Optical coherence tomography (OCT) is changing the way glaucoma is studied and diagnosed. Glaucoma damages retinal ganglion cell (RGC) axons at the optic disc, and the resulting retrograde degeneration destroys the RGC bodies. OCT allows for a noninvasive measurement of both retinal nerve fiber (RNF) and RGC layer thickness. In this article, OCT techniques are described for studying the thinning of these layers due to glaucoma. We have learned that there is more damage to the macula (central ±8 deg) than previously thought, and a simple anatomical model provides an explanation for this finding. Further, OCT technology has led to improved understanding of the relationship between RGC and RNF layer loss and behavioral data. Finally, another imaging technique, adaptive optics, has allowed a better visualization and understanding of details that are often difficult or impossible to see with current OCT technology.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abrams LS, Scott IU, Spaeth GL, Quigley HA, Varma R. 1994. Agreement among optometrists, ophthalmologists, and residents in evaluating the optic disc for glaucoma. Ophthalmology 101:101662–67 [Google Scholar]
  2. Anctil JL, Anderson DR. 1984. Early foveal involvement and generalized depression of the visual field in glaucoma. Arch. Ophthalmol. 102:3363–70 [Google Scholar]
  3. Aulhorn E, Harms H. 1967. Early visual field defects in glaucoma. Glaucoma: Tutzig Symposium W Leydhecker 151–86 Basel: Karger [Google Scholar]
  4. Aulhorn E, Karmeyer H. 1977. Frequency distribution in early glaucomatous visual field defects. Doc. Ophthalmol. Proc. Ser. 14:75–83 [Google Scholar]
  5. Chang R, Budenz DL. 2008. New developments in optical coherence tomography for glaucoma. Curr. Opin. Ophthalmol. 19:2127–35 [Google Scholar]
  6. Chen M, Chui TYP, Alhadeff P, Rosen RB, Ritch R. et al. 2015. Adaptive optics imaging of healthy and abnormal regions of retinal nerve fiber bundles of patients with glaucoma. Investig. Ophthalmol. Vis. Sci. 56:1674–81 [Google Scholar]
  7. Choi JA, Park HY, Park CK. 2015. Difference in the posterior pole profiles associated with the initial location of visual field defect in early-stage normal tension glaucoma. Acta Ophthalmol. 93:2e94–99 [Google Scholar]
  8. Curcio CA, Allen KA. 1990. Topography of ganglion cells in human retina. J. Comp. Neurol. 300:15–25 [Google Scholar]
  9. Curcio CA, Messinger JD, Sloan KR, Mitra A, McGwin G, Spaide RF. 2011. Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections. Investig. Ophthalmol. Vis. Sci. 52:73943–54 [Google Scholar]
  10. Drance SM. 1969. Some studies of the relationships of hemodynamics and ocular pressure in open-angle glaucoma. Trans. Ophthalmol. Soc. U. K. 88:633–40 [Google Scholar]
  11. Drasdo N, Millican CL, Katholi CR, Curcio CA. 2007. The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vis. Res. 47:222901–11 [Google Scholar]
  12. Dubra A, Sulai Y. 2011. Reflective afocal broadband adaptive optics scanning ophthalmoscope. Biomed. Opt. Express 2:61757–68 [Google Scholar]
  13. Fingeret M, Medeiros FA, Susanna R Jr, Weinreb RN. 2005. Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. Optometry 76:661–68 [Google Scholar]
  14. Fortune B, Lusardi TA, Reynaud J, Choe TE, Piper C. et al. 2014. Evidence of axonopathy during early-stage experimental glaucoma: relationship between in vivo imaging and histological findings. Investig. Ophthalmol. Vis. Sci. 55:132644 [Google Scholar]
  15. Fujimoto JG, Drexler W. 2015. Introduction to OCT. Optical Coherence Tomography: Technology and Applications JG Fujimoto, W Drexler 3–64 Cham, Switz: Springer [Google Scholar]
