The play of light on the retina contains multiple sources of information about the three-dimensional (3D) structure of the world. Some of the best information is derived from differencing operations that act on the images that result from the two eyes’ laterally displaced vantage points. Other information is available in systematic retinal patterns of local texture and motion cues. This article describes what is currently known about the development of sensitivity to these binocular and monocular cues for depth in human infants, and it places the results in the context of what is known about the underlying neural mechanisms from work in nonhuman primates and human neuroimaging studies.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agyei SB, Holth M, Weel F, Meer AL. 2014. Longitudinal study of perception of structured optic flow and random visual motion in infants using high-density EEG. Dev. Sci. 18:436–51 [Google Scholar]
  2. Amigo G, Fiorentini A, Pirchio M, Spinelli D. 1978. Binocular vision tested with visual evoked potentials in children and infants. Investig. Ophthalmol. Vis. Sci. 17:910–15 [Google Scholar]
  3. Andrews TJ, Glennerster A, Parker AJ. 2001. Stereoacuity thresholds in the presence of a reference surface. Vis. Res. 41:3051–61 [Google Scholar]
  4. Appel MA, Campos JJ. 1977. Binocular disparity as a discriminable stimulus parameter for young infants. J. Exp. Child Psychol. 23:47–56 [Google Scholar]
  5. Arnoldussen DM, Goossens J, van den Berg AV. 2013. Differential responses in dorsal visual cortex to motion and disparity depth cues. Front. Hum. Neurosci. 7:815 [Google Scholar]
  6. Arterberry ME. 2008. Infants’ sensitivity to the depth cue of height-in-the-picture-plane. Infancy 13:544–55 [Google Scholar]
  7. Arterberry ME, Yonas A. 1988. Infants’ sensitivity to kinetic information for three-dimensional object shape. Percept. Psychophys. 44:1–6 [Google Scholar]
  8. Arterberry ME, Yonas A. 2000. Perception of three-dimensional shape specified by optic flow by 8-week-old infants. Percept. Psychophys. 62:550–56 [Google Scholar]
  9. Attal Y, Bhattacharjee M, Yelnik J, Cottereau B, Lefevre J. et al. 2007. Modeling and detecting deep brain activity with MEG & EEG. Proc. 29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.4937–40 Piscataway, NJ: IEEE [Google Scholar]
  10. Ball W, Tronick E. 1971. Infant responses to impending collision: optical and real. Science 171:818–20 [Google Scholar]
  11. Ban H, Preston TJ, Meeson A, Welchman AE. 2012. The integration of motion and disparity cues to depth in dorsal visual cortex. Nat. Neurosci. 15:636–43 [Google Scholar]
  12. Bertenthal BI, Bai D. 1989. Infant's sensitivity to optical flow for controlling posture. Dev. Psychol. 25:936–45 [Google Scholar]
  13. Bertenthal BI, Rose JL, Bai DL. 1997. Perception–action coupling in the development of visual control of posture. J. Exp. Psychol. Hum. Percept. Perform. 23:1631–43 [Google Scholar]
  14. Bharadwaj SR, Candy TR. 2009. Accommodative and vergence responses to conflicting blur and disparity stimuli during development. J. Vis. 9:114 [Google Scholar]
  15. Birch E, Hale L. 1989. Operant assessment of stereoacuity. Clin. Vis. Sci. 4:295–300 [Google Scholar]
  16. Birch E, Petrig B. 1996. FPL and VEP measures of fusion, stereopsis and stereoacuity in normal infants. Vis. Res. 36:1321–27 [Google Scholar]
  17. Birch E, Salomao S. 1998. Infant random dot stereoacuity cards. J. Pediatr. Ophthalmol. Strabismus 35:86–90 [Google Scholar]
  18. Birch E, Shimojo S, Held R. 1985. Preferential-looking assessment of fusion and stereopsis in infants aged 1–6 months. Investig. Ophthalmol. Vis. Sci. 26:366–70 [Google Scholar]
  19. Birch EE. 2013. Amblyopia and binocular vision. Prog. Retin. Eye Res. 33:67–84 [Google Scholar]
