1932

Abstract

The pupil responds reflexively to changes in brightness and focal distance to maintain the smallest pupil (and thus the highest visual acuity) that still allows sufficient light to reach the retina. The pupil also responds to a wide variety of cognitive processes, but the functions of these cognitive responses are still poorly understood. In this review, I propose that cognitive pupil responses, like their reflexive counterparts, serve to optimize vision. Specifically, an emphasis on central vision over peripheral vision results in pupil constriction, and this likely reflects the fact that central vision benefits most from the increased visual acuity provided by small pupils. Furthermore, an intention to act with a bright stimulus results in preparatory pupil constriction, which allows the pupil to respond quickly when that bright stimulus is subsequently brought into view. More generally, cognitively driven pupil responses are likely a form of sensory tuning: a subtle adjustment of the eyes to optimize their properties for the current situation and the immediate future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-030320-062352
2020-09-15
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/vision/6/1/annurev-vision-030320-062352.html?itemId=/content/journals/10.1146/annurev-vision-030320-062352&mimeType=html&fmt=ahah

Literature Cited

  1. Aston-Jones G, Cohen JD. 2005. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28:403–50
    [Google Scholar]
  2. Banks MS, Sprague WW, Schmoll J, Parnell JAQ, Love GD 2015. Why do animal eyes have pupils of different shapes. Sci. Adv. 1:7e1500391
    [Google Scholar]
  3. Beatty J. 1982. Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol. Bull. 91:2276–92
    [Google Scholar]
  4. Beatty J, Lucero-Wagoner B. 2000. The pupillary system. Handbook of Psychophysiology 2 JT Cacioppo, LG Tassinary, GG Berntson 142–62 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  5. Binda P, Murray SO. 2014. Keeping a large-pupilled eye on high-level visual processing. Trends Cogn. Sci. 19:11–3
    [Google Scholar]
  6. Binda P, Pereverzeva M, Murray SO 2013. Attention to bright surfaces enhances the pupillary light reflex. J. Neurosci. 33:52199–204
    [Google Scholar]
  7. Binda P, Pereverzeva M, Murray SO 2014. Pupil size reflects the focus of feature-based attention. J. Neurophysiol. 112:123046–52
    [Google Scholar]
  8. Bombeke K, Duthoo W, Mueller SC, Hopf J, Boehler NC 2016. Pupil size directly modulates the feedforward response in human primary visual cortex independently of attention. NeuroImage 127:67–73
    [Google Scholar]
  9. Borg E. 1968. A quantitative study of the effect of the acoustic stapedius reflex on sound transmission through the middle ear of man. Acta Oto-Laryngol 66:1–6461–72
    [Google Scholar]
  10. Borg E, Zakrisson J. 1975. The activity of the stapedius muscle in man during vocalization. Acta Oto-Laryngol 79:3–6325–33
    [Google Scholar]
  11. Bradley MM, Miccoli L, Escrig MA, Lang PJ 2008. The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 45:4602–7
    [Google Scholar]
  12. Brocher A, Harbecke R, Graf T, Memmert D, Hüttermann S 2018. Using task effort and pupil size to track covert shifts of visual attention independently of a pupillary light reflex. Behav. Res. 50:62551–67
    [Google Scholar]
  13. Brown N. 1973. The change in shape and internal form of the lens of the eye on accommodation. Exp. Eye Res. 15:4441–59
    [Google Scholar]
  14. Buchner A, Mayr S, Brandt M 2009. The advantage of positive text-background polarity is due to high display luminance. Ergonomics 52:7882–86
    [Google Scholar]
  15. Campbell FW. 1957. The depth of field of the human eye. J. Mod. Opt. 4:4157–64
    [Google Scholar]
  16. Campbell FW, Gregory AH. 1960. Effect of size of pupil on visual acuity. Nature 4743:1121–23
    [Google Scholar]
  17. Carandini M, Heeger DJ. 2012. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13:151–62
    [Google Scholar]
  18. Casteau S, Smith DT. 2019. Associations and dissociations between oculomotor readiness and covert attention. Vision 3:217
    [Google Scholar]