  16. Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA. 2000. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107:101809–15 [Google Scholar]
  17. Harwerth RS, Wheat JL. 2008. Modeling the effects of aging on retinal ganglion cell density and nerve fiber layer thickness. Graefe's Arch. Clin. Exp. Ophthalmol. 246:2305–14 [Google Scholar]
  18. Harwerth RS, Wheat JL, Rangaswamy NV. 2008. Age-related losses of retinal ganglion cells and axons. Investig. Ophthalmol. Vis. Sci. 49:104437–43 [Google Scholar]
  19. Heijl A, Lundqvist L. 1984. The frequency distribution of earliest glaucomatous visual field defects documented by automated perimetry. Acta Ophthalmol. 62:4658–64 [Google Scholar]
  20. Heijl A, Patella Bengtsson B VM. 2012. Essential Perimetry: The Field Analyzer Primer Jena, Ger: Carl Zeiss Meditec [Google Scholar]
  21. Hood DC. 2007. Relating retinal nerve fiber thickness to behavioral sensitivity in patients with glaucoma: the application of a linear model. J. Opt. Soc. Am. A 24:51426–30 [Google Scholar]
  22. Hood DC, Anderson SC, Wall M, Raza AS, Kardon RH. 2009. A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurements. Investig. Ophthalmol. Vis. Sci. 50:94254–66 [Google Scholar]
  23. Hood DC, Chen MF, Lee D, Epstein B, Alhadeff P. et al. 2015a. Confocal adaptive optics imaging of peripapillary nerve fiber bundles: implications for glaucomatous damage seen on circumpapillary OCT scans. Transl. Vis. Sci. Tech. 4:212 [Google Scholar]
  24. Hood DC, Cho J, Raza AS, Dale EA, Wang M. 2011a. Reliability of a computer-aided manual procedure for segmenting optical coherence tomography scans. Optom. Vis. Sci. 88:113–23 [Google Scholar]
  25. Hood DC, Fortune B, Mavrommatis MA, Reynaud J, Ramachandran R. et al. 2015b. Details of glaucomatous damage are better seen on OCT en-face images than on OCT retinal nerve fiber layer thickness maps. Investig. Opthamol. Vis. Sci. 56116208–16 [Google Scholar]
  26. Hood DC, Greenstein V, Odel J, Zhang X, Ritch R. et al. 2002. Visual field defects and multifocal visual evoked potentials: evidence of a linear relationship. Arch. Ophthalmol. 120:121672–81 [Google Scholar]
  27. Hood DC, Kardon RH. 2007. A framework for comparing structural and functional measures of glaucomatous damage. Prog. Retin. Eye Res. 26:6688–710 [Google Scholar]
  28. Hood DC, Raza AS. 2011. Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma. Biomed. Opt. Express 2:51097–105 [Google Scholar]
  29. Hood DC, Raza AS. 2014. On improving the use of OCT imaging for detecting glaucomatous damage. Br. J. Ophthalmol. 98:ii1–ii9 [Google Scholar]
  30. Hood DC, Raza AS, de Moraes CG, Johnson CA, Liebmann JM, Ritch R. 2012. The nature of macular damage in glaucoma as revealed by averaging optical coherence tomography data. Transl. Vis. Sci. Technol. 1:13 [Google Scholar]
  31. Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R. 2013. Glaucomatous damage of the macula. Prog. Retin. Eye Res. 32:1–21 [Google Scholar]
  32. Hood DC, Raza AS, de Moraes CG, Odel JG, Greenstein VC. et al. 2011b. Initial arcuate defects within the central 10 degrees in glaucoma. Investig. Ophthalmol. Vis. Sci. 52:2940–46 [Google Scholar]
  33. Hood DC, Slobodnick A, Raza AS, de Moraes CG, Teng CC, Ritch R. 2014. Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region. Investig. Ophthalmol. Vis. Sci. 55:2632–49 [Google Scholar]
  34. Horn FK, Mardin CY, Laemmer R, Baleanu D, Juenemann AM. et al. 2009. Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT. Investig. Ophthalmol. Vis. Sci. 50:51971–77 [Google Scholar]
  35. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG. et al. 1991. Optical coherence tomography. Science 254:50351178–81 [Google Scholar]
