
    Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, et al. 1997.. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. . Science 278::1295300
    [Crossref] [Google Scholar]
  3. 3.
    Maldarelli F, Wu X, Su L, Simonetti FR, Shao W, et al. 2014.. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. . Science 345::17983
    [Crossref] [Google Scholar]
  4. 4.
    Boeke JD, Stoye JP. 1997.. Retrotransposons, endogenous retroviruses, and the evolution of retroelements. . In Retroviruses, ed. JM Coffin, SH Hughes, HE Varmus . New York:: Cold Spring Harb.
    [Google Scholar]
  5. 5.
    Johnson WE. 2019.. Origins and evolutionary consequences of ancient endogenous retroviruses. . Nat. Rev. Microbiol. 17::35570
    [Crossref] [Google Scholar]
  6. 6.
    Henzy JE, Gifford RJ, Kenaley CP, Johnson WE. 2017.. An intact retroviral gene conserved in spiny-rayed fishes for over 100 My. . Mol. Biol. Evol. 34::63439
    [Google Scholar]
  7. 7.
    Voisset C, Weiss RA, Griffiths DJ. 2008.. Human RNA “rumor” viruses: the search for novel human retroviruses in chronic disease. . Microbiol. Mol. Biol. Rev. 72::15796
    [Crossref] [Google Scholar]
  8. 8.
    Baltimore D. 1970.. RNA-dependent DNA polymerase in virions of RNA tumour viruses. . Nature 226::120911
    [Crossref] [Google Scholar]
  9. 9.
    Temin HM, Mizutani S. 1970.. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. . Nature 226::121113
    [Crossref] [Google Scholar]
  10. 10.
    Stoye JP, Coffin JM. 1987.. The four classes of endogenous murine leukemia virus: structural relationships and potential for recombination. . J. Virol. 61::265969
    [Crossref] [Google Scholar]
  11. 11.
    Tailor CS, Nouri A, Lee CG, Kozak C, Kabat D. 1999.. Cloning and characterization of a cell surface receptor for xenotropic and polytropic murine leukemia viruses. . PNAS 96::92732
    [Crossref] [Google Scholar]
  12. 12.
    Hartley JW, Wolford NK, Old LJ, Rowe WP. 1977.. A new class of murine leukemia virus associated with development of spontaneous lymphomas. . PNAS 74::78992
    [Crossref] [Google Scholar]
  13. 13.
    Stoye JP, Moroni C, Coffin JM. 1991.. Virological events leading to spontaneous AKR thymomas. . J. Virol. 65::127385
    [Crossref] [Google Scholar]
  14. 14.
    Tomonaga K, Coffin JM. 1998.. Structure and distribution of endogenous nonecotropic murine leukemia viruses in wild mice. . J. Virol. 72::8289300
    [Crossref] [Google Scholar]
  15. 15.
    Frankel WN, Stoye JP, Taylor BA, Coffin JM. 1990.. A linkage map of endogenous murine leukemia proviruses. . Genetics 124::22136
    [Crossref] [Google Scholar]
  16. 16.
    Lowy DR, Rowe WP, Teich N, Hartley JW. 1971.. Murine leukemia virus: high-frequency activation in vitro by 5-iododeoxyuridine and 5-bromodeoxyuridine. . Science 174::15556
    [Crossref] [Google Scholar]
  17. 17.
    McAllister RM, Nicolson M, Gardner MB, Rasheed S, Rongey RW, et al. 1973.. RD-114 virus compared with feline and murine type-C viruses released from RD cells. . Nat. New Biol. 242::7578
    [Crossref] [Google Scholar]
  18. 18.
    Gillespie D, Gillespie S, Gallo RC, East JL, Dmochowski L. 1973.. Genetic origin of RD114 and other RNA tumour viruses assayed by molecular hybridization. . Nat. New Biol. 244::5154
    [Crossref] [Google Scholar]
  19. 19.
    Carpten J, Nupponen N, Isaacs S, Sood R, Robbins C, et al. 2002.. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. . Nat. Genet. 30::18184
    [Crossref] [Google Scholar]
  20. 20.
    Urisman A, Molinaro RJ, Fischer N, Plummer SJ, Casey G, et al. 2006.. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. . PLOS Pathog. 2::e25
    [Crossref] [Google Scholar]
  21. 21.
    Dong B, Kim S, Hong S, Das Gupta J, Malathi K, et al. 2007.. An infectious retrovirus susceptible to an IFN antiviral pathway from human prostate tumors. . PNAS 104::165560
    [Crossref] [Google Scholar]
  22. 22.
    Schlaberg R, Choe DJ, Brown KR, Thaker HM, Singh IR. 2009.. XMRV is present in malignant prostatic epithelium and is associated with prostate cancer, especially high-grade tumors. . PNAS 106::1635156
    [Crossref] [Google Scholar]
  23. 23.
    Sramkoski RM, Pretlow TG 2nd, Giaconia JM, Pretlow TP, Schwartz S, et al. 1999.. A new human prostate carcinoma cell line, 22Rv1. . In Vitro Cell. Dev. Biol. Anim. 35::4039
    [Crossref] [Google Scholar]
  24. 24.