  19. Cavanagh P. 2011. Visual cognition. Vis. Res. 51:131538–51
    [Google Scholar]
  20. Charman WN, Whitefoot H. 1977. Pupil diameter and the depth-of-field of the human eye as measured by laser speckle. Opt. Acta Int. J. Opt. 24:121211–16
    [Google Scholar]
  21. Craighero L, Rizzolatti G. 2005. The premotor theory of attention. Neurobiology of Attention L Itti, G Rees, JK Tsotsos 181–86 Amsterdam: Elsevier
    [Google Scholar]
  22. Crawford BH. 1936. The dependence of pupil size upon external light stimulus under static and variable conditions. Proc. R. Soc. Lond. Ser. B 121:823376–95
    [Google Scholar]
  23. Curcio CA, Sloan KR, Packer O, Hendrickson AE, Kalina RE 1987. Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 236:4801579–82
    [Google Scholar]
  24. Daniels LB, Nichols DF, Seifert MS, Hock HS 2012. Changes in pupil diameter entrained by cortically initiated changes in attention. Vis. Neurosci. 29:2131–42
    [Google Scholar]
  25. DiNuzzo M, Mascali D, Moraschi M, Bussu G, Maugeri L et al. 2019. Brain networks underlying eye's pupil dynamics. Front. Neurosci. 13:965
    [Google Scholar]
  26. Do MTH. 2019. Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104:2205–26
    [Google Scholar]
  27. Dobres J, Chahine N, Reimer B 2017. Effects of ambient illumination, contrast polarity, and letter size on text legibility under glance-like reading. Appl. Ergon. 60:68–73
    [Google Scholar]
  28. Ebitz RB, Pearson JM, Platt ML 2014. Pupil size and social vigilance in rhesus macaques. Front. Neurosci. 8:100
    [Google Scholar]
  29. Einhäuser W, Koch C, Carter OL 2010. Pupil dilation betrays the timing of decisions. Front. Hum. Neurosci. 4:18
    [Google Scholar]
  30. Ellis CJ. 1981. The pupillary light reflex in normal subjects. Br. J. Ophthalmol. 65:11754–59
    [Google Scholar]
  31. Ferris FL. 1983. Senile macular degeneration: review of epidemiologic features. Am. J. Epidemiol. 118:2132–51
    [Google Scholar]
  32. Fletcher DC, Schuchard RA. 1997. Preferred retinal loci relationship to macular scotomas in a low-vision population. Ophthalmology 104:4632–38
    [Google Scholar]
  33. Goldwater BC. 1972. Psychological significance of pupillary movements. Psychol. Bull. 77:5340–55
    [Google Scholar]
  34. Hong S, Narkiewicz J, Kardon RH 2001. Comparison of pupil perimetry and visual perimetry in normal eyes: decibel sensitivity and variability. Investig. Ophthalmol. Vis. Sci. 42:5957–65
    [Google Scholar]
  35. Husta C, Dalmaijer E, Belopolsky A, Mathot S 2019. The pupillary light response reflects visual working memory content. J. Exp. Psychol. Hum. Percept. Perform. 45:111522–28
    [Google Scholar]
  36. Ivanov Y, Lazovic A, Mathôt S 2019. Effects of task difficulty and attentional breadth on tonic and phasic pupil size. J. Vis. 19:10282a
    [Google Scholar]
  37. Jepma M, Nieuwenhuis S. 2011. Pupil diameter predicts changes in the exploration-exploitation trade-off: evidence for the adaptive gain theory. J. Cogn. Neurosci. 23:71587–96
    [Google Scholar]
  38. Jones HG, Greene NT, Ahroon WA 2019. Human middle-ear muscles rarely contract in anticipation of acoustic impulses: implications for hearing risk assessments. Hear. Res. 378:53–62
    [Google Scholar]
  39. Joshi S, Gold JI. 2019. Pupil size as a window on neural substrates of cognition. PsyArxiv. https://doi.org/10.31234/osf.io/dvsme
    [Crossref] [Google Scholar]
  40. Just MA, Carpenter PA. 1993. The intensity dimension of thought: pupillometric indices of sentence processing. Can. J. Exp. Psychol. 47:2310–39
    [Google Scholar]
  41. Kahneman D, Beatty J. 1966. Pupil diameter and load on memory. Science 154:37561583–85
    [Google Scholar]
  42. Kalloniatis M, Luu C. 1995. Visual acuity. Webvision: The Organization of the Retina and Visual System H Kolb, E Fernandez, R Nelson, ch. 38 Salt Lake City, UT: Univ. Utah Health Sci. Cent.
    [Google Scholar]
  43. Kardon RH. 2005. Anatomy and physiology of the autonomic nervous system. Wash and Hoyt's Clinical Neuro-Ophthalmology NR Miller, NJ Newman, V Biousse, JB Kerrison 649–714 Philadelphia: Lippincott Williams & Wilkins. , 6th ed..