  36. Jampel HD, Friedman D, Quigley H, Vitale S, Miller R. et al. 2009. Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients. Am. J. Ophthalmol. 147:139–44 [Google Scholar]
  37. Johnson CA, Wall M. 2011. The visual field. Adler's Physiology of the Eye PL Kaufman, LA Levin, A Alm 655–76 London: Elsevier [Google Scholar]
  38. Jonas JB, Budde WM, Panda-Jonas S. 1999. Ophthalmoscopic evaluation of the optic nerve head. Surv. Ophthalmol. 43:4293–320 [Google Scholar]
  39. Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. 2000. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investig. Ophthalmol. Vis. Sci. 41:3741–48 [Google Scholar]
  40. Kocaoglu OP, Cense B, Jonnal RS, Wang Q, Lee S. et al. 2011. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics. Vis. Res. 51:161835–44 [Google Scholar]
  41. Langerhorst CT, Carenini LL, Bakker D, De Bie-Raakman. 1997. MAC: measurements for description of very early glaucomatous field defects. Perimetry Update 1996/1997 M Wall, A Heijl 67–73 Amsterdam/New York: Kugler [Google Scholar]
  42. Leite MT, Zangwill LM, Weinreb RN, Rao HL, Alencar LM, Medeiros FA. 2012. Structure-function relationships using the Cirrus spectral domain optical coherence tomograph and standard automated perimetry. J. Glaucoma 21:149–54 [Google Scholar]
  43. Lim H, Mujat M, Kerbage C, Lee EC, Chen Y. et al. 2006. High-speed imaging of human retina in vivo with swept-source optical coherence tomography. Opt. Express 14:2612902–8 [Google Scholar]
  44. Malik R, Swanson WH, Garway-Heath DF. 2012. ‘Structure-function relationship’ in glaucoma: past thinking and current concepts. Clin. Exp. Ophthalmol. 40:4369–80 [Google Scholar]
  45. Medeiros FA, Lisboa R, Weinreb RN, Girkin CA, Liebmann JM, Zangwill LM. 2012. A combined index of structure and function for staging glaucomatous damage. Arch. Ophthalmol. 130:5E1–10 [Google Scholar]
  46. Medeiros FA, Lisboa R, Weinreb RN, Liebmann JM, Girkin C, Zangwill LM. 2013. Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. Ophthalmology 120:4736–44 [Google Scholar]
  47. Nelson P, Aspinall P, Papasouliotis O, Worton B, O’Brien C. 2003. Quality of life in glaucoma and its relationship with visual function. J. Glaucoma 12:2139–50 [Google Scholar]
  48. Nicholas SP, Werner EB. 1980. Location of early glaucomatous visual field defects. Can. J. Ophthalmol. 15:3131–33 [Google Scholar]
  49. Pan F, Swanson WH, Dul MW. 2006. Evaluation of a two-stage neural model of glaucomatous defect: an approach to reduce test-retest variability. Optom. Vis. Sci. 83:7499–511 [Google Scholar]
  50. Park SC, De Moraes CG, Teng CC, Tello C, Liebmann JM, Ritch R. 2011. Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology 118:91782–89 [Google Scholar]
  51. Pinto LM, Costa EF, Melo LA Jr, Gross PB, Sato ET. et al. 2014. Structure-function correlations in glaucoma using matrix and standard automated perimetry versus time-domain and spectral-domain OCT devices. Investig. Ophthalmol. Vis. Sci. 55:53074–80 [Google Scholar]
  52. Quigley HA, Addicks EM, Green WR. 1982. Optic nerve damage in human glaucoma: III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch. Ophthalmol. 100:1135–46 [Google Scholar]
  53. Quigley HA, Dunkelberger GR, Green WR. 1989. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am. J. Ophthalmol. 107:5453–64 [Google Scholar]
  54. Rao H, Zangwill LM, Weinreb RN, Leite MT, Sample PA, Medeiros FA. 2011. Structure-function relationship in glaucoma using spectral-domain optical coherence tomography. Arch. Ophthalmol. 129:7864–71 [Google Scholar]
  55. Raza AS, Cho J, de Moraes CG, Wang M, Zhang X. et al. 2011. Retinal ganglion cell layer thickness and local visual field sensitivity in glaucoma. Arch. Ophthalmol. 129:121529–36 [Google Scholar]