    Lombardi VC, Ruscetti FW, Das Gupta J, Pfost MA, Hagen KS, et al. 2009.. Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. . Science 326::58589
    [Crossref] [Google Scholar]
  25. 25.
    Coffin JM, Stoye JP. 2009.. A new virus for old diseases?. Science 326::53031
    [Crossref] [Google Scholar]
  26. 26.
    Simmons G, Glynn SA, Holmberg JA, Coffin JM, Hewlett IK, et al. 2011.. The Blood Xenotropic Murine Leukemia Virus-Related Virus Scientific Research Working Group: mission, progress, and plans. . Transfusion 51::64353
    [Crossref] [Google Scholar]
  27. 27.
    Groom HC, Yap MW, Galao RP, Neil SJ, Bishop KN. 2010.. Susceptibility of xenotropic murine leukemia virus-related virus (XMRV) to retroviral restriction factors. . PNAS 107::516671
    [Crossref] [Google Scholar]
  28. 28.
    Kim S, Rusmevichientong A, Dong B, Remenyi R, Silverman RH, Chow SA. 2010.. Fidelity of target site duplication and sequence preference during integration of xenotropic murine leukemia virus-related virus. . PLOS ONE 5::e10255
    [Crossref] [Google Scholar]
  29. 29.
    Stieler K, Schulz C, Lavanya M, Aepfelbacher M, Stocking C, Fischer N. 2010.. Host range and cellular tropism of the human exogenous gammaretrovirus XMRV. . Virology 399::2330
    [Crossref] [Google Scholar]
  30. 30.
    Knouf EC, Metzger MJ, Mitchell PS, Arroyo JD, Chevillet JR, et al. 2009.. Multiple integrated copies and high-level production of the human retrovirus XMRV (xenotropic murine leukemia virus-related virus) from 22Rv1 prostate carcinoma cells. . J. Virol. 83::735356
    [Crossref] [Google Scholar]
  31. 31.
    Setty MK, Devadas K, Ragupathy V, Ravichandran V, Tang S, et al. 2011.. XMRV: usage of receptors and potential co-receptors. . Virol. J. 8::423
    [Crossref] [Google Scholar]
  32. 32.
    Del Prete GQ, Kearney MF, Spindler J, Wiegand A, Chertova E, et al. 2012.. Restricted replication of xenotropic murine leukemia virus-related virus in pigtailed macaques. . J. Virol. 86::315266
    [Crossref] [Google Scholar]
  33. 33.
    Sturzel CM, Palesch D, Khalid M, Wissing S, Fischer N, Munch J. 2013.. Utilization of replication-competent XMRV reporter-viruses reveals severe viral restriction in primary human cells. . PLOS ONE 8::e74427
    [Crossref] [Google Scholar]
  34. 34.
    Paprotka T, Venkatachari NJ, Chaipan C, Burdick R, Delviks-Frankenberry KA, et al. 2010.. Inhibition of xenotropic murine leukemia virus-related virus by APOBEC3 proteins and antiviral drugs. . J. Virol. 84::571929
    [Crossref] [Google Scholar]
  35. 35.
    Hohn O, Krause H, Barbarotto P, Niederstadt L, Beimforde N, et al. 2009.. Lack of evidence for xenotropic murine leukemia virus-related virus (XMRV) in German prostate cancer patients. . Retrovirology 6::92
    [Crossref] [Google Scholar]
  36. 36.
    Erlwein O, Kaye S, McClure MO, Weber J, Wills G, et al. 2010.. Failure to detect the novel retrovirus XMRV in chronic fatigue syndrome. . PLOS ONE 5::e8519
    [Crossref] [Google Scholar]
  37. 37.
    Cornelissen M, Zorgdrager F, Blom P, Jurriaans S, Repping S, et al. 2010.. Lack of detection of XMRV in seminal plasma from HIV-1 infected men in the Netherlands. . PLOS ONE 5::e12040
    [Crossref] [Google Scholar]
  38. 38.
    Lo SC, Pripuzova N, Li B, Komaroff AL, Hung GC, et al. 2010.. Detection of MLV-related virus gene sequences in blood of patients with chronic fatigue syndrome and healthy blood donors. . PNAS 107::1587479
    [Crossref] [Google Scholar]
  39. 39.
    Palmer S, Kearney M, Maldarelli F, Halvas EK, Bixby CJ, et al. 2005.. Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. . J. Clin. Microbiol. 43::40613
    [Crossref] [Google Scholar]
  40. 40.
    Kearney MF, Spindler J, Wiegand A, Shao W, Anderson EM, et al. 2012.. Multiple sources of contamination in samples from patients reported to have XMRV infection. . PLOS ONE 7::e30889
    [Crossref] [Google Scholar]
  41. 41.
    Switzer WM, Jia H, Hohn O, Zheng H, Tang S, et al. 2010.. Absence of evidence of xenotropic murine leukemia virus-related virus infection in persons with chronic fatigue syndrome and healthy controls in the United States. . Retrovirology 7::57
    [Crossref] [Google Scholar]
  42. 42.
