This review surveys how vision becomes action through the frontal lobe. Signals from extrastriate areas create maps in frontal areas. These maps are shaped by visual features and shaded by goals, values, and experience, and they guide contingent activation of motor circuits to execute coordinated gaze, head, and limb movements. Frontal circuits also support the visual perception of learned objects, events, and actions. Other frontal circuits monitor consequences and exert executive control to improve the effectiveness of visually guided behavior.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Amador N, Schlag-Rey M, Schlag J. 2000. Reward-predicting and reward-detecting neuronal activity in the primate supplementary eye field. J. Neurophysiol. 84:2166–70 [Google Scholar]
  2. Amador N, Schlag-Rey M, Schlag J. 2004. Primate antisaccade. II. Supplementary eye field neuronal activity predicts correct performance. J. Neurophysiol. 91:1672–89 [Google Scholar]
  3. Amiez C, Petrides M. 2009. Anatomical organization of the eye fields in the human and non-human primate frontal cortex. Prog. Neurobiol. 89:220–30 [Google Scholar]
  4. Ardid S, Vinck M, Kaping D, Marquez S, Everling S, Womelsdorf T. 2015. Mapping of functionally characterized cell classes onto canonical circuit operations in primate prefrontal cortex. J. Neurosci. 35:2975–91 [Google Scholar]
  5. Arnsten AF. 2013. The neurobiology of thought: the groundbreaking discoveries of Patricia Goldman-Rakic 1937–2003. Cereb. Cortex 23:2269–81 [Google Scholar]
  6. Babapoor-Farrokhran S, Hutchison RM, Gati JS, Menon RS, Everling S. 2013. Functional connectivity patterns of medial and lateral macaque frontal eye fields reveal distinct visuomotor networks. J. Neurophysiol. 109:2560–70 [Google Scholar]
  7. Barbas H, García-Cabezas . 2015. Motor cortex layer 4: Less is more. Trends Neurosci 38:259–61 [Google Scholar]
  8. Barbas H, Rempel-Clower N. 1997. Cortical structure predicts the pattern of corticocortical connections. Cereb Cortex 7:635–46 [Google Scholar]
  9. Batista AP, Santhanam G, Yu BM, Ryu SI, Afshar A, Shenoy KV. 2007. Reference frames for reach planning in macaque dorsal premotor cortex. J. Neurophysiol. 98:966–83 [Google Scholar]
  10. Berdyyeva TK, Olson CR. 2010. Rank signals in four areas of macaque frontal cortex during selection of actions and objects in serial order. J. Neurophysiol. 104:141–59 [Google Scholar]
  11. Bichot NP, Schall JD. 1999. Effects of similarity and history on neural mechanisms of visual selection. Nat. Neurosci. 2:549–54 [Google Scholar]
  12. Bichot NP, Schall JD. 2002. Priming in macaque frontal cortex during popout visual search: feature-based facilitation and location-based inhibition of return. J. Neurosci. 22:4675–85 [Google Scholar]
  13. Bichot NP, Schall JD, Thompson KG. 1996. Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature 381:697–9 [Google Scholar]
  14. Bizzi E, Schiller PH. 1970. Single unit activity in the frontal eye fields of unanesthetized monkeys during eye and head movement. Exp. Brain Res. 10:151–58 [Google Scholar]
  15. Bolker J. 2012. Model organisms: There's more to life than rats and flies. Nature 491:31–3 [Google Scholar]
  16. Borra E, Gerbella M, Rozzi S, Luppino G. 2015. Projections from caudal ventrolateral prefrontal areas to brainstem preoculomotor structures and to basal ganglia and cerebellar oculomotor loops in the macaque. Cereb. Cortex 25:748–64 [Google Scholar]
  17. Boucher L, Palmeri TJ, Logan GD, Schall JD. 2007. Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol. Rev. 114:376–97 [Google Scholar]
  18. Brown JW, Bullock D, Grossberg S. 2004. How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Netw. 17:471–510 [Google Scholar]
  19. Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB. 1985. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54:714–34 [Google Scholar]
  20. Buckner RL, Krienen FM. 2013. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 17:648–65 [Google Scholar]
  21. Buschman TJ, Miller EK. 2007. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–62 [Google Scholar]
  22. Caggiano V, Pomper JK, Fleischer F, Fogassi L, Giese M, Thier P. 2013. Mirror neurons in monkey area F5 do not adapt to the observation of repeated actions. Nat. Commun. 4:1433 [Google Scholar]
  23. Capalbo M, Postma E, Goebel R. 2008. Combining structural connectivity and response latencies to model the structure of the visual system. PLOS Comput. Biol. 4:e1000159 [Google Scholar]
  24. Cassanello CR, Nihalani AT, Ferrera VP. 2008. Neuronal responses to moving targets in monkey frontal eye fields. J. Neurophysiol. 100:1544–56 [Google Scholar]
  25. Cavanaugh J, Joiner WM, Wurtz RH. 2012. Suppressive surrounds of receptive fields in monkey frontal eye field. J. Neurosci. 32:12284–93 [Google Scholar]
  26. Chadderdon GL, Sporns O. 2006. A large-scale neurocomputational model of task-oriented behavior selection and working memory in prefrontal cortex. J. Cogn. Neurosci. 18:242–57 [Google Scholar]
  27. Chapman BB, Pace MA, Cushing SL, Corneil BD. 2012. Recruitment of a contralateral head turning synergy by stimulation of monkey supplementary eye fields. J. Neurophysiol. 107:1694–710 [Google Scholar]
  28. Chen LL. 2006. Head movements evoked by electrical stimulation in the frontal eye field of the monkey: evidence for independent eye and head control. J. Neurophysiol. 95:3528–42 [Google Scholar]
  29. Chen LL, Walton MM. 2005. Head movement evoked by electrical stimulation in the supplementary eye field of the rhesus monkey. J. Neurophysiol. 94:4502–19 [Google Scholar]