  56. Raza AS, Hood DC. 2015a. Evaluation of a method for estimating retinal ganglion cell counts using visual fields and optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 56:42254–68 [Google Scholar]
  57. Raza AS, Hood DC. 2015b. Evaluation of the structure–function relationship in glaucoma using a novel method for estimating the number of retinal ganglion cells in the human retina. Investig. Ophthalmol. Vis. Sci. 56:5548–56 [Google Scholar]
  58. Richman J, Lorenzana LL, Lankaranian D, Dugar J, Mayer J. et al. 2010. Importance of visual acuity and contrast sensitivity in patients with glaucoma. Arch. Ophthalmol. 128:121576–82 [Google Scholar]
  59. Ritch R, Shields MB, Krupin T. 1996. The Glaucomas St. Louis, MO: Mosby, 2nd ed.. [Google Scholar]
  60. Roorda A, Duncan J. 2015. Adaptive optics ophthalmoscopy. Annu. Rev. Vis. Sci. 1:19–50 [Google Scholar]
  61. Schiefer U, Papageorgiou E, Sample PA, Pascual JP, Selig B. et al. 2010. Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements. Investig. Ophthalmol. Vis. Sci. 51:115685–89 [Google Scholar]
  62. Schuman JS. 2008. Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Trans. Am. Ophthalmol. Soc. 106426–58 [Google Scholar]
  63. Scoles D, Higgins BP, Cooper RF, Dubis AM, Summerfelt P. et al. 2014. Microscopic inner retinal hyper-reflective phenotypes in retinal and neurologic disease. Investig. Ophthalmol. Vis. Sci. 55:74015–29 [Google Scholar]
  64. Sharma P, Sample PA, Zangwill LM, Schuman JS. 2008. Diagnostic tools for glaucoma detection and management. Surv. Ophthalmol. 53:6S17–32 [Google Scholar]
  65. Srinivasan VJ, Huber R, Gorczynska I, Fujimoto JG, Jiang JY. et al. 2007. High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm. Opt. Lett. 32:4361–63 [Google Scholar]
  66. Su D, Park SC, Simonson JL, Liebmann JM, Ritch R. 2013. Progression pattern of initial parafoveal scotomas in glaucoma. Ophthalmology 120:3520–27 [Google Scholar]
  67. Susanna R Jr, Vessani RM. 2007. New findings in the evaluation of the optic disc in glaucoma diagnosis. Curr. Opin. Ophthalmol. 18:2122–28 [Google Scholar]
  68. Swanson WH, Felius J, Pan F. 2004. Perimetric defects and ganglion cell damage: interpreting linear relations using a two-stage neural model. Investig. Ophthalmol. Vis. Sci. 45:2466–72 [Google Scholar]
  69. Takayama K, Ooto S, Hangai M, Arakawa N, Oshima S. et al. 2012. High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy. PLOS ONE 7:3e33158 [Google Scholar]
  70. Takayama K, Ooto S, Hangai M, Ueda-Arakawa N, Yoshida S. et al. 2013. High-resolution imaging of retinal nerve fiber bundles in glaucoma using adaptive optics scanning laser ophthalmoscopy. Am. J. Ophthalmol. 155:5870–81 [Google Scholar]
  71. Traynis I, de Moraes CG, Raza AS, Liebmann JM, Ritch R, Hood DC. 2014. Prevalence and nature of early glaucomatous defects in the central 10° of the visual field. JAMA Ophthalmol. 132:3291–97 [Google Scholar]
  72. Varma R, Steinmann WC, Scott IU. 1992. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology 99:2215–21 [Google Scholar]
  73. Weber J, Schultze T, Ulrich H. 1989. The visual field in advanced glaucoma. Int. Ophthalmol. 13:1–247–50 [Google Scholar]
  74. Weinreb EN, Aung T, Medeiros FA. 2014. The pathophysiology and treatment of glaucoma: a review. JAMA 311:181901–11 [Google Scholar]
  75. Wheat JL, Rangaswamy NV, Harwerth RS. 2012. Correlating RNFL thickness by OCT with perimetric sensitivity in glaucoma patients. J. Glaucoma 21:295–101 [Google Scholar]
  76. Wojtkowski M, Fercher AF, Leitgeb R. 2001. Phase-sensitive interferometry in optical coherence tomography. Proc. SPIE 4515:250–55 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error