Visual defects affect a large proportion of humanity, have a significant negative impact on quality of life, and cause significant economic burden. The wide variety of visual disorders and the large number of gene mutations responsible require a flexible animal model system to carry out research for possible causes and cures for the blinding conditions. With eyes similar to humans in structure and function, zebrafish are an important vertebrate model organism that is being used to study genetic and environmental eye diseases, including myopia, glaucoma, retinitis pigmentosa, ciliopathies, albinism, and diabetes. This review details the use of zebrafish in modeling human ocular diseases.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Al-Hamed MH, van Lennep C, Hynes AM, Chrystal P, Eley L. et al. 2014. Functional modelling of a novel mutation in BBS5. Cilia 3:13 [Google Scholar]
  2. Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA. et al. 1997. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:53331805–7 [Google Scholar]
  3. Allison WT, Haimberger TJ, Hawryshyn CW, Temple SE. 2004. Visual pigment composition in zebrafish: evidence for a rhodopsin-porphyropsin interchange system. Vis. Neurosci. 21:6945–52 [Google Scholar]
  4. Alvarez Y, Chen K, Reynolds AL, Waghorne N, O’Connor JJ, Kennedy BN. 2010. Predominant cone photoreceptor dysfunction in a hyperglycaemic model of non-proliferative diabetic retinopathy. Dis. Models Mech. 3:3–4236–45 [Google Scholar]
  5. Amores A, Force A, Yan YL, Joly L, Amemiya C. et al. 1998. Zebrafish hox clusters and vertebrate genome evolution. Science 282:53941711–14 [Google Scholar]
  6. Amsterdam A. 2006. Insertional mutagenesis in zebrafish: genes for development, genes for disease. Brief. Funct. Genomics Proteomics 5:119–23 [Google Scholar]
  7. Bachmann-Gagescu R, Phelps IG, Stearns G, Link BA, Brockerhoff SE. et al. 2011. The ciliopathy gene cc2d2a controls zebrafish photoreceptor outer segment development through a role in Rab8-dependent vesicle trafficking. Hum. Mol. Genet. 20:204041–55 [Google Scholar]
  8. Bader JR, Kusik BW, Besharse JC. 2012. Analysis of KIF17 distal tip trafficking in zebrafish cone photoreceptors. Vis. Res. 75:37–43 [Google Scholar]
  9. Bahadori R, Biehlmaier O, Zeitz C, Labhart T, Makhankov YV. et al. 2006a. Nyctalopin is essential for synaptic transmission in the cone dominated zebrafish retina. Eur. J. Neurosci. 24:61664–74 [Google Scholar]
  10. Bahadori R, Rinner O, Schonthaler HB, Biehlmaier O, Makhankov YV. et al. 2006b. The Zebrafish fade out mutant: a novel genetic model for Hermansky-Pudlak syndrome. Investig. Ophthalmol. Vis. Sci. 47:104523–31 [Google Scholar]
  11. Barron MJ, Johnson MA, Andrews RM, Clarke MP, Griffiths PG. et al. 2001. Mitochondrial abnormalities in ageing macular photoreceptors. Investig. Ophthalmol. Vis. Sci. 42:123016–22 [Google Scholar]
  12. Baye LM, Patrinostro X, Swaminathan S, Beck JS, Zhang Y. et al. 2011. The N-terminal region of centrosomal protein 290 (CEP290) restores vision in a zebrafish model of human blindness. Hum. Mol. Genet. 20:81467–77 [Google Scholar]
  13. Beirl AJ, Linbo TH, Cobb MJ, Cooper CD. 2014. oca2 regulation of chromatophore differentiation and number is cell type specific in zebrafish. Pigment Cell Melanoma Res. 27:2178–89 [Google Scholar]
  14. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ. et al. 2013. GenBank. Nucleic Acids Res. 41:Database issueD36–42 [Google Scholar]
  15. Berger W, Kloeckener-Gruissem B, Neidhardt J. 2010. The molecular basis of human retinal and vitreoretinal diseases. Prog. Retin. Eye Res. 29:5335–75 [Google Scholar]
  16. Bernhardt RR, Tongiorgi E, Anzini P, Schachner M. 1996. Increased expression of specific recognition molecules by retinal ganglion cells and by optic pathway glia accompanies the successful regeneration of retinal axons in adult zebrafish. J. Comp. Neurol. 376:2253–64 [Google Scholar]