  30. Clark KL, Noudoost B, Moore T. 2012. Persistent spatial information in the frontal eye field during object-based short-term memory. J. Neurosci. 32:10907–14 [Google Scholar]
  31. Coe B, Tomihara K, Matsuzawa M, Hikosaka O. 2002. Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision-making task. J. Neurosci. 22:5081–90 [Google Scholar]
  32. Cohen JY, Heitz RP, Schall JD, Woodman GF. 2009a. On the origin of event-related potentials indexing covert attentional selection during visual search. J. Neurophysiol. 102:2375–86 [Google Scholar]
  33. Cohen JY, Heitz RP, Woodman GF, Schall JD. 2009b. Neural basis of the set-size effect in frontal eye field: timing of attention during visual search. J. Neurophysiol. 101:1699–704 [Google Scholar]
  34. Cohen JY, Crowder EA, Heitz RP, Subraveti CR, Thompson KG. et al. 2010. Cooperation and competition among frontal eye field neurons during visual target selection. J. Neurosci. 30:3227–38 [Google Scholar]
  35. Cole MW, Yeung N, Freiwald WA, Botvinick M. 2009. Cingulate cortex: diverging data from humans and monkeys. Trends Neurosci. 32:566–74 [Google Scholar]
  36. Condé F, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA. 1994. Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology. J. Comp. Neurol. 341:95–116 [Google Scholar]
  37. Costello MG, Zhu D, Salinas E, Stanford TR. 2013. Perceptual modulation of motor—but not visual—responses in the frontal eye field during an urgent-decision task. J. Neurosci. 33:16394–408 [Google Scholar]
  38. Crapse TB, Sommer MA. 2009. Frontal eye field neurons with spatial representations predicted by their subcortical input. J. Neurosci. 29:5308–18 [Google Scholar]
  39. Crapse TB, Sommer MA. 2012. Frontal eye field neurons assess visual stability across saccades. J. Neurosci. 32:2835–45 [Google Scholar]
  40. Crowe DA, Goodwin SJ, Blackman RK, Sakellaridi S, Sponheim SR. et al. 2013. Prefrontal neurons transmit signals to parietal neurons that reflect executive control of cognition. Nat. Neurosci. 16:1484–91 [Google Scholar]
  41. Deubel H, Koch C, Bridgeman B. 2010. Landmarks facilitate visual space constancy across saccades and during fixation. Vis. Res. 50:249–59 [Google Scholar]
  42. Ding L, Hikosaka O. 2006. Comparison of reward modulation in the frontal eye field and caudate of the macaque. J. Neurosci. 26:6695–703 [Google Scholar]
  43. Ding L, Gold JI. 2012. Neural correlates of perceptual decision making before, during, and after decision commitment in monkey frontal eye field. Cereb. Cortex 22:1052–67 [Google Scholar]
  44. Dinstein I, Hasson U, Rubin N, Heeger DJ. 2007. Brain areas selective for both observed and executed movements. J. Neurophysiol. 98:1415–27 [Google Scholar]
  45. di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G. 1992. Understanding motor events: a neurophysiological study. Exp. Brain Res. 91:176–80 [Google Scholar]
  46. Dombrowski SM, Hilgetag CC, Barbas H. 2001. Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cereb. Cortex 11:975–88 [Google Scholar]
  47. Dushanova J, Donoghue J. 2010. Neurons in primary motor cortex engaged during action observation. Eur. J. Neurosci. 31:386–98 [Google Scholar]
  48. Eiselt AK, Nieder A. 2013. Representation of abstract quantitative rules applied to spatial and numerical magnitudes in primate prefrontal cortex. J. Neurosci. 33:7526–34 [Google Scholar]
  49. Ekstrom LB, Roelfsema PR, Arsenault JT, Kolster H, Vanduffel W. 2009. Modulation of the contrast response function by electrical microstimulation of the macaque frontal eye field. J. Neurosci. 29:10683–94 [Google Scholar]
  50. Elston GN. 2003. Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb. Cortex 13:1124–38 [Google Scholar]
  51. Emeric EE, Leslie M, Pouget P, Schall JD. 2010. Performance monitoring local field potentials in the medial frontal cortex of primates: supplementary eye field. J. Neurophysiol. 104:1523–37 [Google Scholar]
  52. Everling S, Munoz DP. 2000. Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. J. Neurosci. 20:387–400 [Google Scholar]
  53. Everling S, DeSouza JF. 2005. Rule-dependent activity for prosaccades and antisaccades in the primate prefrontal cortex. J. Cogn. Neurosci. 17:1483–96 [Google Scholar]
  54. Everling S, Johnston K. 2013. Control of the superior colliculus by the lateral prefrontal cortex. Philos. Trans. R. Soc. Lond. B 368:20130068 [Google Scholar]
  55. Everling S, Tinsley CJ, Gaffan D, Duncan J. 2006. Selective representation of task-relevant objects and locations in the monkey prefrontal cortex. Eur. J. Neurosci. 23:2197–214 [Google Scholar]
  56. Ferrera VP, Yanike M, Cassanello C. 2009. Frontal eye field neurons signal changes in decision criteria. Nat. Neurosci. 12:1458–62 [Google Scholar]
  57. Ferrier D. 1874. The localization of function in brain. Proc. R. Soc. Lond. 22:229–32 [Google Scholar]
  58. Fujii N, Mushiake H, Tanji J. 2000. Rostrocaudal distinction of the dorsal premotor area based on oculomotor involvement. J. Neurophysiol. 83:1764–69 [Google Scholar]
  59. Fujii N, Mushiake H, Tanji J. 2002. Distribution of eye- and arm-movement-related neuronal activity in the SEF and in the SMA and pre-SMA of monkeys. J. Neurophysiol. 87:2158–66 [Google Scholar]
  60. Fukushima J, Akao T, Kurkin S, Kaneko CR, Fukushima K. 2006. The vestibular-related frontal cortex and its role in smooth-pursuit eye movements and vestibular-pursuit interactions. J. Vestib. Res. 16:1–22 [Google Scholar]
  61. Funahashi S. 2015. Functions of delay-period activity in the prefrontal cortex and mnemonic scotomas revisited. Front. Syst. Neurosci. 9:2 [Google Scholar]
  62. Fusi S, Asaad WF, Miller EK, Wang XJ. 2007. A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales. Neuron 54:319–33 [Google Scholar]