    Lueders KK, Kuff EL. 1977.. Sequences associated with intracisternal A particles are reiterated in the mouse genome. . Cell 12::96372
    [Crossref] [Google Scholar]
  43. 43.
    Robinson MJ, Erlwein OW, Kaye S, Weber J, Cingöz O, et al. 2010.. Mouse DNA contamination in human tissue tested for XMRV. . Retrovirology 7::108
    [Crossref] [Google Scholar]
  44. 44.
    Oakes B, Tai AK, Cingöz O, Henefield MH, Levine S, et al. 2010.. Contamination of human DNA samples with mouse DNA can lead to false detection of XMRV-like sequences. . Retrovirology 7::109
    [Crossref] [Google Scholar]
  45. 45.
    Chapman LE, Khabbaz RF. 1994.. Etiology and epidemiology of the Four Corners hantavirus outbreak. . Infect. Agents Dis. 3::23444
    [Google Scholar]
  46. 46.
    Jern P, Stoye JP, Coffin JM. 2007.. Role of APOBEC3 in genetic diversity among endogenous murine leukemia viruses. . PLOS Genet. 3::201422
    [Crossref] [Google Scholar]
  47. 47.
    Paprotka T, Delviks-Frankenberry KA, Cingöz O, Martinez A, Kung HJ, et al. 2011.. Recombinant origin of the retrovirus XMRV. . Science 333::97101
    [Crossref] [Google Scholar]
  48. 48.
    Coffin JM. 1979.. Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. . J. Gen. Virol. 42::126
    [Crossref] [Google Scholar]
  49. 49.
    Das Gupta J, Luk KC, Tang N, Gaughan C, Klein EA, et al. 2012.. Absence of XMRV and closely related viruses in primary prostate cancer tissues used to derive the XMRV-infected cell line 22Rv1. . PLOS ONE 7::e36072
    [Crossref] [Google Scholar]
  50. 50.
    Cingöz O, Paprotka T, Delviks-Frankenberry KA, Wildt S, Hu WS, et al. 2012.. Characterization, mapping, and distribution of the two XMRV parental proviruses. . J. Virol. 86::32838
    [Crossref] [Google Scholar]
  51. 51.
    Weiss RA. 2010.. A cautionary tale of virus and disease. . BMC Biol. 8::124
    [Crossref] [Google Scholar]
  52. 52.
    Delviks-Frankenberry K, Paprotka T, Cingöz O, Wildt S, Hu WS, et al. 2013.. Generation of multiple replication-competent retroviruses through recombination between PreXMRV-1 and PreXMRV-2. . J. Virol. 87::1152537
    [Crossref] [Google Scholar]
  53. 53.
    Sfanos KS, Aloia AL, Hicks JL, Esopi DM, Steranka JP, et al. 2011.. Identification of replication competent murine gammaretroviruses in commonly used prostate cancer cell lines. . PLOS ONE 6::e20874
    [Crossref] [Google Scholar]
  54. 54.
    Cohen J, Enserink M. 2011.. False positive. . Science 333::1694701
    [Crossref] [Google Scholar]
  55. 55.
    Neil SJD, Campbell EM. 2020.. Fake science: XMRV, COVID-19, and the toxic legacy of Dr. Judy Mikovits. . AIDS Res. Hum. Retroviruses 36::54549
    [Crossref] [Google Scholar]
  56. 56.
    Silverman RH, Das Gupta J, Lombardi VC, Ruscetti FW, Pfost MA, et al. 2011.. Partial retraction. Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. . Science 334::176
    [Crossref] [Google Scholar]
  57. 57.
    Alberts B. 2011.. Retraction. . Science 334::1636
    [Crossref] [Google Scholar]
  58. 58.
    Lo SC, Pripuzova N, Li B, Komaroff AL, Hung GC, et al. 2012.. Retraction for Lo et al., Detection of MLV-related virus gene sequences in blood of patients with chronic fatigue syndrome and healthy blood donors. . PNAS 109::346
    [Crossref] [Google Scholar]
  59. 59.
    Urisman A, Molinaro RJ, Fischer N, Plummer SJ, Casey G, et al. 2012.. Retraction. Identification of a novel gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. . PLOS Pathog. 8:. https://doi.org/10.1371/annotation/7e2efc01-2e9b-4e9b-aef0-87ab0e4e4732
    [Crossref] [Google Scholar]
  60. 60.
    Schlaberg R, Choe DJ, Brown KR, Thaker HM, Singh IR. 2014.. Retraction for Schlaberg et al., XMRV is present in malignant prostatic epithelium and is associated with prostate cancer, especially high-grade tumors. . PNAS 111::12270
    [Crossref] [Google Scholar]
  61. 61.
    Alter HJ, Mikovits JA, Switzer WM, Ruscetti FW, Lo SC, et al. 2012.. A multicenter blinded analysis indicates no association between chronic fatigue syndrome/myalgic encephalomyelitis and either xenotropic murine leukemia virus-related virus or polytropic murine leukemia virus. . mBio 3::e00266-12
    [Crossref] [Google Scholar]
  62. 62.