  17. Berson JF, Theos AC, Harper DC, Tenza D, Raposo G, Marks MS. 2003. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J. Cell Biol. 161:3521–33 [Google Scholar]
  18. Besharse JC, Baker SA, Luby-Phelps K, Pazour GJ. 2003. Photoreceptor intersegmental transport and retinal degeneration: a conserved pathway common to motile and sensory cilia. Adv. Exp. Med. Biol. 533:157–64 [Google Scholar]
  19. Bhatt DH, Otto SJ, Depoister B, Fetcho JR. 2004. Cyclic AMP-induced repair of zebrafish spinal circuits. Science 305:5681254–58 [Google Scholar]
  20. Biehlmaier O, Neuhauss SCF, Kohler K. 2003. Double cone dystrophy and RPE degeneration in the retina of the zebrafish gnn mutant. Investig. Ophthalmol. Vis. Sci. 44:31287–98 [Google Scholar]
  21. Blackburn PR, Campbell JM, Clark KJ, Ekker SC. 2013. The CRISPR system–keeping zebrafish gene targeting fresh. Zebrafish 10:1116–18 [Google Scholar]
  22. Blanco-Marchite C, Sánchez-Sánchez F, López-Garrido MP, Iñigez-de-Onzoño M, López-Martinez F, López-Sanchez E. et al. 2011. WDR36 and P53 gene variants and susceptibility to primary open-angle glaucoma: analysis of gene-gene interactions. Investig. Ophthalmol. Vis. Sci. 52:118467–78 [Google Scholar]
  23. Braasch I, Liedtke D, Volff JN, Schartl M. 2009. Pigmentary function and evolution of tyrp1 gene duplicates in fish. Pigment Cell Melanoma Res. 22:6839–50 [Google Scholar]
  24. Brockerhoff SE, Rieke F, Matthews HR, Taylor MR, Kennedy B. et al. 2003. Light stimulates a transducin-independent increase of cytoplasmic Ca2+ and suppression of current in cones from the zebrafish mutant nof. J. Neurosci. 23:2470–80 [Google Scholar]
  25. Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E. et al. 2015. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum. Mol. Genet. 24:1230–42 [Google Scholar]
  26. Burstedt MS, Sandgren O, Holmgren G, Forsman-Semb K. 1999. Bothnia dystrophy caused by mutations in the cellular retinaldehyde-binding protein gene (RLBP1) on chromosome 15q26. Investig. Ophthalmol. Vis. Sci. 40:5995–1000 [Google Scholar]
  27. Campbell JM, Hartjes KA, Nelson TJ, Xu X, Ekker SC. 2013. New and TALENted genome engineering toolbox. Circ. Res. 113:5571–87 [Google Scholar]
  28. Cao R, Jensen LD, Söll I, Hauptmann G, Cao Y. 2008. Hypoxia-induced retinal angiogenesis in zebrafish as a model to study retinopathy. PLOS ONE 3:7e2748 [Google Scholar]
  29. Chakarova CF, Khanna H, Shah AZ, Patil SB, Sedmak T. et al. 2011. TOPORS, implicated in retinal degeneration, is a cilia-centrosomal protein. Hum. Mol. Genet. 20:5975–87 [Google Scholar]
  30. Chakrabarti S, Streisinger G, Singer F, Walker C. 1983. Frequency of γ-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, BRACHYDANIO RERIO. Genetics 103:1109–23 [Google Scholar]
  31. Collery R, McLoughlin S, Vendrell V, Finnegan J, Crabb JW. et al. 2008. Duplication and divergence of zebrafish CRALBP genes uncovers novel role for RPE- and Müller-CRALBP in cone vision. Investig. Ophthalmol. Vis. Sci. 49:93812–20 [Google Scholar]
  32. Collery RF, Cederlund ML, Smyth VA, Kennedy BN. 2006. Applying transgenic zebrafish technology to study the retina. Adv. Exp. Med. Biol. 572:201–7 [Google Scholar]
  33. Collery RF, Veth KN, Dubis AM, Carroll J, Link BA. 2014. Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization. PLOS ONE 9:10e110699 [Google Scholar]
  34. Collery RF, Cederlund ML, Kennedy BN. 2013. Transgenic zebrafish expressing mutant human RETGC-1 exhibit aberrant cone and rod morphology. Exp. Eye Res. 108:120–28 [Google Scholar]
  35. Cremers FP, van de Pol DJ, van Kerkhoff LP, Wieringa B, Ropers HH. 1990. Cloning of a gene that is rearranged in patients with choroideraemia. Nature 347:6294674–77 [Google Scholar]