  63. Fuster JM. 2008. The Prefrontal Cortex Amsterdam/Boston: Elsevier, 4th ed..
  64. Fuster JM, Alexander GE. 1971. Neuron activity related to short-term memory. Science 173:652–54 [Google Scholar]
  65. Gabi M, Collins CE, Wong P, Torres LB, Kaas JH, Herculano-Houzel S. 2010. Cellular scaling rules for the brains of an extended number of primate species. Brain Behav. Evol. 76:32–44 [Google Scholar]
  66. Gallese V, Fadiga L, Fogassi L, Rizzolatti G. 1996. Action recognition in the premotor cortex. Brain 119:593–609 [Google Scholar]
  67. Gamlin PD, Yoon K. 2000. An area for vergence eye movement in primate frontal cortex. Nature 407:1003–7 [Google Scholar]
  68. Gehring WJ, Liu Y, Orr JM, Carp J. 2012. The error-related negativity (ERN/Ne). Oxford Handbook of Event-Related Potential Components SJ Luck, E Kappenman 231–91 New York: Oxford Univ. Press [Google Scholar]
  69. Genovesio A, Wise SP, Passingham RE. 2014. Prefrontal–parietal function: from foraging to foresight. Trends Cogn. Sci. 18:72–81 [Google Scholar]
  70. Godlove DC, Maier A, Woodman GF, Schall JD. 2014. Microcircuitry of agranular frontal cortex: testing the generality of the canonical cortical microcircuit. J. Neurosci. 34:5355–69 [Google Scholar]
  71. Godlove DC, Emeric EE, Segovis CM, Young MS, Schall JD, Woodman GF. 2011. Event-related potentials elicited by errors during the stop-signal task. I. Macaque monkeys. J. Neurosci. 31:15640–49 [Google Scholar]
  72. Goulas A, Uylings HB, Stiers P. 2014. Mapping the hierarchical layout of the structural network of the macaque prefrontal cortex. Cereb. Cortex 24:1178–94 [Google Scholar]
  73. Gregoriou GG, Gotts SJ, Desimone R. 2012. Cell-type-specific synchronization of neural activity in FEF with V4 during attention. Neuron 73:581–94 [Google Scholar]
  74. Hamker FH. 2005. The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cereb. Cortex 15:431–47 [Google Scholar]
  75. Hanes DP, Schall JD. 1996. Neural control of voluntary movement initiation. Science 274:427–30 [Google Scholar]
  76. Hanes DP, Wurtz RH. 2001. Interaction of the frontal eye field and superior colliculus for saccade generation. J. Neurophysiol. 85:804–15 [Google Scholar]
  77. Hanes DP, Patterson WF II, Schall JD. 1998. Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. J. Neurophysiol. 79:817–34 [Google Scholar]
  78. Hasegawa RP, Peterson BW, Goldberg ME. 2004. Prefrontal neurons coding suppression of specific saccades. Neuron 43:415–25 [Google Scholar]
  79. Heinen SJ, Hwang H, Yang SN. 2011. Flexible interpretation of a decision rule by supplementary eye field neurons. J. Neurophysiol. 106:2992–3000 [Google Scholar]
  80. Heinzle J, Hepp K, Martin KA. 2007. A microcircuit model of the frontal eye fields. J. Neurosci. 27:9341–53 [Google Scholar]
  81. Heitz RP, Schall JD. 2012. Neural mechanisms of speed-accuracy tradeoff. Neuron 76:616–28 [Google Scholar]
  82. Heitz RP, Schall JD. 2013. Neural chronometry and coherency across speed-accuracy demands reveal lack of homomorphism between computational and neural mechanisms of evidence accumulation. Philos. Trans. R. Soc. Lond. B 368:20130071 [Google Scholar]
  83. Helminski JO, Segraves MA. 2003. Macaque frontal eye field input to saccade-related neurons in the superior colliculus. J. Neurophysiol. 90:1046–62 [Google Scholar]
  84. Histed MH, Miller EK. 2006. Microstimulation of frontal cortex can reorder a remembered spatial sequence. PLOS Biol. 4:e134 [Google Scholar]
  85. Hoshi E, Tanji J. 2006. Differential involvement of neurons in the dorsal and ventral premotor cortex during processing of visual signals for action planning. J. Neurophysiol. 95:3596–616 [Google Scholar]
  86. Huerta MF, Kaas JH. 1990. Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J. Comp. Neurol. 293:299–330 [Google Scholar]
  87. Hussar CR, Pasternak T. 2013. Common rules guide comparisons of speed and direction of motion in the dorsolateral prefrontal cortex. J. Neurosci. 33:972–86 [Google Scholar]
  88. Hussein S, Johnston K, Belbeck B, Lomber SG, Everling S. 2014. Functional specialization within macaque dorsolateral prefrontal cortex for the maintenance of task rules and cognitive control. J. Cogn. Neurosci. 26:1918–27 [Google Scholar]
  89. Iba M, Sawaguchi T. 2003. Involvement of the dorsolateral prefrontal cortex of monkeys in visuospatial target selection. J. Neurophysiol. 89:587–99 [Google Scholar]
  90. Ibos G, Duhamel JR, Ben Hamed S. 2013. A functional hierarchy within the parietofrontal network in stimulus selection and attention control. J. Neurosci. 33:8359–69 [Google Scholar]
  91. Isoda M, Tanji J. 2002. Cellular activity in the supplementary eye field during sequential performance of multiple saccades. J. Neurophysiol. 88:3541–45 [Google Scholar]
  92. Ito S, Stuphorn V, Brown JW, Schall JD. 2003. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302:120–22 [Google Scholar]
  93. Izawa Y, Suzuki H, Shinoda Y. 2009. Response properties of fixation neurons and their location in the frontal eye field in the monkey. J. Neurophysiol. 102:2410–22 [Google Scholar]
  94. Izawa Y, Suzuki H, Shinoda Y. 2011. Suppression of smooth pursuit eye movements induced by electrical stimulation of the monkey frontal eye field. J. Neurophysiol. 106:2675–87 [Google Scholar]
  95. Jacob P, Jeannerod M. 2005. The motor theory of social cognition: a critique. Trends Cogn. Sci. 9:21–5 [Google Scholar]
  96. Johnston K, Everling S. 2009. Task-relevant output signals are sent from monkey dorsolateral prefrontal cortex to the superior colliculus during a visuospatial working memory task. J. Cogn. Neurosci. 21:1023–38 [Google Scholar]
  97. Johnston K, Levin HM, Koval MJ, Everling S. 2007. Top-down control-signal dynamics in anterior cingulate and prefrontal cortex neurons following task switching. Neuron 53:453–62 [Google Scholar]