    [Google Scholar]
  44. Knapen T, Gee JWD, Brascamp J, Nuiten S, Hoppenbrouwers S, Theeuwes J 2016. Cognitive and ocular factors jointly determine pupil responses under equiluminance. PLOS ONE 11:5e0155574
    [Google Scholar]
  45. Kowler E. 2011. Eye movements: the past 25 years. Vis. Res. 51:131457–83
    [Google Scholar]
  46. Laeng B, Alnaes D. 2019. Pupillometry. Eye Movement Research C Klein, U Ettinger 449–502 Berlin: Springer
    [Google Scholar]
  47. Laeng B, Sulutvedt U. 2014. The eye pupil adjusts to imaginary light. Psychol. Sci. 25:1188–97
    [Google Scholar]
  48. Liang J, Williams DR. 1997. Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am. A 14:112873–83
    [Google Scholar]
  49. Loewenfeld IE. 1958. Mechanisms of reflex dilatation of the pupil. Doc. Ophthalmol. 12:1185–448
    [Google Scholar]
  50. Lombardo M, Lombardo G. 2010. Wave aberration of human eyes and new descriptors of image optical quality and visual performance. J. Cataract Refract. Surg. 36:2313–31
    [Google Scholar]
  51. Markwell EL, Feigl B, Zele AJ 2010. Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm. Clin. Exp. Optom. 93:3137–49
    [Google Scholar]
  52. Mathôt S. 2018. Pupillometry: psychology, physiology, and function. J. Cogn. 1:116
    [Google Scholar]
  53. Mathôt S, Dalmaijer E, Grainger J, Van der Stigchel S 2014. The pupillary light response reflects exogenous attention and inhibition of return. J. Vis. 14:147
    [Google Scholar]
  54. Mathôt S, Grainger J, Strijkers K 2017. Pupillary responses to words that convey a sense of brightness or darkness. Psychol. Sci. 28:81116–24
    [Google Scholar]
  55. Mathôt S, Hanke M. 2019. Correlates in visual cortex of pupil constriction to visual change (but not to luminance) Talk presented at the European Conference on Visual Perception Leuven, Belg: Aug 25–29
    [Google Scholar]
  56. Mathôt S, Ivanov Y. 2019. The effect of pupil size and peripheral brightness on detection and discrimination performance. PeerJ 7:e8220
    [Google Scholar]
  57. Mathôt S, Melmi JB, Castet E 2015a. Intrasaccadic perception triggers pupillary constriction. PeerJ 3:e1150
    [Google Scholar]
  58. Mathôt S, Regnath F. 2019. Pupil size reflects exploration and exploitation in visual search (and it's like object-based attention) Talk presented at the European Conference on Eye Movements Alicante, Spain: Aug 18–22
    [Google Scholar]
  59. Mathôt S, Theeuwes J. 2011. Visual attention and stability. Philos. Trans. R. Soc. B 366:1564516–27
    [Google Scholar]
  60. Mathôt S, van der Linden L, Grainger J, Vitu F 2013. The pupillary response to light reflects the focus of covert visual attention. PLOS ONE 8:10e78168
    [Google Scholar]
  61. Mathôt S, van der Linden L, Grainger J, Vitu F 2015b. The pupillary light response reflects eye-movement preparation. J. Exp. Psychol. Hum. Percept. Perform. 41:128–35
    [Google Scholar]
  62. Mathôt S, Van der Stigchel S 2015. New light on the mind's eye: the pupillary light response as active vision. Curr. Dir. Psychol. Sci. 24:5374–78
    [Google Scholar]
  63. Mays LE, Gamlin PD. 1995. Neuronal circuitry controlling the near response. Curr. Opin. Neurobiol. 5:6763–68
    [Google Scholar]
  64. McDougal DH, Gamlin PDR. 2008. Pupillary control pathways. In The Senses: A Comprehensive Reference 1 RH Masland, T Albright 521–36 San Diego, CA: Academic
    [Google Scholar]
  65. Morgan ST, Hansen JC, Hillyard SA 1996. Selective attention to stimulus location modulates the steady-state visual evoked potential. PNAS 93:104770–74
    [Google Scholar]
  66. Murphy PR, O'Connell RG, O'Sullivan M, Robertson IH, Balsters JH 2014. Pupil diameter covaries with BOLD activity in human locus coeruleus. Hum. Brain Mapp. 35:84140–54
    [Google Scholar]
  67. Naber M, Alvarez GA, Nakayama K 2013. Tracking the allocation of attention using human pupillary oscillations. Front. Psychol. 4:919
    [Google Scholar]
  68. Nakatani K, Yau K. 1988. Calcium and light adaptation in retinal rods and cones. Nature 334:617769–71
    [Google Scholar]
  69. Olivers CN, Peters J, Houtkamp R, Roelfsema PR 2011. Different states in visual working memory: when it guides attention and when it does not. Trends Cogn. Sci. 15:7327–34
    [Google Scholar]