  36. Curwen V, Eyras E, Andrews TD, Clarke L, Mongin E. et al. 2004. The Ensembl automatic gene annotation system. Genome Res. 14:5942–50 [Google Scholar]
  37. Daly CMS, Willer J, Gregg R, Gross JM. 2013. snow white, a zebrafish model of Hermansky-Pudlak syndrome type 5. Genetics 195:2481–94 [Google Scholar]
  38. DiBiase A, Harte RA, Zhou Y, Zon L, Kent WJ. 2006. Piloting the zebrafish genome browser. Dev. Dyn. 235:3747–53 [Google Scholar]
  39. Ebermann I, Phillips JB, Liebau MC, Koenekoop RK, Schermer B. et al. 2010. PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome. J. Clin. Investig. 120:61812–23 [Google Scholar]
  40. Ekker SC. 2008. Zinc finger-based knockout punches for zebrafish genes. Zebrafish 5:2121–23 [Google Scholar]
  41. Fan BJ, Wang DY, Lam DSC, Pang CP. 2006. Gene mapping for primary open angle glaucoma. Clin. Biochem. 39:3249–58 [Google Scholar]
  42. Fiorillo C, Moro F, Yi J, Weil S, Brisca G. et al. 2014. Novel dynein DYNC1H1 neck and motor domain mutations link distal spinal muscular atrophy and abnormal cortical development. Hum. Mutat. 35:3298–302 [Google Scholar]
  43. Fleisch VC, Schonthaler HB, von Lintig J, Neuhauss SC. 2008. Subfunctionalization of a retinoid-binding protein provides evidence for two parallel visual cycles in the cone-dominant zebrafish retina. J. Neurosci. 28:338208–16 [Google Scholar]
  44. Fleisch VC, Neuhauss SCF. 2006. Visual behavior in zebrafish. Zebrafish 3:2191–201 [Google Scholar]
  45. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:41531–45 [Google Scholar]
  46. Fossdal R, Jonasson F, Kristjansdottir GT, Kong A, Stefansson H. et al. 2004. A novel TEAD1 mutation is the causative allele in Sveinsson's chorioretinal atrophy (helicoid peripapillary chorioretinal degeneration). Hum. Mol. Genet. 13:9975–81 [Google Scholar]
  47. Gallenberger M, Meinel DM, Kroeber M, Wegner M, Milkereit P. et al. 2011. Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro. Hum. Mol. Genet. 20:3422–35 [Google Scholar]
  48. Gleeson M, Connaughton V, Arneson LS. 2007. Induction of hyperglycaemia in zebrafish (Danio rerio) leads to morphological changes in the retina. Acta Diabetol. 44:3157–63 [Google Scholar]
  49. Gregory-Evans K, Kelsell RE, Gregory-Evans CY, Downes SM, Fitzke FW. et al. 2000. Autosomal dominant cone-rod retinal dystrophy (CORD6) from heterozygous mutation of GUCY2D, which encodes retinal guanylate cyclase. Ophthalmology 107:155–61 [Google Scholar]
  50. Grønskov K, Dooley CM, Østergaard E, Kelsh RN, Hansen L. et al. 2013. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism. Am. J. Hum. Genet. 92:3415–21 [Google Scholar]
  51. Gross JM, Perkins BD. 2008. Zebrafish mutants as models for congenital ocular disorders in humans. Mol. Reprod. Dev. 75:3547–55 [Google Scholar]
  52. Haffter P, Odenthal J, Mullins MC, Lin S, Farrell MJ. et al. 1996. Mutations affecting pigmentation and shape of the adult zebrafish. Dev. Genes Evol. 206:4260–76 [Google Scholar]
  53. Halbritter J, Bizet AA, Schmidts M, Porath JD, Braun DA. et al. 2013. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am. J. Hum. Genet. 93:5915–25 [Google Scholar]
  54. Hamel C. 2006. Retinitis pigmentosa. Orphanet J. Rare Dis. 1:40 [Google Scholar]
  55. Hamel CP. 2007. Cone rod dystrophies. Orphanet J. Rare Dis. 2:7 [Google Scholar]
  56. Harms MB, Ori-McKenney KM, Scoto M, Tuck EP, Bell S. et al. 2012. Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology 78:221714–20 [Google Scholar]
  57. Hawthorne FA, Young TL. 2013. Genetic contributions to myopic refractive error: insights from human studies and supporting evidence from animal models. Exp. Eye Res. 114:141–49 [Google Scholar]
  58. Hellström A, Smith LE, Dammann O. 2013. Retinopathy of prematurity. Lancet 382:99021445–57 [Google Scholar]
  59. Hiscott P, Sheridan C, Magee RM, Grierson I. 1999. Matrix and the retinal pigment epithelium in proliferative retinal disease. Prog. Retin. Eye Res. 18:2167–90 [Google Scholar]