    Lee LL, Lin L, Bell DS, Levine S, Hanson MR. 2012.. Sensitivity of PCR assays for murine gammaretroviruses and mouse contamination in human blood samples. . PLOS ONE 7::e37482
    [Crossref] [Google Scholar]
  63. 63.
    Knox K, Carrigan D, Simmons G, Teque F, Zhou Y, et al. 2011.. No evidence of murine-like gammaretroviruses in CFS patients previously identified as XMRV-infected. . Science 333::9497
    [Crossref] [Google Scholar]
  64. 64.
    Zhang YA, Maitra A, Hsieh JT, Rudin CM, Peacock CD, et al. 2011.. Frequent detection of infectious xenotropic murine leukemia virus (XMLV) in human cultures established from mouse xenografts. . Cancer Biol. Ther. 12::61728
    [Crossref] [Google Scholar]
  65. 65.
    Tuke PW, Tettmar KI, Tamuri A, Stoye JP, Tedder RS. 2011.. PCR master mixes harbour murine DNA sequences. Caveat emptor!. PLOS ONE 6::e19953
    [Crossref] [Google Scholar]
  66. 66.
    Heckenlively K, Mikovits JA. 2017.. Plague: One Scientist's Intrepid Search for the Truth ABOUT Human Retroviruses and Chronic Fatigue Syndrome (ME/CFS), Autism, and Other Diseases. New York:: Skyhorse
    [Google Scholar]
  67. 67.
    Mikovits JA, Heckenlively K. 2020.. Plague of Corruption: Restoring Faith in the Promise of Science. New York:: Skyhorse
    [Google Scholar]
  68. 68.
    Kearney MD, Chiang SC, Massey PM. 2020.. The Twitter origins and evolution of the COVID-19 “plandemic” conspiracy theory. . Harv. Kennedy Sch. Misinf. Rev. 1::118
    [Google Scholar]
  69. 69.
    Dickson EJ. 2020.. Judy Mikovits, disgraced doctor at the center of ‘Plandemic,’ has a bestselling book on Amazon. . Rolling Stone, May 12
    [Google Scholar]
  70. 70.
    Groom HC, Boucherit VC, Makinson K, Randal E, Baptista S, et al. 2010.. Absence of xenotropic murine leukaemia virus-related virus in UK patients with chronic fatigue syndrome. . Retrovirology 7::10
    [Crossref] [Google Scholar]
  71. 71.
    Jeziorski E, Foulongne V, Ludwig C, Louhaem D, Chiocchia G, et al. 2010.. No evidence for XMRV association in pediatric idiopathic diseases in France. . Retrovirology 7::63
    [Crossref] [Google Scholar]
  72. 72.
    Hong P, Li J, Li Y. 2010.. Failure to detect Xenotropic murine leukaemia virus-related virus in Chinese patients with chronic fatigue syndrome. . Virol. J. 7::224
    [Crossref] [Google Scholar]
  73. 73.
    Satterfield BC, Garcia RA, Gurrieri F, Schwartz CE. 2010.. PCR and serology find no association between xenotropic murine leukemia virus-related virus (XMRV) and autism. . Mol. Autism 1::14
    [Crossref] [Google Scholar]
  74. 74.
    Barnes E, Flanagan P, Brown A, Robinson N, Brown H, et al. 2010.. Failure to detect xenotropic murine leukemia virus-related virus in blood of individuals at high risk of blood-borne viral infections. . J. Infect. Dis. 202::148285
    [Crossref] [Google Scholar]
  75. 75.
    Henrich TJ, Li JZ, Felsenstein D, Kotton CN, Plenge RM, et al. 2010.. Xenotropic murine leukemia virus-related virus prevalence in patients with chronic fatigue syndrome or chronic immunomodulatory conditions. . J. Infect. Dis. 202::147881
    [Crossref] [Google Scholar]
  76. 76.
    Mikovits JA, Huang Y, Pfost MA, Lombardi VC, Bertolette DC, et al. 2010.. Distribution of xenotropic murine leukemia virus-related virus (XMRV) infection in chronic fatigue syndrome and prostate cancer. . AIDS Rev. 12::14952
    [Google Scholar]
  77. 77.
    Hue S, Gray ER, Gall A, Katzourakis A, Tan CP, et al. 2010.. Disease-associated XMRV sequences are consistent with laboratory contamination. . Retrovirology 7::111
    [Crossref] [Google Scholar]
  78. 78.
    Sato E, Furuta RA, Miyazawa T. 2010.. An endogenous murine leukemia viral genome contaminant in a commercial RT-PCR kit is amplified using standard primers for XMRV. . Retrovirology 7::110
    [Crossref] [Google Scholar]
  79. 79.
    Smith RA. 2010.. Contamination of clinical specimens with MLV-encoding nucleic acids: implications for XMRV and other candidate human retroviruses. . Retrovirology 7::112
    [Crossref] [Google Scholar]
  80. 80.