  98. Joiner WM, Cavanaugh J, Wurtz RH. 2011. Modulation of shifting receptive field activity in frontal eye field by visual salience. J. Neurophysiol. 106:1179–90 [Google Scholar]
  99. Joiner WM, Cavanaugh J, Wurtz RH. 2013. Compression and suppression of shifting receptive field activity in frontal eye field neurons. J. Neurosci. 33:18259–69 [Google Scholar]
  100. Juan CH, Shorter-Jacobi SM, Schall JD. 2004. Dissociation of spatial attention and saccade preparation. PNAS 101:15541–44 [Google Scholar]
  101. Kadohisa M, Petrov P, Stokes M, Sigala N, Buckley M. et al. 2013. Dynamic construction of a coherent attentional state in a prefrontal cell population. Neuron 80:235–46 [Google Scholar]
  102. Kadohisa M, Kusunoki M, Petrov P, Sigala N, Buckley MJ. et al. 2015. Spatial and temporal distribution of visual information coding in lateral prefrontal cortex. Eur. J. Neurosci. 41:89–96 [Google Scholar]
  103. Kastner S, DeSimone K, Konen CS, Szczepanski SM, Weiner KS, Schneider KA. 2007. Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks. J. Neurophysiol. 97:3494–507 [Google Scholar]
  104. Katsuki F, Constantinidis C. 2012. Early involvement of prefrontal cortex in visual bottom-up attention. Nat. Neurosci. 15:1160–66 [Google Scholar]
  105. Keller EL, Lee KM, Park SW, Hill JA. 2008. Effect of inactivation of the cortical frontal eye field on saccades generated in a choice response paradigm. J. Neurophysiol. 100:2726–37 [Google Scholar]
  106. Kesner RP, Churchwell JC. 2011. An analysis of rat prefrontal cortex in mediating executive function. Neurobiol. Learn Mem. 96:417–31 [Google Scholar]
  107. Khayat PS, Pooresmaeili A, Roelfsema PR. 2009. Time course of attentional modulation in the frontal eye field during curve tracing. J. Neurophysiol. 101:1813–22 [Google Scholar]
  108. Kilner JM, Lemon RN. 2013. What we know currently about mirror neurons. Curr. Biol. 23:R1057–62 [Google Scholar]
  109. Kilner JM, Kraskov A, Lemon RN. 2014. Do monkey F5 mirror neurons show changes in firing rate during repeated observation of natural actions?. J. Neurophysiol. 111:1214–26 [Google Scholar]
  110. Knight TA. 2012. Contribution of the frontal eye field to gaze shifts in the head-unrestrained rhesus monkey: neuronal activity. Neuroscience 225:213–36 [Google Scholar]
  111. Kojima S, Goldman-Rakic PS. 1982. Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response. Brain Res. 248:43–49 [Google Scholar]
  112. Koval MJ, Lomber SG, Everling S. 2011. Prefrontal cortex deactivation in macaques alters activity in the superior colliculus and impairs voluntary control of saccades. J. Neurosci. 31:8659–68 [Google Scholar]
  113. Koval MJ, Hutchison RM, Lomber SG, Everling S. 2014. Effects of unilateral deactivations of dorsolateral prefrontal cortex and anterior cingulate cortex on saccadic eye movements. J. Neurophysiol. 111:787–803 [Google Scholar]
  114. Koyama M, Hasegawa I, Osada T, Adachi Y, Nakahara K, Miyashita Y. 2004. Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: comparison of cortical eye fields with humans. Neuron 41:795–807 [Google Scholar]
  115. Kraskov A, Dancause N, Quallo MM, Shepherd S, Lemon RN. 2009. Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression?. Neuron 64:922–30 [Google Scholar]
  116. Kunimatsu J, Tanaka M. 2012. Alteration of the timing of self-initiated but not reactive saccades by electrical stimulation in the supplementary eye field. Eur. J. Neurosci. 36:3258–68 [Google Scholar]
  117. Kusunoki M, Sigala N, Nili H, Gaffan D, Duncan J. 2010. Target detection by opponent coding in monkey prefrontal cortex. J. Cogn. Neurosci. 22:751–60 [Google Scholar]
  118. Kuwabara M, Mansouri FA, Buckley MJ, Tanaka K. 2014. Cognitive control functions of anterior cingulate cortex in macaque monkeys performing a Wisconsin Card Sorting Test analog. J. Neurosci. 34:7531–47 [Google Scholar]
  119. Lanzilotto M, Perciavalle V, Lucchetti C. 2013. A new field in monkey's frontal cortex: premotor ear-eye field (PEEF). Neurosci. Biobehav. Rev. 37:1434–44 [Google Scholar]
  120. Lara AH, Wallis JD. 2014. Executive control processes underlying multi-item working memory. Nat. Neurosci. 17:876–83 [Google Scholar]
  121. Lawrence BM, Snyder LH. 2009. The responses of visual neurons in the frontal eye field are biased for saccades. J. Neurosci. 29:13815–22 [Google Scholar]
  122. Lawrence BM, White RL 3rd, Snyder LH. 2005. Delay-period activity in visual, visuomovement, and movement neurons in the frontal eye field. J. Neurophysiol. 94:1498–508 [Google Scholar]
  123. Lebedev MA, Wise SP. 2001. Tuning for the orientation of spatial attention in dorsal premotor cortex. Eur. J. Neurosci. 13:1002–8 [Google Scholar]
  124. Lee KM, Keller EL. 2008. Neural activity in the frontal eye fields modulated by the number of alternatives in target choice. J. Neurosci. 28:2242–51 [Google Scholar]
  125. Lee KM, Ahn KH, Keller EL. 2012. Saccade generation by the frontal eye fields in rhesus monkeys is separable from visual detection and bottom-up attention shift. PLOS ONE 7:e39886 [Google Scholar]
  126. Lennert T, Martinez-Trujillo JC. 2013. Prefrontal neurons of opposite spatial preference display distinct target selection dynamics. J. Neurosci. 33:9520–29 [Google Scholar]
  127. Libedinsky C, Livingstone M. 2011. Role of prefrontal cortex in conscious visual perception. J. Neurosci. 31:64–9 [Google Scholar]
  128. Lingnau A, Gisierich B, Caramazza A. 2009. Asymmetric fMRI adaptations reveals no evidence for mirror neurons in humans. PNAS 106:9925–30 [Google Scholar]
  129. Liu Y, Denton JM, Nelson RJ. 2005. Neuronal activity in primary motor cortex differs when monkeys perform somatosensory and visually guided wrist movements. Exp. Brain Res. 67:571–86 [Google Scholar]
  130. Lo CC, Boucher L, Paré M, Schall JD, Wang XJ. 2009. Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model. J. Neurosci. 29:9059–71 [Google Scholar]