  60. Hodel C, Neuhauss SCF, Biehlmaier O. 2006. Time course and development of light adaptation processes in the outer zebrafish retina. Anat. Rec. A 288:6653–62 [Google Scholar]
  61. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C. et al. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503 [Google Scholar]
  62. Huang YY, Haug MF, Gesemann M, Neuhauss SC. 2012. Novel expression patterns of metabotropic glutamate receptor 6 in the zebrafish nervous system. PLOS ONE 7:4e35256 [Google Scholar]
  63. Hudak LM, Lunt S, Chang CH, Winkler E, Flammer H. et al. 2010. The intraflagellar transport protein Ift80 is essential for photoreceptor survival in a zebrafish model of Jeune asphyxiating thoracic dystrophy. Investig. Ophthalmol. Vis. Sci. 51:73792–99 [Google Scholar]
  64. Huizing M, Boissy RE, Gahl WA. 2002. Hermansky-Pudlak syndrome: vesicle formation from yeast to man. Pigment Cell Res. 15:6405–19 [Google Scholar]
  65. Insinna C, Baye LM, Amsterdam A, Besharse JC, Link BA. 2010. Analysis of a zebrafish dync1h1 mutant reveals multiple functions for cytoplasmic dynein 1 during retinal photoreceptor development. Neural Dev. 5:12 [Google Scholar]
  66. Jia S, Muto A, Orisme W, Henson HE, Parupalli C. et al. 2014. Zebrafish Cacna1fa is required for cone photoreceptor function and synaptic ribbon formation. Hum. Mol. Genet. 23:112981–94 [Google Scholar]
  67. Jin Z-B, Huang X-F, Lv J-N, Xiang L, Li D-Q. et al. 2014. SLC7A14 linked to autosomal recessive retinitis pigmentosa. Nat. Commun. 5:3517 [Google Scholar]
  68. Jonasson F, Hardarson S, Olafsson BM, Klintworth GK. 2007. Sveinsson chorioretinal atrophy/helicoid peripapillary chorioretinal degeneration: first histopathology report. Ophthalmology 114:81541–46 [Google Scholar]
  69. Kaplan J, De Domenico I, Ward DM. 2008. Chediak-Higashi syndrome. Curr. Opin. Hematol. 15:122–29 [Google Scholar]
  70. Kawakami K. 2004. Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element. Methods Cell Biol. 77:201–22 [Google Scholar]
  71. Kennedy BN, Alvarez Y, Brockerhoff SE, Stearns GW, Sapetto-Rebow B. et al. 2007. Identification of a zebrafish cone photoreceptor-specific promoter and genetic rescue of achromatopsia in the nof mutant. Investig. Ophthalmol. Vis. Sci. 48:2522–29 [Google Scholar]
  72. Kevany BM, Zhang N, Jastrzebska B, Palczewski K. 2015. Animals deficient in C2Orf71, an autosomal recessive retinitis pigmentosa-associated locus, develop severe early-onset retinal degeneration. Hum. Mol. Genet. 24:2627–40 [Google Scholar]
  73. Kirkwood BJ. 2009. Albinism and its implications with vision. Insight 34:213–16 [Google Scholar]
  74. Knapik EW. 2000. ENU mutagenesis in zebrafish—from genes to complex diseases. Mamm. Genome 11:7511–19 [Google Scholar]
  75. Koenekoop RK. 2007. Choroideremia is caused by a defective phagocytosis by the RPE of photoreceptor disc membranes, not by an intrinsic photoreceptor defect. Ophthalmic Genet. 28:3185–86 [Google Scholar]
  76. Krock BL, Bilotta J, Perkins BD. 2007. Noncell-autonomous photoreceptor degeneration in a zebrafish model of choroideremia. PNAS 104:114600–5 [Google Scholar]
  77. Krock BL, Perkins BD. 2008. The intraflagellar transport protein IFT57 is required for cilia maintenance and regulates IFT-particle-kinesin-II dissociation in vertebrate photoreceptors. J. Cell Sci. 121:Pt. 111907–15 [Google Scholar]
  78. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME. et al. 2007. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236:113088–99 [Google Scholar]
  79. Lamason RL, Mohideen MA, Mest JR, Wong AC, Norton HL. et al. 2005. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310:57551782–86 [Google Scholar]
  80. Li C, Wang L, Zhang J, Huang M, Wong F. et al. 2014. CERKL interacts with mitochondrial TRX2 and protects retinal cells from oxidative stress-induced apoptosis. Biochim. Biophys. Acta 1842:71121–29 [Google Scholar]