  20. Birch EE, Fawcett S, Stager D. 2000. Co-development of VEP motion response and binocular vision in normal infants and infantile esotropes. Investig. Ophthalmol. Vis. Sci. 41:1719–23 [Google Scholar]
  21. Birch EE, Gwiazda J, Held R. 1982. Stereoacuity development for crossed and uncrossed disparities in human infants. Vis. Res. 22:507–13 [Google Scholar]
  22. Birch EE, Held R. 1983. The development of binocular summation in human infants. Investig. Ophthalmol. Vis. Sci. 24:1103–07 [Google Scholar]
  23. Boothe RG, Dobson V, Teller DY. 1985. Postnatal development of vision in human and nonhuman primates. Annu. Rev. Neurosci. 8:495–545 [Google Scholar]
  24. Born P, Rostrup E, Leth H, Peitersen B, Lou HC. 1996. Change of visually induced cortical activation patterns during development. Lancet 347:543 [Google Scholar]
  25. Bourne JA. 2010. Unravelling the development of the visual cortex: implications for plasticity and repair. J. Anat. 217:449–68 [Google Scholar]
  26. Bourne JA, Rosa MG. 2006. Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). Cereb. Cortex 16:405–14 [Google Scholar]
  27. Bower TGR, Broughton JM, Moore MK. 1971. Infant responses to approaching objects: an indicator of response to distal variables. Percept. Psychophys. 9:193–96 [Google Scholar]
  28. Braddick O, Atkinson J, Julesz B, Kropfl W, Bodis-Wollner I, Raab E. 1980. Cortical binocularity in infants. Nature 288:5789363–65 [Google Scholar]
  29. Braddick O, Wattam-Bell J, Day J, Atkinson J. 1983. The onset of binocular function in human infants. Hum. Neurobiol. 2:65–69 [Google Scholar]
  30. Bradley DC, Chang GC, Andersen RA. 1998. Encoding of three-dimensional structure-from-motion by primate area MT neurons. Nature 392:714–17 [Google Scholar]
  31. Brouwer GJ, van Ee R. 2007. Visual cortex allows prediction of perceptual states during ambiguous structure-from-motion. J. Neurosci. 27:1015–23 [Google Scholar]
  32. Brown RJ, Candy TR, Norcia AM. 1999. Development of rivalry and dichoptic masking in human infants. Investig. Ophthalmol. Vis. Sci. 40:3324–33 [Google Scholar]
  33. Burr D, Gori M. 2012. Multisensory integration develops late in humans. The Neural Bases of Multisensory Processes MM Murray, MT Wallace 345–362 Boca Raton, FL: CRC Press [Google Scholar]
  34. Butterworth G, Hicks L. 1977. Visual proprioception and postural stability in infancy. A developmental study. Perception 6:255–62 [Google Scholar]
  35. Cardin V, Smith AT. 2011. Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motion. J. Neurophysiol. 106:1240–49 [Google Scholar]
  36. Chino YM, Smith EL III, Hatta S, Cheng H. 1997. Postnatal development of binocular disparity sensitivity in neurons of the primate visual cortex. J. Neurosci. 17:296–307 [Google Scholar]
  37. Ciner EB, Schanel-Klitsch E, Herzberg C. 1996. Stereoacuity development: 6 months to 5 years. A new tool for testing and screening. Optom. Vis. Sci. 73:43–48 [Google Scholar]
  38. Ciner EB, Schanel-Klitsch E, Scheiman M. 1991. Stereoacuity development in young children. Optom. Vis. Sci. 68:533–36 [Google Scholar]
  39. Ciuffreda KJ, Levi D, Selenow A. 1991. Amblyopia: Basic and Clinical Aspects Boston: Butterworth-Heinemann
  40. Condry K, Yonas A. 2013. Six-month-old infants use motion parallax to direct reaching in depth. Infant Behav. Dev. 36:238–44 [Google Scholar]
  41. Craton LG, Yonas A. 1988. Infants’ sensitivity to boundary flow information for depth at an edge. Child Dev. 59:1522–29 [Google Scholar]
  42. Cumming B, Parker A. 1997. Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature 389:280–83 [Google Scholar]
  43. Distler C, Bachevalier J, Kennedy C, Mishkin M, Ungerleider L. 1996. Functional development of the corticocortical pathway for motion analysis in the macaque monkey: a 14C-2-deoxyglucose study. Cereb. Cortex 6:184–95 [Google Scholar]