  131. Logan GD, Cowan WB. 1984. On the ability to inhibit thought and action: A theory of an act of control. Psych. Rev. 91:295–327 [Google Scholar]
  132. Logan GD, Yamaguchi M, Schall JD, Palmeri TJ. 2015. Inhibitory control in mind and brain 2.0: Blocked-input models of saccadic countermanding. Psychol. Rev. 122:115–47 [Google Scholar]
  133. Lu X, Matsuzawa M, Hikosaka O. 2002. A neural correlate of oculomotor sequences in supplementary eye field. Neuron 11:34317–25 [Google Scholar]
  134. Machens CK, Romo R, Brody CD. 2005. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307:1121–4 [Google Scholar]
  135. Mansouri FA, Buckley MJ, Tanaka K. 2014. The essential role of primate orbitofrontal cortex in conflict-induced executive control adjustment. J. Neurosci. 34:11016–31 [Google Scholar]
  136. Mansouri FA, Tanaka K, Buckley MJ. 2009. Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex. Nat. Rev. Neurosci. 10:141–52 [Google Scholar]
  137. Mante V, Sussillo D, Shenoy KV, Newsome WT. 2013. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503:78–84 [Google Scholar]
  138. Markov NT, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H. 2013. Cortical high-density counterstream architectures. Science 342:1238406 [Google Scholar]
  139. Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R. et al. 2014. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522:225–59 [Google Scholar]
  140. Martinez-Trujillo JC, Medendorp WP, Wang H, Crawford JD. 2004. Frames of reference for eye-head gaze commands in primate supplementary eye fields. Neuron 44:1057–66 [Google Scholar]
  141. Matsumoto M, Matsumoto K, Abe H, Tanaka K. 2007. Medial prefrontal cell activity signaling prediction errors of action values. Nat. Neurosci. 10:647–56 [Google Scholar]
  142. Mayo JP, Sommer MA. 2008. Neuronal adaptation caused by sequential visual stimulation in the frontal eye field. J. Neurophysiol. 100:1923–35 [Google Scholar]
  143. McPeek RM. 2006. Incomplete suppression of distractor-related activity in the frontal eye field results in curved saccades. J. Neurophysiol. 96:2699–711 [Google Scholar]
  144. Medalla M, Barbas H. 2006. Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure. Eur. J. Neurosci. 23:161–79 [Google Scholar]
  145. Messinger A, Lebedev MA, Kralik JD, Wise SP. 2009. Multitasking of attention and memory functions in the primate prefrontal cortex. J. Neurosci. 29:5640–53 [Google Scholar]
  146. Meyer T, Qi XL, Stanford TR, Constantinidis C. 2011. Stimulus selectivity in dorsal and ventral prefrontal cortex after training in working memory tasks. J. Neurosci. 31:6266–76 [Google Scholar]
  147. Middlebrooks PG, Sommer MA. 2012. Neuronal correlates of metacognition in primate frontal cortex. Neuron 75:517–30 [Google Scholar]
  148. Miller EK, Buschman TJ. 2007. Response to comment on “Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices”. Science 318:44 [Google Scholar]
  149. Mitchell JF, Zipser D. 2003. Sequential memory-guided saccades and target selection: A neural model of the frontal eye fields. Vis. Res. 43:2669–95 [Google Scholar]
  150. Mitz AR, Godschalk M. 1989. Eye-movement representation in the frontal lobe of rhesus monkeys. Neurosci. Lett. 106:157–62 [Google Scholar]
  151. Modha DS, Singh R. 2010. Network architecture of the long-distance pathways in the macaque brain. PNAS 107:13485–90 [Google Scholar]
  152. Mohler CW, Goldberg ME, Wurtz RH. 1973. Visual receptive fields of frontal eye field neurons. Brain Res. 61:385–89 [Google Scholar]
  153. Molenberghs P, Cunnington R, Mattingley JB. 2012. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neurosci. Biobehav. Rev. 36:341–49 [Google Scholar]
  154. Monosov IE, Thompson KG. 2009. Frontal eye field activity enhances object identification during covert visual search. J. Neurophysiol. 102:3656–72 [Google Scholar]
  155. Monosov IE, Sheinberg DL, Thompson KG. 2010. Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search. PNAS 107:13105–110 [Google Scholar]
  156. Monosov IE, Sheinberg DL, Thompson KG. 2011. The effects of prefrontal cortex inactivation on object responses of single neurons in the inferotemporal cortex during visual search. J. Neurosci. 31:15956–61 [Google Scholar]
  157. Monteon JA, Wang H, Martinez-Trujillo J, Crawford JD. 2013. Frames of reference for eye-head gaze shifts evoked during frontal eye field stimulation. Eur. J. Neurosci. 37:1754–65 [Google Scholar]
  158. Moorman DE, Olson CR. 2007. Combination of neuronal signals representing object-centered location and saccade direction in macaque supplementary eye field. J. Neurophysiol. 97:3554–66 [Google Scholar]
  159. Moskaleva M, Nieder A. 2014. Stable numerosity representations irrespective of magnitude context in macaque prefrontal cortex. Eur. J. Neurosci. 39:866–74 [Google Scholar]
  160. Mukamel R, Ekstrom AD, Kaplan J, Iacoboni M, Fried I. 2010. Single-neuron responses in humans during execution and observation of actions. Curr. Biol. 20:750–56 [Google Scholar]
  161. Murthy A, Ray S, Shorter SM, Schall JD, Thompson KG. 2009. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation. J. Neurophysiol. 101:2485–506 [Google Scholar]
  162. Nakamura K, Roesch MR, Olson CR. 2005. Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict. J. Neurophysiol. 93:884–908 [Google Scholar]
  163. Nelissen K, Borra E, Gerbella M, Rozzi S, Luppino G. et al. 2011. Action observation circuits in the macaque monkey cortex. J. Neurosci. 31:3743–56 [Google Scholar]
  164. Ninomiya T, Dougherty K, Godlove DC, Schall JD, Maier A. 2015. Microcircuitry of agranular frontal cortex: contrasting laminar connectivity between occipital and frontal areas. J. Neurophysiol. 113:3242–55 [Google Scholar]