  81. Li L, Nakaya N, Chavali VR, Ma Z, Jiao X. et al. 2010. A mutation in ZNF513, a putative regulator of photoreceptor development, causes autosomal-recessive retinitis pigmentosa. Am. J. Hum. Genet. 87:3400–9 [Google Scholar]
  82. Linder B, Dill H, Hirmer A, Brocher J, Lee GP. et al. 2011. Systemic splicing factor deficiency causes tissue-specific defects: a zebrafish model for retinitis pigmentosa. Hum. Mol. Genet. 20:2368–77 [Google Scholar]
  83. Luo N, Lu J, Sun Y. 2012. Evidence of a role of inositol polyphosphate 5-phosphatase INPP5E in cilia formation in zebrafish. Vis. Res. 75:98–107 [Google Scholar]
  84. Makhankov YV, Rinner O, Neuhauss SCF. 2004. An inexpensive device for non-invasive electroretinography in small aquatic vertebrates. J. Neurosci. Methods 135:1–2205–10 [Google Scholar]
  85. Maldonado E, Hernandez F, Lozano C, Castro ME, Navarro RE. 2006. The zebrafish mutant vps18 as a model for vesicle-traffic related hypopigmentation diseases. Pigment Cell Res. 19:4315–26 [Google Scholar]
  86. Marks MS, Heijnen HFG, Raposo G. 2013. Lysosome-related organelles: unusual compartments become mainstream. Curr. Opin. Cell Biol. 25:4495–505 [Google Scholar]
  87. Maw MA, Kennedy B, Knight A, Bridges R, Roth Ke. et al. 1997. Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat. Genet. 17:2198–200 [Google Scholar]
  88. Ménasché G, Pastural E, Feldmann J, Certain S, Ersoy F. et al. 2000. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat. Genet. 25:2173–76 [Google Scholar]
  89. Menger GJ, Koke JR, Cahill GM. 2005. Diurnal and circadian retinomotor movements in zebrafish. Vis. Neurosci. 22:2203–9 [Google Scholar]
  90. M’hamdi O, Ouertani I, Chaabouni-Bouhamed H. 2014. Update on the genetics of Bardet-Biedl syndrome. Mol. Syndromol. 5:251–56 [Google Scholar]
  91. Miesfeld JB, Gestri G, Clark BS, Flinn MA, Poole RJ. et al. 2015. Yap and Taz regulate retinal pigment epithelial cell fate. Development 142:3021–32
  92. Monemi S, Spaeth G, DaSilva A, Popinchalk S, Ilitchev E. et al. 2005. Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum. Mol. Genet. 14:6725–33 [Google Scholar]
  93. Montoliu L, Grønskov K, Wei AH, Martínez-Garcia M, Fernández A. et al. 2014. Increasing the complexity: new genes and new types of albinism. Pigment Cell Melanoma Res. 27:111–18 [Google Scholar]
  94. Moosajee M, Tulloch M, Baron RA, Gregory-Evans CY, Pereira-Leal JB, Seabra MC. 2009. Single choroideremia gene in nonmammalian vertebrates explains early embryonic lethality of the zebrafish model of choroideremia. Investig. Ophthalmol. Vis. Sci. 50:63009–16 [Google Scholar]
  95. Moosajee M, Gregory-Evans K, Ellis CD, Seabra MC, Gregory-Evans CY. 2008. Translational bypass of nonsense mutations in zebrafish rep1, pax2.1 and lamb1 highlights a viable therapeutic option for untreatable genetic eye disease. Hum. Mol. Genet. 17:243987–4000 [Google Scholar]
  96. Moradi P, Moore AT. 2007. Molecular genetics of infantile-onset retinal dystrophies. Eye 21:101344–51 [Google Scholar]
  97. Morimura H, Berson EL, Dryja TP. 1999. Recessive mutations in the RLBP1 gene encoding cellular retinaldehyde-binding protein in a form of retinitis punctata albescens. Investig. Ophthalmol. Vis. Sci. 40:51000–4 [Google Scholar]
  98. Moro E, Vettori A, Porazzi P, Schiavone M, Rampazzo E. et al. 2013. Generation and application of signaling pathway reporter lines in zebrafish. Mol. Genet. Genomics 288:5–6231–42 [Google Scholar]
  99. Muto A, Orger MB, Wehman AM, Smear MC, Kay JN. et al. 2005. Forward genetic analysis of visual behavior in zebrafish. PLOS Genet. 1:5e66 [Google Scholar]
  100. Nakao T, Tsujikawa M, Notomi S, Ikeda Y, Nishida K. 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLOS ONE 7:4e32472 [Google Scholar]