  44. Duffy CJ, Wurtz RH. 1991. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J. Neurophysiol. 65:1329–45 [Google Scholar]
  45. Dupin L, Wexler M. 2013. Motion perception by a moving observer in a three-dimensional environment. J. Vis. 13:215 [Google Scholar]
  46. Ellingson RJ. 1960. Cortical electrical responses to visual stimulation in the human infant. Electroencephalogr. Clin. Neurophysiol. 12:663–77 [Google Scholar]
  47. Ernst MO, Banks MS. 2002. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–33 [Google Scholar]
  48. Fantz R. 1956. A method for studying early visual development. Percept. Motor Skills 6:13–15 [Google Scholar]
  49. Fawcett SL, Wang Y-Z, Birch EE. 2005. The critical period for susceptibility of human stereopsis. Investig. Ophthalmol. Vis. Sci. 46:521–25 [Google Scholar]
  50. Fox R. 1981. Stereopsis in animals and human infants: a review of behavioral investigations. Development of Perception: Psychobiological Perspectives 2 R Aslin 335–81 London: Academic [Google Scholar]
  51. Fox R, Aslin RN, Shea SL, Dumais ST. 1980. Stereopsis in human infants. Science 207:323–24 [Google Scholar]
  52. Fox R, Patterson R, Francis EL. 1986. Stereoacuity in young children. Investig. Ophthalmol. Vis. Sci. 27:598–600 [Google Scholar]
  53. France TD, Ver Hoeve JN. 1994. VECP evidence for binocular function in infantile esotropia. J. Pediatr. Ophthalmol. Strabismus 31:225–31 [Google Scholar]
  54. Freeman ED, Sterzer P, Driver J. 2012. fMRI correlates of subjective reversals in ambiguous structure-from-motion. J. Vis. 12:635 [Google Scholar]
  55. Gerding H, Krause K, Timmermann M, Kauffmann-Muhlmeyer T. 2012. Early visual evoked potentials: an indicator of bioelectrical activity of the lateral geniculate nucleus?. Klin. Monatsbl. Augenheilkd. 229:374–78 [Google Scholar]
  56. Giaschi D, Narasimhan S, Solski A, Harrison E, Wilcox LM. 2013. On the typical development of stereopsis: fine and coarse processing. Vis. Res. 89:65–71 [Google Scholar]
  57. Gibson JJ. 1950. The Perception of the Visual World Boston: Houghton Mifflin
  58. Gilmore RO, Hou C, Pettet MW, Norcia AM. 2007. Development of cortical responses to optic flow. Vis. Neurosci. 24:845–56 [Google Scholar]
  59. Gori M, Del Viva M, Sandini G, Burr DC. 2008. Young children do not integrate visual and haptic form information. Curr. Biol. 18:694–98 [Google Scholar]
  60. Granrud CE, Yonas A, Smith IM, Arterberry ME, Glicksman ML, Sorknes AC. 1984. Infants’ sensitivity to accretion and deletion of texture as information for depth at an edge. Child Dev. 55:1630–36 [Google Scholar]
  61. Harter MR, Suitt C. 1970. Visually-evoked cortical responses and pattern vision in the infant: a longitudinal study. Psychon. Sci. 18:235–37 [Google Scholar]
  62. Held R, Birch E, Gwiazda J. 1980. Stereoacuity of human infants. PNAS 77:5572–74 [Google Scholar]
  63. Held RT, Cooper EA, Banks MS. 2012. Blur and disparity are complementary cues to depth. Curr. Biol. 22:426–31 [Google Scholar]
  64. Hemker L, Yonas A, Granrud CE, Yonas A, Kavsek M. 2010. Infant perception of surface texture and relative height as distance information: a preferential reaching study. Infancy 15:6–27 [Google Scholar]
  65. Hendrickson AE, Yuodelis C. 1984. The morphological development of the human fovea. Ophthalmology 91:603–12 [Google Scholar]
  66. Heron G, Dholakia S, Collins D, McLaughlan H. 1985. Stereoscopic threshold in children and adults. Am. J. Optom. Physiol. Opt. 62:505–15 [Google Scholar]
  67. Hirshkowitz A, Wilcox T. 2013. Infants’ ability to extract three-dimensional shape from coherent motion. Infant Behav. Dev. 36:863–72 [Google Scholar]