  165. Ninomiya T, Sawamura H, Inoue K, Takada M. 2012. Segregated pathways carrying frontally derived top-down signals to visual areas MT and V4 in macaques. J. Neurosci. 32:6851–58 [Google Scholar]
  166. Noudoost B, Moore T. 2011. Control of visual cortical signals by prefrontal dopamine. Nature 474:372–5 [Google Scholar]
  167. Ono S, Mustari MJ. 2009. Smooth pursuit-related information processing in frontal eye field neurons that project to the NRTP. Cereb. Cortex 19:1186–97 [Google Scholar]
  168. Paré M, Hanes DP. 2003. Controlled movement processing: superior colliculus activity associated with countermanded saccades. J. Neurosci. 23:6480–89 [Google Scholar]
  169. Park J, Schlag-Rey M, Schlag J. 2006. Frames of reference for saccadic command tested by saccade collision in the supplementary eye field. J. Neurophysiol. 95:159–70 [Google Scholar]
  170. Parthasarathy HB, Schall JD, Graybiel AM. 1992. Distributed but convergent ordering of corticostriatal projections: analysis of the frontal eye field and the supplementary eye field in the macaque monkey. J. Neurosci. 12:4468–88 [Google Scholar]
  171. Passingham RE, Wise SP. 2012. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight Oxford, UK: Oxford Univ. Press
  172. Pearson JM, Watson KK, Platt ML. 2014. Decision making: the neuroethological turn. Neuron 82:950–65 [Google Scholar]
  173. Peel TR, Johnston K, Lomber SG, Corneil BD. 2014. Bilateral saccadic deficits following large and reversible inactivation of unilateral frontal eye field. J. Neurophysiol. 111:415–33 [Google Scholar]
  174. Peng X, Sereno ME, Silva AK, Lehky SR, Sereno AB. 2008. Shape selectivity in primate frontal eye field. J. Neurophysiol. 100:796–814 [Google Scholar]
  175. Pereira J, Wang X-J. 2015. A tradeoff between accuracy and flexibility in a working memory circuit endowed with slow feedback mechanisms. Cereb. Cortex 253586–601
  176. Pesaran B, Nelson MJ, Andersen RA. 2010. A relative position code for saccades in dorsal premotor cortex. J. Neurosci. 30:6527–37 [Google Scholar]
  177. Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN. 2012. The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex 48:46–57 [Google Scholar]
  178. Petroni F, Panzeri S, Hilgetag CC, Kotter R, Young MP. 2001. Simultaneity of responses in a hierarchical visual network. Neuroreport 12:2753–59 [Google Scholar]
  179. Phillips AN, Segraves MA. 2010. Predictive activity in macaque frontal eye field neurons during natural scene searching. J. Neurophysiol. 103:1238–52 [Google Scholar]
  180. Phillips JM, Everling S. 2014. Event-related potentials associated with performance monitoring in non-human primates. Neuroimage 97:308–20 [Google Scholar]
  181. Pooresmaeili A, Poort J, Roelfsema PR. 2014. Simultaneous selection by object-based attention in visual and frontal cortex. PNAS 111:6467–72 [Google Scholar]
  182. Pouget P, Emeric EE, Stuphorn V, Reis K, Schall JD. 2005. Chronometry of visual responses in frontal eye field, supplementary eye field, and anterior cingulate cortex. J. Neurophysiol. 94:2086–92 [Google Scholar]
  183. Pouget P, Logan GD, Palmeri TJ, Boucher L, Paré M, Schall JD. 2011. Neural basis of adaptive response time adjustment during saccade countermanding. J. Neurosci. 31:12604–12 [Google Scholar]
  184. Pouget P, Stepniewska I, Crowder EA, Leslie MW, Emeric EE. et al. 2009. Visual and motor connectivity and the distribution of calcium-binding proteins in macaque frontal eye field: implications for saccade target selection. Front. Neuroanat. 3:2 [Google Scholar]
  185. Preuss TM. 2000. Taking the measure of diversity: comparative alternatives to the model-animal paradigm in cortical neuroscience. Brain Behav. Evol. 55:287–99 [Google Scholar]
  186. Purcell BA, Heitz RP, Cohen JY, Schall JD, Logan GD, Palmeri TJ. 2010. Neurally constrained modeling of perceptual decision making. Psychol. Rev. 117:1113–43 [Google Scholar]
  187. Purcell BA, Schall JD, Logan GD, Palmeri TJ. 2012a. From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search. J. Neurosci. 32:3433–46 [Google Scholar]
  188. Purcell BA, Schall JD, Woodman GF. 2013. On the origin of event-related potentials indexing covert attentional selection during visual search: Timing of selection during pop-out search. J. Neurophysiol. 109:557–69 [Google Scholar]
  189. Purcell BA, Weigand PK, Schall JD. 2012b. Supplementary eye field during visual search: salience, cognitive control, and performance monitoring. J. Neurosci. 32:10273–85 [Google Scholar]
  190. Qi XL, Constantinidis C. 2013. Neural changes after training to perform cognitive tasks. Behav. Brain Res. 241:235–43 [Google Scholar]
  191. Ramakrishnan A, Sureshbabu R, Murthy A. 2012. Understanding how the brain changes its mind: microstimulation in the macaque frontal eye field reveals how saccade plans are changed. J. Neurosci. 32:4457–72 [Google Scholar]
  192. Rao NG, Donoghue JP. 2014. Cue to action processing in motor cortex populations. J. Neurophysiol. 111:441–53 [Google Scholar]
  193. Reinhart RM, Heitz RP, Purcell BA, Weigand PK, Schall JD, Woodman GF. 2012. Homologous mechanisms of visuospatial working memory maintenance in macaque and human: properties and sources. J. Neurosci. 32:7711–22 [Google Scholar]
  194. Rigotti M, Barak O, Warden MR, Wang XJ, Daw ND. et al. 2013. The importance of mixed selectivity in complex cognitive tasks. Nature 497:585–90 [Google Scholar]
  195. Rizzolatti G, Sinigaglia C. 2010. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat. Rev. Neurosci. 11:264–74 [Google Scholar]
  196. Rolls ET, Grabenhorst F. 2008. The orbitofrontal cortex and beyond: from affect to decision-making. Prog. Neurobiol. 86:216–44 [Google Scholar]
  197. Rolls ET, Critchley HD, Browning AS, Inoue K. 2006. Face-selective and auditory neurons in the primate orbitofrontal cortex. Exp. Brain Res. 170:74–87 [Google Scholar]