    Satterfield BC, Garcia RA, Jia H, Tang S, Zheng H, Switzer WM. 2011.. Serologic and PCR testing of persons with chronic fatigue syndrome in the United States shows no association with xenotropic or polytropic murine leukemia virus-related viruses. . Retrovirology 8::12
    [Crossref] [Google Scholar]
  81. 81.
    Lintas C, Guidi F, Manzi B, Mancini A, Curatolo P, Persico AM. 2011.. Lack of infection with XMRV or other MLV-related viruses in blood, post-mortem brains and paternal gametes of autistic individuals. . PLOS ONE 6::e16609
    [Crossref] [Google Scholar]
  82. 82.
    Garson JA, Kellam P, Towers GJ. 2011.. Analysis of XMRV integration sites from human prostate cancer tissues suggests PCR contamination rather than genuine human infection. . Retrovirology 8::13
    [Crossref] [Google Scholar]
  83. 83.
    Verhaegh GW, de Jong AS, Smit FP, Jannink SA, Melchers WJ, Schalken JA. 2011.. Prevalence of human xenotropic murine leukemia virus-related gammaretrovirus (XMRV) in Dutch prostate cancer patients. . Prostate 71::41520
    [Crossref] [Google Scholar]
  84. 84.
    Furuta RA, Miyazawa T, Sugiyama T, Kuratsune H, Ikeda Y, et al. 2011.. No association of xenotropic murine leukemia virus-related virus with prostate cancer or chronic fatigue syndrome in Japan. . Retrovirology 8::20
    [Crossref] [Google Scholar]
  85. 85.
    Tang S, Zhao J, Haleyur Giri Setty MK, Devadas K, Gaddam D, et al. 2011.. Absence of detectable XMRV and other MLV-related viruses in healthy blood donors in the United States. . PLOS ONE 6::e27391
    [Crossref] [Google Scholar]
  86. 86.
    Gray ER, Garson JA, Breuer J, Edwards S, Kellam P, et al. 2011.. No evidence of XMRV or related retroviruses in a London HIV-1-positive patient cohort. . PLOS ONE 6::e18096
    [Crossref] [Google Scholar]
  87. 87.
    Sakuma T, Hue S, Squillace KA, Tonne JM, Blackburn PR, et al. 2011.. No evidence of XMRV in prostate cancer cohorts in the Midwestern United States. . Retrovirology 8::23
    [Crossref] [Google Scholar]
  88. 88.
    Chaipan C, Dilley KA, Paprotka T, Delviks-Frankenberry KA, Venkatachari NJ, et al. 2011.. Severe restriction of xenotropic murine leukemia virus-related virus replication and spread in cultured human peripheral blood mononuclear cells. . J. Virol. 85::488897
    [Crossref] [Google Scholar]
  89. 89.
    Yang J, Battacharya P, Singhal R, Kandel ES. 2011.. Xenotropic murine leukemia virus-related virus (XMRV) in prostate cancer cells likely represents a laboratory artifact. . Oncotarget 2::35862
    [Crossref] [Google Scholar]
  90. 90.
    Switzer WM, Jia H, Zheng H, Tang S, Heneine W. 2011.. No association of xenotropic murine leukemia virus-related viruses with prostate cancer. . PLOS ONE 6::e19065
    [Crossref] [Google Scholar]
  91. 91.
    Shin CH, Bateman L, Schlaberg R, Bunker AM, Leonard CJ, et al. 2011.. Absence of XMRV retrovirus and other murine leukemia virus-related viruses in patients with chronic fatigue syndrome. . J. Virol. 85::7195202
    [Crossref] [Google Scholar]
  92. 92.
    Ali MA, Dale JK, Kozak CA, Goldbach-Mansky R, Miller FW, et al. 2011.. Xenotropic murine leukemia virus-related virus is not associated with chronic fatigue syndrome in patients from different areas of the US in the 1990s. . Virol. J. 8::450
    [Crossref] [Google Scholar]
  93. 93.
    Blomberg J, Sheikholvaezin A, Elfaitouri A, Blomberg F, Sjosten A, et al. 2011.. Phylogeny-directed search for murine leukemia virus-like retroviruses in vertebrate genomes and in patients suffering from myalgic encephalomyelitis/chronic fatigue syndrome and prostate cancer. . Adv. Virol. 2011::341294
    [Crossref] [Google Scholar]
  94. 94.
    Delviks-Frankenberry KA, Chaipan C, Bagni R, Wyvill K, Yarchoan R, Pathak VK. 2011.. Lack of detection of xenotropic murine leukemia virus-related virus in HIV-1 lymphoma patients. . Adv. Virol. 2011::797820
    [Crossref] [Google Scholar]
  95. 95.
    Waugh EM, Jarrett RF, Shield L, Montgomery D, Dean RT, et al. 2011.. The retrovirus XMRV is not directly involved in the pathogenesis of common types of lymphoid malignancy. . Cancer Epidemiol. Biomark. Prev. 20::223236
    [Crossref] [Google Scholar]
  96. 96.