  68. Howard IP, Rogers BJ. 2008. Seeing in Depth 1 Basic Mechanics New York: Oxford Univ. Press.
  69. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106 [Google Scholar]
  70. Hubel DH, Wiesel TN. 1965. Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28:61041–59 [Google Scholar]
  71. Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–43 [Google Scholar]
  72. Jandó G, Mikó-Baráth E, Markó K, Hollódy K, Török B, Kovacs I. 2012. Early-onset binocularity in preterm infants reveals experience-dependent visual development in humans. PNAS 109:11049–52 [Google Scholar]
  73. Janssen P, Vogels R, Liu Y, Orban GA. 2003. At least at the level of inferior temporal cortex, the stereo correspondence problem is solved. Neuron 37:693–701 [Google Scholar]
  74. Jouen F, Lepecq JC. 1989. La sensibilite au flux optique chez le nouveau-ne. Psychol. Francaise 34:13–18 [Google Scholar]
  75. Jouen F, Lepecq JC, Gapenne O, Bertenthal BI. 2000. Optic flow sensitivity in neonates. Infant Behav. Dev. 23:271–84 [Google Scholar]
  76. Julesz B, Kropfl W, Petrig B. 1980. Large evoked potentials to dynamic random-dot correlograms and stereograms permit quick determination of stereopsis. PNAS 77:2348–51 [Google Scholar]
  77. Kavšek M. 2013a. Infants’ responsiveness to rivalrous gratings. Vis. Res. 76:50–59 [Google Scholar]
  78. Kavšek M. 2013b. The onset of sensitivity to horizontal disparity in infancy: a short-term longitudinal study. Infant Behav. Dev. 36:329–43 [Google Scholar]
  79. Kavšek M, Granrud CE, Yonas A. 2009. Infants’ responsiveness to pictorial depth cues in preferential-reaching studies: a meta-analysis. Infant Behav. Dev. 32:245–53 [Google Scholar]
  80. Kellman PJ, Short KR. 1987. Development of three-dimensional form perception. J. Exp. Psychol. Hum. Percept. Perform. 13:545–57 [Google Scholar]
  81. Koenderink JJ. 1986. Optic flow. Vis. Res. 26:161–79 [Google Scholar]
  82. Krug K, Cumming BG, Parker AJ. 2004. Comparing perceptual signals of single V5/MT neurons in two binocular depth tasks. J. Neurophysiol. 92:1586–96 [Google Scholar]
  83. Kumar T, Glaser DA. 1991. Influence of remote objects on local depth perception. Vis. Res. 31:1687–99 [Google Scholar]
  84. Kumar T, Glaser DA. 1992. Depth discrimination of a line is improved by adding other nearby lines. Vis. Res. 32:1667–76 [Google Scholar]
  85. Kusaka T, Kawada K, Okubo K, Nagano K, Namba M. et al. 2004. Noninvasive optical imaging in the visual cortex in young infants. Hum. Brain Mapp. 22:122–32 [Google Scholar]
  86. Lages M, Heron S. 2010. On the inverse problem of binocular 3D motion perception. PLOS Comput. Biol. 6:e1000999 [Google Scholar]
  87. Lee D, Aronson E. 1974. Visual proprioceptive control of standing in human infants. Percept. Psychophys. 15:529–32 [Google Scholar]
  88. Levi DM. 2006. Visual processing in amblyopia: human studies. Strabismus 14:11–19 [Google Scholar]
  89. Liu Y, Vogels R, Orban GA. 2004. Convergence of depth from texture and depth from disparity in macaque inferior temporal cortex. J. Neurosci. 24:3795–800 [Google Scholar]
  90. Longuet-Higgins HC, Prazdny K. 1980. The interpretation of a moving retinal image. Proc. R. Soc. B 208:385–97 [Google Scholar]
  91. Maruko I, Zhang B, Tao X, Tong J, Smith EL III, Chino YM. 2008. Postnatal development of disparity sensitivity in visual area 2 (V2) of macaque monkeys. J. Neurophysiol. 100:2486–95 [Google Scholar]
  92. McKee SP, Levi DM, Bowne SF. 1990. The imprecision of stereopsis. Vis. Res. 30:1763–79 [Google Scholar]
  93. Meng H, Angelaki DE. 2010. Responses of ventral posterior thalamus neurons to three-dimensional vestibular and optic flow stimulation. J. Neurophysiol. 103:817–26 [Google Scholar]