  198. Rosano C, Sweeney JA, Melchitzky DS, Lewis DA. 2003. The human precentral sulcus: chemoarchitecture of a region corresponding to the frontal eye fields. Brain Res. 972:16–30 [Google Scholar]
  199. Rossi AF, Bichot NP, Desimone R, Ungerleider LG. 2007. Top down attentional deficits in macaques with lesions of lateral prefrontal cortex. J. Neurosci. 27:11306–14 [Google Scholar]
  200. Roy JE, Riesenhuber M, Poggio T, Miller EK. 2010. Prefrontal cortex activity during flexible categorization. J. Neurosci. 30:8519–28 [Google Scholar]
  201. Roy JE, Buschman TJ, Miller EK. 2014. PFC neurons reflect categorical decisions about ambiguous stimuli. J. Cogn. Neurosci. 26:1283–91 [Google Scholar]
  202. Rushworth MF, Kolling N, Sallet J, Mars RB. 2012. Valuation and decision-making in frontal cortex: one or many serial or parallel systems?. Curr. Opin. Neurobiol. 22:946–55 [Google Scholar]
  203. Salinas E, Stanford TR. 2013. The countermanding task revisited: fast stimulus detection is a key determinant of psychophysical performance. J. Neurosci. 33:5668–85 [Google Scholar]
  204. Saleem KS, Miller B, Price JL. 2014. Subdivisions and connectional networks of the lateral prefrontal cortex in the macaque monkey. J. Comp. Neurol. 522:1641–90 [Google Scholar]
  205. Sallet J, Mars RB, Noonan MP, Neubert FX, Jbabdi S. et al. 2013. The organization of dorsal frontal cortex in humans and macaques. J. Neurosci. 33:12255–74 [Google Scholar]
  206. Sato TR, Schall JD. 2003. Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron 38:637–48 [Google Scholar]
  207. Sawaguchi T, Iba M. 2001. Prefrontal cortical representation of visuospatial working memory in monkeys examined by local inactivation with muscimol. J. Neurophysiol. 86:2041–53 [Google Scholar]
  208. Schall JD. 1991. Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of rhesus monkeys. J. Neurophysiol. 66:530–58 [Google Scholar]
  209. Schall JD. 1997. Visuomotor areas of the frontal lobe. Extrastriate Cortex of Primates 12 of Cerebral Cortex, ed. K Rockland, A Peters, J Kaas 527–638 New York: Plenum Press [Google Scholar]
  210. Schall JD, Boucher L. 2007. Executive control of gaze by the frontal lobes. Cogn. Affect Behav. Neurosci. 7:396–412 [Google Scholar]
  211. Schall JD, Emeric EE. 2010. Conflict in cingulate cortex function between humans and macaque monkeys: More apparent than real. Brain Behav. Evol. 75:237–8 [Google Scholar]
  212. Schall JD, Paré M, Woodman GF. 2007. Comment on “Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices”. Science 318:44 [Google Scholar]
  213. Schall JD, Morel A, King DJ, Bullier J. 1995. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci. 15:4464–87 [Google Scholar]
  214. Schall JD, Sato TR, Thompson KG, Vaughn AA, Juan C-H. 2004. Effects of search efficiency on surround suppression during visual selection in frontal eye field. J. Neurophysiol. 91:2765–69 [Google Scholar]
  215. Schiller PH, Chou I. 2000. The effects of anterior arcuate and dorsomedial frontal cortex lesions on visually guided eye movements in the rhesus monkey: 1. Single and sequential targets. Vis. Res. 40:1609–26 [Google Scholar]
  216. Schiller PH, True SD, Conway JL. 1980. Deficits in eye movements following frontal eye-field and superior colliculus ablations. J. Neurophysiol. 44:1175–89 [Google Scholar]
  217. Schlag J, Schlag-Rey M. 1970. Induction of oculomotor responses by electrical stimulation of the prefrontal cortex in the cat. Brain Res. 22:1–13 [Google Scholar]
  218. Schlag J, Schlag-Rey M. 1987. Evidence for a supplementary eye field. J. Neurophysiol. 57:179–200 [Google Scholar]
  219. Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S. et al. 1998. Signal timing across the macaque visual system. J. Neurophysiol. 79:3272–78 [Google Scholar]
  220. Seger CA, Miller EK. 2010. Category learning in the brain. Annu. Rev. Neurosci. 33:203–19 [Google Scholar]
  221. Segraves MA. 1992. Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. J. Neurophysiol. 68:1967–85 [Google Scholar]
  222. Segraves MA, Goldberg ME. 1987. Functional properties of corticotectal neurons in the monkey's frontal eye field. J. Neurophysiol. 58:1387–419 [Google Scholar]
  223. Sharika KM, Neggers SF, Gutteling TP, Van der Stigchel S, Dijkerman HC, Murthy A. 2013. Proactive control of sequential saccades in the human supplementary eye field. Proc. Natl. Acad. Sci. USA 110:E1311–20 [Google Scholar]
  224. Shen C, Ardid S, Kaping D, Westendorff S, Everling S, Womelsdorf T. 2015. Anterior cingulate cortex cells identify process-specific errors of attentional control prior to transient prefrontal-cingulate inhibition. Cereb. Cortex 252213–28
  225. Shichinohe N, Akao T, Kurkin S, Fukushima J, Kaneko CR, Fukushima K. 2009. Memory and decision making in the frontal cortex during visual motion processing for smooth pursuit eye movements. Neuron 62:717–32 [Google Scholar]
  226. Shipp S. 2005. The importance of being agranular: a comparative account of visual and motor cortex. Philos. Trans. R. Soc. Lond. B 60:797–814 [Google Scholar]
  227. Shook BL, Schlag-Rey M, Schlag J. 1990. Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. J. Comp. Neurol. 301:618–42 [Google Scholar]
  228. So N, Stuphorn V. 2012. Supplementary eye field encodes reward prediction error. J. Neurosci. 32:2950–63 [Google Scholar]
  229. Soltani A, Noudoost B, Moore T. 2013. Dissociable dopaminergic control of saccadic target selection and its implications for reward modulation. PNAS 110:3579–84 [Google Scholar]
  230. Sommer MA, Wurtz RH. 2000. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. J. Neurophysiol. 83:1979–2001 [Google Scholar]
  231. Sommer MA, Wurtz RH. 2004. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J. Neurophysiol. 91:1381–402 [Google Scholar]
  232. Sommer MA, Wurtz RH. 2008. Brain circuits for the internal monitoring of movements. Annu. Rev. Neurosci. 31:317–38 [Google Scholar]