    Elfaitouri A, Shao X, Mattsson Ulfstedt J, Muradrasoli S, Bolin Wiener A, et al. 2011.. Murine gammaretrovirus group G3 was not found in Swedish patients with myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia. . PLOS ONE 6::e24602
    [Crossref] [Google Scholar]
  97. 97.
    Stieler K, Schindler S, Schlomm T, Hohn O, Bannert N, et al. 2011.. No detection of XMRV in blood samples and tissue sections from prostate cancer patients in Northern Europe. . PLOS ONE 6::e25592
    [Crossref] [Google Scholar]
  98. 98.
    Cool M, Bouchard N, Masse G, Laganiere B, Dumont A, et al. 2011.. No detectable XMRV in subjects with chronic fatigue syndrome from Quebec. . Virology 420::6672
    [Crossref] [Google Scholar]
  99. 99.
    Simmons G, Glynn SA, Komaroff AL, Mikovits JA, Tobler LH, et al. 2011.. Failure to confirm XMRV/MLVs in the blood of patients with chronic fatigue syndrome: a multi-laboratory study. . Science 334::81417
    [Crossref] [Google Scholar]
  100. 100.
    Spindler J, Hackett J Jr., Qiu X, Wiegand A, Boltz VF, et al. 2011.. Prevalence of XMRV nucleic acid and antibody in HIV-1-infected men and in men at risk for HIV-1 infection. . Adv. Virol. 2011::268214
    [Crossref] [Google Scholar]
  101. 101.
    Steffen I, Tyrrell DL, Stein E, Montalvo L, Lee TH, et al. 2011.. No evidence for XMRV nucleic acids, infectious virus or anti-XMRV antibodies in Canadian patients with chronic fatigue syndrome. . PLOS ONE 6::e27870
    [Crossref] [Google Scholar]
  102. 102.
    Zhang A, Bogerd H, Villinger F, Das Gupta J, Dong B, et al. 2011.. In vivo hypermutation of xenotropic murine leukemia virus-related virus DNA in peripheral blood mononuclear cells of rhesus macaque by APOBEC3 proteins. . Virology 421::2833
    [Crossref] [Google Scholar]
  103. 103.
    Wolff D, Gerritzen A. 2011.. Presence of murine leukemia virus (MLV)-related virus gene sequences in a commercial RT-PCR reagent. . Clin. Lab. 57::63134
    [Google Scholar]
  104. 104.
    Erlwein O, Robinson MJ, Dustan S, Weber J, Kaye S, McClure MO. 2011.. DNA extraction columns contaminated with murine sequences. . PLOS ONE 6::e23484
    [Crossref] [Google Scholar]
  105. 105.
    Bacich DJ, Sobek KM, Cummings JL, Atwood AA, O'Keefe DS. 2011.. False negative results from using common PCR reagents. . BMC Res. Notes 4::457
    [Crossref] [Google Scholar]
  106. 106.
    Cingöz O, Coffin JM. 2011.. Endogenous murine leukemia viruses: relationship to XMRV and related sequences detected in human DNA samples. . Adv. Virol. 2011::940210
    [Crossref] [Google Scholar]
  107. 107.
    Switzer WM, Zheng H, Simmons G, Zhou Y, Tang S, et al. 2011.. No evidence of murine leukemia virus-related viruses in live attenuated human vaccines. . PLOS ONE 6::e29223
    [Crossref] [Google Scholar]
  108. 108.
    Zheng H, Jia H, Shankar A, Heneine W, Switzer WM. 2011.. Detection of murine leukemia virus or mouse DNA in commercial RT-PCR reagents and human DNAs. . PLOS ONE 6::e29050
    [Crossref] [Google Scholar]
  109. 109.
    Katzourakis A, Hue S, Kellam P, Towers GJ. 2011.. Phylogenetic analysis of murine leukemia virus sequences from longitudinally sampled chronic fatigue syndrome patients suggests PCR contamination rather than viral evolution. . J. Virol. 85::1090913
    [Crossref] [Google Scholar]
  110. 110.
    Rusmevichientong A, Das Gupta J, Elias PS, Silverman RH, Chow SA. 2011.. Analysis of single-nucleotide polymorphisms in patient-derived retrovirus integration sites reveals contamination from cell lines acutely infected by xenotropic murine leukemia virus-related virus. . J. Virol. 85::1283034
    [Crossref] [Google Scholar]
  111. 111.
    Mendoza R, Vaughan AE, Miller AD. 2011.. The left half of the XMRV retrovirus is present in an endogenous retrovirus of NIH/3T3 Swiss mouse cells. . J. Virol. 85::924748
    [Crossref] [Google Scholar]
  112. 112.
    Sharma P, Rogers KA, Suppiah S, Molinaro RJ, Onlamoon N, et al. 2011.. Sexual transmission of XMRV: a potential infection route. . Adv. Virol. 2011::965689
    [Crossref] [Google Scholar]
  113. 113.