  94. Mikó-Baráth E, Markó K, Budai A, Török B, Kovacs I, Jandó G. 2014. Maturation of cyclopean visual evoked potential phase in preterm and full-term infants. Investig. Ophthalmol. Vis. Sci. 55:2574–83 [Google Scholar]
  95. Murphy AP, Ban H, Welchman AE. 2013. Integration of texture and disparity cues to surface slant in dorsal visual cortex. J. Neurophysiol. 110:190–203 [Google Scholar]
  96. Murray SO, Kersten D, Olshausen BA, Schrater P, Woods DL. 2002. Shape perception reduces activity in human primary visual cortex. PNAS 99:15164–69 [Google Scholar]
  97. Murray SO, Schrater P, Kersten D. 2004. Perceptual grouping and the interactions between visual cortical areas. Neural Netw. 17:695–705 [Google Scholar]
  98. Nadler JW, Barbash D, Kim HR, Shimpi S, Angelaki DE, DeAngelis GC. 2013. Joint representation of depth from motion parallax and binocular disparity cues in macaque area MT. J. Neurosci. 33:14061–7414074a [Google Scholar]
  99. Nadler JW, Nawrot M, Angelaki DE, DeAngelis GC. 2009. MT neurons combine visual motion with a smooth eye movement signal to code depth-sign from motion parallax. Neuron 63:523–32 [Google Scholar]
  100. Nanez J. 1988. The perception of impending collision in 3- to 6-week-old human infants. Infant Behav. Dev. 11:447–63 [Google Scholar]
  101. Nawrot E, Mayo SL, Nawrot M. 2009. The development of depth perception from motion parallax in infancy. Atten. Percept. Psychophys. 71:194–99 [Google Scholar]
  102. Nawrot E, Nawrot M. 2013. The role of eye movements in depth from motion parallax during infancy. J. Vis. 13:1415 [Google Scholar]
  103. Nawrot M. 2003. Eye movements provide the extra-retinal signal required for the perception of depth from motion parallax. Vis. Res. 43:1553–62 [Google Scholar]
  104. Nawrot M, Joyce L. 2006. The pursuit theory of motion parallax. Vis. Res. 46:4709–25 [Google Scholar]
  105. Norcia A. 2011. Development of vision in infancy. Adler's Physiology of the Eye PL Kaufman, A Alm 713–24 New York: Elsevier [Google Scholar]
  106. Norcia AM, Garcia H, Humphry R, Holmes A, Hamer RD, Orel-Bixler D. 1991. Anomalous motion VEPs in infants and in infantile esotropia. Investig. Ophthalmol. Vis. Sci. 32:436–39 [Google Scholar]
  107. O’Dell C, Boothe RG. 1997. The development of stereoacuity in infant rhesus monkeys. Vis. Res. 37:2675–84 [Google Scholar]
  108. Odom VJ, Harter RM. 1983. Interocular suppression in adults and infants using anaglyphic stimuli: visually evoked potential measures. Electroencephalogr. Clin. Neurophysiol. 56:232–43 [Google Scholar]
  109. Ohzawa I, Deangelis GC, Freeman RD. 1990. Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249:1037–41 [Google Scholar]
  110. Orban GA. 2011. The extraction of 3D shape in the visual system of human and nonhuman primates. Annu. Rev. Neurosci. 34:361–88 [Google Scholar]
  111. Pancratz CN, Cohen LB. 1970. Recovery of habituation in infants. J. Exp. Child Psychol. 9:208–16 [Google Scholar]
  112. Parker AJ. 2007. Binocular depth perception and the cerebral cortex. Nat. Rev. Neurosci. 8:379–91 [Google Scholar]
  113. Penne A, Baraldi P, Fonda S, Ferrari F. 1987. Incremental binocular amplitude of the pattern visual evoked potential during the first five months of life: electrophysiological evidence of the development of binocularity. Doc. Ophthalmol. 65:15–23 [Google Scholar]
  114. Petrig B, Julesz B, Kropfl W, Baumgartner G, Anliker M. 1981. Development of stereopsis and cortical binocularity in human infants: electrophysiological evidence. Science 213:1402–5 [Google Scholar]
  115. Peuskens H, Sunaert S, Dupont P, Van Hecke P, Orban GA. 2001. Human brain regions involved in heading estimation. J. Neurosci. 21:2451–61 [Google Scholar]
  116. Preston TJ, Li S, Kourtzi Z, Welchman AE. 2008. Multivoxel pattern selectivity for perceptually relevant binocular disparities in the human brain. J. Neurosci. 28:11315–27 [Google Scholar]