  233. Song JH, McPeek RM. 2010. Roles of narrow- and broad-spiking dorsal premotor area neurons in reach target selection and movement production. J. Neurophysiol. 103:2124–38 [Google Scholar]
  234. Sreenivasan KK, Curtis CE, D’Esposito M. 2014. Revisiting the role of persistent neural activity during working memory. Trends Cogn. Sci. 18:82–89 [Google Scholar]
  235. Squire RF, Noudoost B, Schafer RJ, Moore T. 2013. Prefrontal contributions to visual selective attention. Annu. Rev. Neurosci. 36:451–66 [Google Scholar]
  236. Stuphorn V, Schall JD. 2006. Executive control of countermanding saccades by the supplementary eye field. Nat. Neurosci. 9:925–31 [Google Scholar]
  237. Stuphorn V, Brown JW, Schall JD. 2010. Role of supplementary eye field in saccade initiation: executive, not direct, control. J. Neurophysiol. 103:801–16 [Google Scholar]
  238. Stuphorn V, Taylor TL, Schall JD. 2000. Performance monitoring by the supplementary eye field. Nature 408:857–60 [Google Scholar]
  239. Suzuki H, Azuma M. 1983. Topographic studies on visual neurons in the dorsolateral prefrontal cortex of the monkey. Exp. Brain Res. 53:47–58 [Google Scholar]
  240. Swaminathan SK, Freedman DJ. 2012. Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex. Nat. Neurosci. 15:315–20 [Google Scholar]
  241. Tatler BW, Land MF. 2011. Vision and the representation of the surroundings in spatial memory. Philos. Trans. R. Soc. Lond. B 366:596–610 [Google Scholar]
  242. Tehovnik EJ, Sommer MA, Chou IH, Slocum WM, Schiller PH. 2000. Eye fields in the frontal lobes of primates. Brain Res. Rev. 32:413–48 [Google Scholar]
  243. Teichert T, Yu D, Ferrera VP. 2014. Performance monitoring in monkey frontal eye field. J. Neurosci. 34:1657–71 [Google Scholar]
  244. Thompson KG, Bichot NP. 2005. A visual salience map in the primate frontal eye field. Prog. Brain Res. 147:251–62 [Google Scholar]
  245. Thompson KG, Schall JD. 2000. Antecedents and correlates of visual detection and awareness in macaque prefrontal cortex. Vis. Res. 40:1523–38 [Google Scholar]
  246. Thompson KG, Biscoe KL, Sato TR. 2005. Neuronal basis of covert spatial attention in the frontal eye field. J. Neurosci. 25:9479–87 [Google Scholar]
  247. Thompson KG, Hanes DP, Bichot NP, Schall JD. 1996. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J. Neurophysiol. 76:4040–55 [Google Scholar]
  248. Thura D, Hadj-Bouziane F, Meunier M, Boussaoud D. 2011. Hand modulation of visual, preparatory, and saccadic activity in the monkey frontal eye field. Cereb. Cortex 21:853–64 [Google Scholar]
  249. Tsujimoto S, Postle BR. 2012. The prefrontal cortex and oculomotor delayed response: a reconsideration of the “mnemonic scotoma”. J. Cogn. Neurosci. 24:627–35 [Google Scholar]
  250. Uchida Y, Lu X, Ohmae S, Takahashi T, Kitazawa S. 2007. Neuronal activity related to reward size and rewarded target position in primate supplementary eye field. J. Neurosci. 27:13750–5 [Google Scholar]
  251. Wallis JD, Miller EK. 2003. From rule to response: neuronal processes in the premotor and prefrontal cortex. J. Neurophysiol. 90:1790–806 [Google Scholar]
  252. Wardak C, Ibos G, Duhamel JR, Olivier E. 2006. Contribution of the monkey frontal eye field to covert visual attention. J. Neurosci. 26:4228–35 [Google Scholar]
  253. Warden MR, Miller EK. 2010. Task-dependent changes in short-term memory in the prefrontal cortex. J. Neurosci. 30:15801–10 [Google Scholar]
  254. Womelsdorf T, Ardid S, Everling S, Valiante TA. 2014. Burst firing synchronizes prefrontal and anterior cingulate cortex during attentional control. Curr. Biol. 24:2613–21 [Google Scholar]
  255. Woodman GF, Kang MS, Rossi AF, Schall JD. 2007. Nonhuman primate event-related potentials indexing covert shifts of attention. PNAS 104:15111–6 [Google Scholar]
  256. Xiao Q, Barborica A, Ferrera VP. 2006. Radial motion bias in macaque frontal eye field. Vis. Neurosci. 23:49–60 [Google Scholar]
  257. Xiao Q, Barborica A, Ferrera VP. 2007. Modulation of visual responses in macaque frontal eye field during covert tracking of invisible targets. Cereb. Cortex 17:918–28 [Google Scholar]
  258. Yamagata T, Nakayama Y, Tanji J, Hoshi E. 2009. Processing of visual signals for direct specification of motor targets and for conceptual representation of action targets in the dorsal and ventral premotor cortex. J. Neurophysiol. 102:3280–94 [Google Scholar]
  259. Yang SN, Heinen S. 2014. Contrasting the roles of the supplementary and frontal eye fields in ocular decision making. J. Neurophysiol. 111:2644–55 [Google Scholar]
  260. Yang SN, Hwang H, Ford J, Heinen S. 2010. Supplementary eye field activity reflects a decision rule governing smooth pursuit but not the decision. J. Neurophysiol. 103:2458–69 [Google Scholar]
  261. Zaksas D, Pasternak T. 2006. Directional signals in the prefrontal cortex and in area MT during a working memory for visual motion task. J. Neurosci. 26:11726–42 [Google Scholar]
  262. Zald D, Rauch S. 2006. The Orbitofrontal Cortex Oxford, UK/New York: Oxford Univ. Press
  263. Zhou H, Desimone R. 2011. Feature-based attention in the frontal eye field and area V4 during visual search. Neuron 70:1205–17 [Google Scholar]
  264. Zhou HH, Thompson KG. 2009. Cognitively directed spatial selection in the frontal eye field in anticipation of visual stimuli to be discriminated. Vis. Res. 49:1205–15 [Google Scholar]
  265. Zhou X, Zhu D, Qi XL, Lees CJ, Bennett AJ. et al. 2013. Working memory performance and neural activity in prefrontal cortex of peripubertal monkeys. J. Neurophysiol. 110:2648–60 [Google Scholar]
  266. Zirnsak M, Steinmetz NA, Noudoost B, Xu KZ, Moore T. 2014. Visual space is compressed in prefrontal cortex before eye movements. Nature 507:504–7 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error