    Luczkowiak J, Martinez-Prats L, Sierra O, Fiorante S, Rubio R, et al. 2012.. Lack of the detection of XMRV or polytropic MLV-related sequences in blood cells from HIV-1-infected patients in Spain. . J. Acquir. Immune Defic. Syndr. 59::1014
    [Crossref] [Google Scholar]
  114. 114.
    Brooks J, Lycett-Lambert K, Caminiti K, Merks H, McMillan R, Sandstrom P. 2012.. No evidence of cross-species transmission of mouse retroviruses to animal workers exposed to mice. . Transfusion 52::31725
    [Crossref] [Google Scholar]
  115. 115.
    Dodd RY, Hackett J Jr., Linnen JM, Dorsey K, Wu Y, et al. 2012.. Xenotropic murine leukemia virus-related virus does not pose a risk to blood recipient safety. . Transfusion 52::298306
    [Crossref] [Google Scholar]
  116. 116.
    Maggi F, Focosi D, Lanini L, Sbranti S, Mazzetti P, et al. 2012.. Xenotropic murine leukaemia virus-related virus is not found in peripheral blood cells from treatment-naive human immunodeficiency virus-positive patients. . Clin. Microbiol. Infect. 18::18488
    [Crossref] [Google Scholar]
  117. 117.
    Mi Z, Lu Y, Zhang S, An X, Wang X, et al. 2012.. Absence of xenotropic murine leukemia virus-related virus in blood donors in China. . Transfusion 52::32631
    [Crossref] [Google Scholar]
  118. 118.
    Qiu X, Swanson P, Tang N, Leckie GW, Devare SG, et al. 2012.. Seroprevalence of xenotropic murine leukemia virus-related virus in normal and retrovirus-infected blood donors. . Transfusion 52::30716
    [Crossref] [Google Scholar]
  119. 119.
    Zhou Y, Steffen I, Montalvo L, Lee TH, Zemel R, et al. 2012.. Development and application of a high-throughput microneutralization assay: lack of xenotropic murine leukemia virus-related virus and/or murine leukemia virus detection in blood donors. . Transfusion 52::33242
    [Crossref] [Google Scholar]
  120. 120.
    Gingaras C, Danielson BP, Vigil KJ, Vey E, Arduino RC, Kimata JT. 2012.. Absence of XMRV in peripheral blood mononuclear cells of ARV-treatment naive HIV-1 infected and HIV-1/HCV coinfected individuals and blood donors. . PLOS ONE 7::e31398
    [Crossref] [Google Scholar]
  121. 121.
    Groom HC, Warren AY, Neal DE, Bishop KN. 2012.. No evidence for infection of UK prostate cancer patients with XMRV, BK virus, Trichomonas vaginalis or human papilloma viruses. . PLOS ONE 7::e34221
    [Crossref] [Google Scholar]
  122. 122.
    Korn K, Reil H, Ensser A, Knoll A. 2012.. No evidence of XMRV infection in immunocompromised patients and HIV-positive individuals from Germany. . Infection 40::18184
    [Crossref] [Google Scholar]
  123. 123.
    Maggi F, Bazzichi L, Sernissi F, Mazzetti P, Lanini L, et al. 2012.. Absence of xenotropic murine leukemia virus-related virus in Italian patients affected by chronic fatigue syndrome, fibromyalgia, or rheumatoid arthritis. . Int. J. Immunopathol. Pharmacol. 25::52329
    [Crossref] [Google Scholar]
  124. 124.
    Akgul B, Pfister D, Knuchel R, Heidenreich A, Wieland U, Pfister H. 2012.. No evidence for a role of xenotropic murine leukaemia virus-related virus and BK virus in prostate cancer of German patients. . Med. Microbiol. Immunol. 201::24548
    [Crossref] [Google Scholar]
  125. 125.
    Mendoza R, Silverman RH, Klein EA, Miller AD. 2012.. No biological evidence of XMRV in blood or prostatic fluid from prostate cancer patients. . PLOS ONE 7::e36073
    [Crossref] [Google Scholar]
  126. 126.
    Matsumoto C, Igarashi M, Furuta RA, Uchida S, Satake M, Tadokoro K. 2012.. Xenotropic murine leukemia virus-related virus proviral DNA not detected in blood samples donated in Japan. . Jpn. J. Infect. Dis. 65::33436
    [Crossref] [Google Scholar]
  127. 127.
    Paolucci S, Piralla A, Zanello C, Minoli L, Baldanti F. 2012.. Xenotropic and polytropic murine leukemia virus-related sequences are not detected in the majority of patients with chronic fatigue syndrome. . New Microbiol. 35::34144
    [Google Scholar]
  128. 128.
    Arredondo M, Hackett J Jr., de Bethencourt FR, Trevino A, Escudero D, et al. 2012.. Prevalence of xenotropic murine leukemia virus-related virus infection in different risk populations in Spain. . AIDS Res. Hum. Retroviruses 28::108994
    [Crossref] [Google Scholar]
  129. 129.
    Blomberg J, Blomberg F, Sjosten A, Sheikholvaezin A, Bolin-Wiener A, et al. 2012.. No evidence for xenotropic murine leukemia-related virus infection in Sweden using internally controlled multiepitope suspension array serology. . Clin. Vaccine Immunol. 19::1399410
    [Crossref] [Google Scholar]
  130. 130.