  101. Nishimura DY, Baye LM, Perveen R, Searby CC, Avila-Fernandez A. et al. 2010. Discovery and functional analysis of a retinitis pigmentosa gene, C2ORF71. Am. J. Hum. Genet. 86:5686–95 [Google Scholar]
  102. Page-McCaw PS, Chung SC, Muto A, Roeser T, Staub W. et al. 2004. Retinal network adaptation to bright light requires tyrosinase. Nat. Neurosci. 7:121329–36 [Google Scholar]
  103. Peachey NS, Ray TA, Florijn R, Rowe LB, Sjoerdsma T. et al. 2012. GPR179 is required for depolarizing bipolar cell function and is mutated in autosomal-recessive complete congenital stationary night blindness. Am. J. Hum. Genet. 90:2331–39 [Google Scholar]
  104. Pei W, Kratz LE, Bernardini I, Sood R, Yokogawa T. et al. 2010. A model of Costeff syndrome reveals metabolic and protective functions of mitochondrial OPA3. Development 137:152587–96 [Google Scholar]
  105. Phillips JB, Blanco-Sanchez B, Lentz JJ, Tallafuss A, Khanobdee K. et al. 2011. Harmonin (Ush1c) is required in zebrafish Müller glial cells for photoreceptor synaptic development and function. Dis. Models Mech. 4:6786–800 [Google Scholar]
  106. Pickart MA, Klee EW. 2014. Zebrafish approaches enhance the translational research tackle box. Transl. Res. 163:265–78 [Google Scholar]
  107. Pober BR, Longoni M, Noonan KM. 2009. A review of Donnai-Barrow and facio-oculo-acoustico-renal (DB/FOAR) syndrome: clinical features and differential diagnosis. Birth Defects Res. A Clin. Mol. Teratol. 85:176–81 [Google Scholar]
  108. Pretorius PR, Aldahmesh MA, Alkuraya FS, Sheffield VC, Slusarski DC. 2011. Functional analysis of BBS3 A89V that results in non-syndromic retinal degeneration. Hum. Mol. Genet. 20:81625–32 [Google Scholar]
  109. Pretorius PR, Baye LM, Nishimura DY, Searby CC, Bugge K. et al. 2010. Identification and functional analysis of the vision-specific BBS3 (ARL6) long isoform. PLOS Genet. 6:3e1000884 [Google Scholar]
  110. Ratnapriya R, Chew EY. 2013. Age-related macular degeneration-clinical review and genetics update. Clin. Genet. 84:2160–66 [Google Scholar]
  111. Riazuddin S, Belyantseva IA, Giese A, Kwanghyuk L, Indzhykulian AA. et al. 2012. Mutations in CIB2, a calcium and integrin binding protein, cause Usher syndrome type 1J and nonsyndromic deafness DFNB48. Nat. Genet. 44:111265–71 [Google Scholar]
  112. Riera M, Burguera D, Garcia-Fernàndez J, Gonzàlez-Duarte R. 2013. CERKL knockdown causes retinal degeneration in zebrafish. PLOS ONE 8:5e64048 [Google Scholar]
  113. Saari JC, Crabb JW. 2005. Focus on molecules: cellular retinaldehyde-binding protein (CRALBP). Exp. Eye Res. 81:3245–46 [Google Scholar]
  114. Schonthaler HB, Fleisch VC, Biehlmaier O, Makhankov Y, Rinner O. et al. 2008. The zebrafish mutant lbk/vam6 resembles human multisystemic disorders caused by aberrant trafficking of endosomal vesicles. Development 135:2387–99 [Google Scholar]
  115. Seabra MC, Brown MS, Goldstein JL. 1993. Retinal degeneration in choroideremia: deficiency of rab geranylgeranyl transferase. Science 259:5093377–81 [Google Scholar]
  116. Seiler C, Finger-Baier KC, Rinner O, Makhankov YV, Schwarz H. et al. 2005. Duplicated genes with split functions: independent roles of protocadherin15 orthologues in zebrafish hearing and vision. Development 132:3615–23 [Google Scholar]
  117. Sheets L, Ransom DG, Mellgren EM, Johnson SL, Schnapp BJ. 2007. Zebrafish melanophilin facilitates melanosome dispersion by regulating dynein. Curr. Biol. 17:201721–34 [Google Scholar]
  118. Sherpa T, Hunter SS, Frey RA, Robison BD, Stenkamp DL. 2011. Retinal proliferation response in the buphthalmic zebrafish, bugeye. Exp. Eye Res. 93:4424–36 [Google Scholar]
  119. Shu X, Zeng Z, Gautier P, Lennon A, Gakovic M. et al. 2011. Knockdown of the zebrafish ortholog of the retinitis pigmentosa 2 (RP2) gene results in retinal degeneration. Investig. Ophthalmol. Vis. Sci. 52:62960–66 [Google Scholar]