  70. Pajkossy P, Szőllősi Á, Demeter G, Racsmány M 2017. Tonic noradrenergic activity modulates explorative behavior and attentional set shifting: evidence from pupillometry and gaze pattern analysis. Psychophysiology 54:121839–54
    [Google Scholar]
  71. Piepenbrock C, Mayr S, Buchner A 2014a. Positive display polarity is particularly advantageous for small character sizes: implications for display design. Hum. Factors 56:5942–51
    [Google Scholar]
  72. Piepenbrock C, Mayr S, Buchner A 2014b. Smaller pupil size and better proofreading performance with positive than with negative polarity displays. Ergonomics 57:111670–77
    [Google Scholar]
  73. Rizzolatti G, Riggio L, Dascola I, Umiltá C 1987. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25:1A31–40
    [Google Scholar]
  74. Sahraie A, Barbur JL. 1997. Pupil response triggered by the onset of coherent motion. Graefe's Arch. Clin. Exp. Ophthalmol. 235:8494–500
    [Google Scholar]
  75. Slooter JH, van Norren D 1980. Visual acuity measured with pupil responses to checkerboard stimuli. Investig. Ophthalmol Vis. Sci. 19:1105–8
    [Google Scholar]
  76. Sommer MA, Wurtz RH. 2008. Brain circuits for the internal monitoring of movements. Annu. Rev. Neurosci. 31:317–38
    [Google Scholar]
  77. Sulutvedt U, Mannix TK, Laeng B 2018. Gaze and the eye pupil adjust to imagined size and distance. Cogn. Sci. 42:83159–76
    [Google Scholar]
  78. Thigpen NN, Bradley MM, Keil A 2018. Assessing the relationship between pupil diameter and visuocortical activity. J. Vis. 18:67
    [Google Scholar]
  79. Turi M, Burr DC, Binda P 2018. Pupillometry reveals perceptual differences that are tightly linked to autistic traits in typical adults. eLife 7:e32399
    [Google Scholar]
  80. Ukai K. 1985. Spatial pattern as a stimulus to the pupillary system. J. Opt. Soc. Am. A 2:71094–100
    [Google Scholar]
  81. Unsworth N, Robison MK. 2017. Pupillary correlates of covert shifts of attention during working memory maintenance. Atten. Percept. Psychophys. 79:3782–95
    [Google Scholar]
  82. Van de Kraats J, Smit EP, Slooter JH 1977. Objective perimetric measurements by the pupil balance method. Second International Visual Field Symposium, Tubingen 19–22 September, 1976 213–20 Berlin: Springer
    [Google Scholar]
  83. Wang C, Munoz DP. 2015. A circuit for pupil orienting responses: implications for cognitive modulation of pupil size. Curr. Opin. Neurobiol. 33:134–40
    [Google Scholar]
  84. Wardhani IK, Boehler NC, Mathôt S 2019. Does our pupil size influence subjective brightness perception? Poster presented at the European Conference on Visual Perception Leuven, Belg: Aug 25–29
    [Google Scholar]
  85. Wolff MJ, Jochim J, Akyürek EG, Stokes MG 2017. Dynamic hidden states underlying working-memory-guided behavior. Nat. Neurosci. 20:6864–71
    [Google Scholar]
  86. Woodhouse JM. 1975. The effect of pupil size on grating detection at various contrast levels. Vis. Res. 15:6645–48
    [Google Scholar]
  87. Wurtz RH. 2008. Neuronal mechanisms of visual stability. Vis. Res. 48:202070–89
    [Google Scholar]
  88. Xu Y. 2017. Reevaluating the sensory account of visual working memory storage. Trends Cogn. Sci. 21:10794–815
    [Google Scholar]
  89. Zekveld AA, Kramer SE, Festen JM 2010. Pupil response as an indication of effortful listening: the influence of sentence intelligibility. Ear Hear 31:4480–90
    [Google Scholar]
  90. Zhou C, Lorist MM, Mathôt S 2020. Concurrent guidance of attention by multiple working memory items: behavioral and computational evidence. Atten. Percept. Psychophys. https://doi.org/10.3758/s13414-020-02048-5
    [Crossref] [Google Scholar]
  91. Zokaei N, Board AG, Manohar SG, Nobre AC 2019. Modulation of the pupillary response by the content of visual working memory. PNAS 116:4522802–10
    [Google Scholar]
  92. Zokaei N, Ning S, Manohar S, Feredoes E, Husain M 2014. Flexibility of representational states in working memory. Front. Hum. Neurosci. 8:853
    [Google Scholar]
  93. Zuber BL, Stark L, Lorber M 1966. Saccadic suppression of the pupillary light reflex. Exp. Neurol. 14:3351–70
    [Google Scholar]
/content/journals/10.1146/annurev-vision-030320-062352
Loading
/content/journals/10.1146/annurev-vision-030320-062352
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error