    Lee D, Das Gupta J, Gaughan C, Steffen I, Tang N, et al. 2012.. In-depth investigation of archival and prospectively collected samples reveals no evidence for XMRV infection in prostate cancer. . PLOS ONE 7::e44954
    [Crossref] [Google Scholar]
  131. 131.
    He X, Walker TD, Maranga IO, Oliver AW, Hampson L, Hampson IN. 2012.. No biological evidence of XMRV infection in cervical smears from HIV/HPV positive and negative Kenyan women. . PLOS ONE 7::e47208
    [Crossref] [Google Scholar]
  132. 132.
    Curriu M, Carrillo J, Massanella M, Garcia E, Cunyat F, et al. 2012.. Susceptibility of human lymphoid tissue cultured ex vivo to xenotropic murine leukemia virus-related virus (XMRV) infection. . PLOS ONE 7::e37415
    [Crossref] [Google Scholar]
  133. 133.
    Oltra E, Garcia-Escudero M, Mena-Duran AV, Monsalve V, Cerda-Olmedo G. 2013.. Lack of evidence for retroviral infections formerly related to chronic fatigue in Spanish fibromyalgia patients. . Virol. J. 10::332
    [Crossref] [Google Scholar]
  134. 134.
    Khodabandehloo M, Hosseini W, Rahmani MR, Rezaee MA, Hakhamaneshi MS, et al. 2013.. No detection of xenotropic murine leukemia virus-related viruses in prostate cancer in Sanandaj, west of Iran. . Asian Pac. J. Cancer Prev. 14::692933
    [Crossref] [Google Scholar]
  135. 135.
    Williams DK, Galvin TA, Gao Y, O'Neill C, Glasner D, Khan AS. 2013.. No evidence of xenotropic murine leukemia virus-related virus transmission by blood transfusion from infected rhesus macaques. . J. Virol. 87::227886
    [Crossref] [Google Scholar]
  136. 136.
    Rasa S, Nora-Krukle Z, Chapenko S, Krumina A, Roga S, Murovska M. 2014.. No evidence of XMRV provirus sequences in patients with myalgic encephalomyelitis/chronic fatigue syndrome and individuals with unspecified encephalopathy. . New Microbiol. 37::1724
    [Google Scholar]
  137. 137.
    Gomes ST, Imbiriba L, Burbano RR, Silva AL, Feitosa RN, et al. 2014.. Lack of evidence for human infection with Xenotropic murine leukemia virus-related virus in the Brazilian Amazon basin. . Rev. Soc. Bras. Med. Trop. 47::3026
    [Crossref] [Google Scholar]
  138. 138.
    Irlbeck DM, Vernon SD, McCleary KK, Bateman L, Klimas NG, et al. 2014.. No association found between the detection of either xenotropic murine leukemia virus-related virus or polytropic murine leukemia virus and chronic fatigue syndrome in a blinded, multi-site, prospective study by the establishment and use of the SolveCFS BioBank. . BMC Res. Notes 7::461
    [Crossref] [Google Scholar]
  139. 139.
    Slavov SN, Otaguiri KK, Macedo MD, Rocha-Junior MC, Silva-Pinto AC, et al. 2014.. No evidence of xenotropic murine leukemia virus-related virus infection in Brazilian multiply transfused patients with sickle cell disease and beta-thalassemia major. . New Microbiol. 37::54350
    [Google Scholar]
  140. 140.
    Baig FA, Mirza T, Khanani R, Khan S. 2014.. Detection of Xenotropic murine leukemia virus-related virus in prostate biopsy samples. . J. Coll. Phys. Surg. Pak. 24::63639
    [Google Scholar]
  141. 141.
    Sinha M, Shafiulla M, Trupti K, Namrata NR, Nadimul H, et al. 2015.. No evidence of association of xenotropic murine leukemia virus-related virus with oral cancers: experience from a tertiary care center in South India. . Indian J. Cancer 52::6164
    [Crossref] [Google Scholar]
  142. 142.
    Jurke A, Bannert N, Brehm K, Fingerle V, Kempf VA, et al. 2015.. Serological survey of Bartonella spp., Borrelia burgdorferi, Brucella spp., Coxiella burnetii, Francisella tularensis, Leptospira spp., Echinococcus, Hanta-, TBE- and XMR-virus infection in employees of two forestry enterprises in North Rhine–Westphalia, Germany, 2011–2013. . Int. J. Med. Microbiol. 305::65262
    [Crossref] [Google Scholar]
  143. 143.
    Baig FA, Mirza T, Hamid A, Syed S, Jamal Q. 2017.. Ductal variant of prostate adenocarcinoma harbor Xenotropic murine leukemia virus related virus (XMRV) infection: a novel finding in subtype of prostate cancer. . Turk. J. Urol. 43::26872
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-111821-125122
Loading
/content/journals/10.1146/annurev-virology-111821-125122
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error