  120. Shu X, Zeng Z, Gautier P, Lennon A, Gakovic M. et al. 2010. Zebrafish Rpgr is required for normal retinal development and plays a role in dynein-based retrograde transport processes. Hum. Mol. Genet. 19:4657–70 [Google Scholar]
  121. Simms RJ, Hynes AM, Eley L, Inglis D, Chaudhry B. et al. 2012. Modelling a ciliopathy: Ahi1 knockdown in model systems reveals an essential role in brain, retinal, and renal development. Cell. Mol. Life Sci. 69:6993–1009 [Google Scholar]
  122. Skarie JM, Link BA. 2009. FoxC1 is essential for vascular basement membrane integrity and hyaloid vessel morphogenesis. Investig. Ophthalmol. Vis. Sci. 50:115026–34 [Google Scholar]
  123. Skarie JM, Link BA. 2008. The primary open-angle glaucoma gene WDR36 functions in ribosomal RNA processing and interacts with the p53 stress-response pathway. Hum. Mol. Genet. 17:162474–85 [Google Scholar]
  124. Sorusch N, Wunderlich K, Bauss K, Nagel-Wolfrum K, Wolfrum U. 2014. Usher syndrome protein network functions in the retina and their relation to other retinal ciliopathies. Adv. Exp. Med. Biol. 801:527–33 [Google Scholar]
  125. Sprague J, Bayraktaroglu L, Clements D, Conlin T, Fashena D. et al. 2003. The Zebrafish Information Network (ZFIN): the zebrafish model organism database. Nucleic Acids Res. 31:1241–43 [Google Scholar]
  126. Starr CJ, Kappler JA, Chan DK, Kollmar R, Hudspeth AJ. 2004. Mutation of the zebrafish choroideremia gene encoding Rab escort protein 1 devastates hair cells. PNAS 101:82572–77 [Google Scholar]
  127. Stearns G, Evangelista M, Fadool JM, Brockerhoff SE. 2007. A mutation in the cone-specific pde6 gene causes rapid cone photoreceptor degeneration in zebrafish. J. Neurosci. 27:5013866–74 [Google Scholar]
  128. Stiebel-Kalish H, Reich E, Rainy N, Vatine G, Nisgav Y. et al. 2012. Gucy2f zebrafish knockdown—a model for Gucy2d-related Leber congenital amaurosis. Eur. J. Hum. Genet. 20:8884–89 [Google Scholar]
  129. Strauss O. 2005. The retinal pigment epithelium in visual function. Physiol. Rev. 85:3845–81 [Google Scholar]
  130. Streisinger G, Walker C, Dower N, Knauber D, Singer F. 1981. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291:293–296 [Google Scholar]
  131. Streisinger G, Singer F, Walker C, Knauber D, Dower N. 1986. Segregation analyses and gene-centromere distances in zebrafish. Genetics 112:2311–19 [Google Scholar]
  132. Stujenske JM, Dowling JE, Emran F. 2011. The bugeye mutant zebrafish exhibits visual deficits that arise with the onset of an enlarged eye phenotype. Investig. Ophthalmol. Vis. Sci. 52:74200–7 [Google Scholar]
  133. Sukumaran S, Perkins BD. 2009. Early defects in photoreceptor outer segment morphogenesis in zebrafish ift57, ift88 and ift172 intraflagellar transport mutants. Vis. Res. 49:4479–89 [Google Scholar]
  134. Summers CG. 2009. Albinism: classification, clinical characteristics, and recent findings. Optom. Vis. Sci. 86:6659–62 [Google Scholar]
  135. Thomas JL, Vihtelic TS, denDekker AD, Willer G, Luo X. et al. 2011. The loss of vacuolar protein sorting 11 (vps11) causes retinal pathogenesis in a vertebrate model of syndromic albinism. Investig. Ophthalmol. Vis. Sci. 52:63119–28 [Google Scholar]
  136. Thomas S, Wright KJ, Le Corre S, Micalizzi A, Romani M. et al. 2014. A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium. Hum. Mutat. 35:1137–46 [Google Scholar]
  137. Tolmachova T, Anders R, Abrink M, Bugeon L, Dallman MJ. et al. 2006. Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia. J. Clin. Investig. 116:2386–94 [Google Scholar]
  138. Tsetskhladze ZR, Canfield VA, Ang KC, Wentzel SM, Reid KP. et al. 2012. Functional assessment of human coding mutations affecting skin pigmentation using zebrafish. PLOS ONE 7:10e47398 [Google Scholar]
  139. Tsujikawa M, Malicki J. 2004. Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron 42:5703–16 [Google Scholar]
  140. Ulmer Carnes M, Liu YP, Allingham RR, Whigham BT, Havens S. et al. 2014. Discovery and functional annotation of SIX6 variants in primary open-angle glaucoma. PLOS Genet. 10:5e1004372 [Google Scholar]
  141. Umazume K, Barak Y, McDonald K, Liu L, Kaplan HJ, Tamiya S. 2012. Proliferative vitreoretinopathy in the swine—a new model. Investig. Ophthalmol. Vis. Sci. 53:84910–16 [Google Scholar]
  142. Van den Hurk JA, Hendriks W, van de Pol DJ, Oerlemans F, Jaissle G. et al. 1997. Mouse choroideremia gene mutation causes photoreceptor cell degeneration and is not transmitted through the female germline. Hum. Mol. Genet. 6:6851–58 [Google Scholar]
  143. Van de Ven JPH, Nilsson SC, Perciliz LT, Buitendijk GHS, Ristau T. et al. 2013. A functional variant in the CFI gene confers a high risk of age-related macular degeneration. Nat. Genet. 45:7813–17 [Google Scholar]
  144. Van Gele M, Dynoodt P, Lambert J. 2009. Griscelli syndrome: a model system to study vesicular trafficking. Pigment Cell Melanoma Res. 22:3268–82 [Google Scholar]
  145. Van Rooijen E, Voest EE, Logister I, Bussmann J, Korving J. et al. 2010. von Hippel-Lindau tumor suppressor mutants faithfully model pathological hypoxia-driven angiogenesis and vascular retinopathies in zebrafish. Dis. Models Mech. 3:5–6343–53 [Google Scholar]
  146. Veleri S, Bishop K, Dalle Nogare DE, English MA, Foskett TJ. et al. 2012. Knockdown of Bardet-Biedl syndrome gene BBS9/PTHB1 leads to cilia defects. PLOS ONE 7:3e34389 [Google Scholar]
  147. Veth KN, Willer JR, Collery RF, Gray MP, Willer GB. et al. 2011. Mutations in zebrafish lrp2 result in adult-onset ocular pathogenesis that models myopia and other risk factors for glaucoma. PLOS Genet. 7:2e1001310 [Google Scholar]
  148. Viringipurampeer IA, Shan X, Gregory-Evans K, Zhang JP, Mohammadi Z, Gregory-Evans CY. 2014. Rip3 knockdown rescues photoreceptor cell death in blind pde6c zebrafish. Cell Death Differ. 21:5665–75 [Google Scholar]
  149. Wada S, Hamada M, Kobayashi K, Satoh N. 2008. Novel genes involved in canonical Wnt/β-catenin signaling pathway in early Ciona intestinalis embryos. Dev. Growth Differ. 50:4215–27 [Google Scholar]
  150. Wasfy MM, Matsui JI, Miller J, Doling JE, Perkins BD. 2014. myosin 7aa−/− mutant zebrafish show mild photoreceptor degeneration and reduced electroretinographic responses. Exp. Eye Res. 122:65–76 [Google Scholar]
  151. Weber T, Köster R. 2013. Genetic tools for multicolor imaging in zebrafish larvae. Methods 62:3279–91 [Google Scholar]
  152. Willemsen MH, Vissers LEL, Willemsen MAAP, van Bon BWM, Kroes T. et al. 2012. Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects. J. Med. Genet. 49:3179–83 [Google Scholar]
  153. Yamada H, Yamada E, Ando A, Esumi N, Bora N. et al. 2001. Fibroblast growth factor-2 decreases hyperoxia-induced photoreceptor cell death in mice. Am. J. Pathol. 159:31113–20 [Google Scholar]
  154. Yin J, Brocher J, Fischer U, Winkler C. 2011. Mutant Prpf31 causes pre-mRNA splicing defects and rod photoreceptor cell degeneration in a zebrafish model for Retinitis pigmentosa. Mol. Neurodegener. 6:56 [Google Scholar]
  155. Zhang Q, Zhao B, Li W, Oiso N, Novak EK. et al. 2003. Ru2 and Ru encode mouse orthologs of the genes mutated in human Hermansky-Pudlak syndrome types 5 and 6. Nat. Genet. 33:2145–53 [Google Scholar]
  156. Zhao C, Omori Y, Brodowski K, Kovach P, Malicki J. 2012. Kinesin-2 family in vertebrate ciliogenesis. PNAS 109:72388–93 [Google Scholar]
  157. Zhao C, Malicki J. 2011. Nephrocystins and MKS proteins interact with IFT particle and facilitate transport of selected ciliary cargos. EMBO J. 30:132532–44 [Google Scholar]
  158. Züchner S, Dallman J, Wen R, Beecham G, Naj A. et al. 2011. Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am. J. Hum. Genet.88:201–6 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error