  117. Read JC, Phillipson GP, Serrano-Pedraza I, Milner AD, Parker AJ. 2010. Stereoscopic vision in the absence of the lateral occipital cortex. PLOS ONE 5:e12608 [Google Scholar]
  118. Rosenberg A, Cowan NJ, Angelaki DE. 2013. The visual representation of 3D object orientation in parietal cortex. J. Neurosci. 33:19352–61 [Google Scholar]
  119. Rushton SK, Warren PA. 2005. Moving observers, relative retinal motion and the detection of object movement. Curr. Biol. 15:542–43 [Google Scholar]
  120. Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E. 1986. Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J. Neurosci. 6:145–57 [Google Scholar]
  121. Sakata H, Tsutsui K, Taira M. 2005. Toward an understanding of the neural processing for 3D shape perception. Neuropsychologia 43:151–61 [Google Scholar]
  122. Schaafsma SJ, Duysens J. 1996. Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. J. Neurophysiol. 76:4056–68 [Google Scholar]
  123. Schiff W. 1965. Perception of impending collision: a study of visually directed avoidant behavior. Psychol. Monogr. 79:111–26 [Google Scholar]
  124. Schor CM, Tyler CW. 1981. Spatio-temporal properties of Panum's fusional area. Vis. Res. 21:683–92 [Google Scholar]
  125. Schroeder CE, Tenke CE, Givre SJ. 1992. Subcortical contributions to the surface-recorded flash-VEP in the awake macaque. Electroencephalogr. Clin. Neurophysiol. 84:219–31 [Google Scholar]
  126. Schwarzkopf DS, Vorobyov V, Mitchell DE, Sengpiel F. 2007. Brief daily binocular vision prevents monocular deprivation effects in visual cortex. Eur. J. Neurosci. 25:270–80 [Google Scholar]
  127. Sen MG, Yonas A, Knill DC. 2001. Development of infants’ sensitivity to surface contour information for spatial layout. Perception 30:167–76 [Google Scholar]
  128. Shatz CJ, Stryker MP. 1978. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J. Physiol. 281:267–83 [Google Scholar]
  129. Shea S, Fox R, Aslin R, Dumais S. 1980. Assessment of stereopsis in human infants. Investig. Ophthalmol. Vis. Sci. 19:1400–04 [Google Scholar]
  130. Shea SL, Aslin RN, McCulloch D. 1987. Binocular VEP summation in infants and adults with abnormal binocular histories. Investig. Ophthalmol. Vis. Sci. 28:356–65 [Google Scholar]
  131. Shea SL, Doussard-Roosevelt JA, Aslin RN. 1985. Pupillary measures of binocular luminance summation in infants and stereoblind adults. Investig. Ophthalmol. Vis. Sci. 26:1064–70 [Google Scholar]
  132. Shirai N, Birtles D, Wattam-Bell J, Yamaguchi MK, Kanazawa S. et al. 2009. Asymmetrical cortical processing of radial expansion/contraction in infants and adults. Dev. Sci. 12:946–55 [Google Scholar]
  133. Shirai N, Kanazawa S, Yamaguchi MK. 2004. Sensitivity to linear-speed-gradient of radial expansion flow in infancy. Vis. Res. 44:3111–18 [Google Scholar]
  134. Siegel RM, Read HL. 1997. Analysis of optic flow in the monkey parietal area 7a. Cereb. Cortex 7:327–46 [Google Scholar]
  135. Simons K. 1981. Stereoacuity norms in young children. Arch. Ophthalmol. 99:439–45 [Google Scholar]
  136. Simpson JI. 1984. The accessory optic system. Annu. Rev. Neurosci. 7:13–41 [Google Scholar]
  137. Sloper J, Collins A. 1998. Reduction in binocular enhancement of the visual-evoked potential during development accompanies increasing stereoacuity. J. Pediatr. Ophthalmol. Strabismus 35:154–58 [Google Scholar]
  138. Snowden RJ, Treue S, Andersen RA. 1992. The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns. Exp. Brain Res. 88:389–400 [Google Scholar]
  139. Spitz RV, Stiles J, Siegel RM. 1993. Infant use of relative motion as information for form: evidence for spatiotemporal integration of complex motion displays. Percept. Psychophys. 53:190–99 [Google Scholar]
  140. Sugihara H, Murakami I, Shenoy KV, Andersen RA, Komatsu H. 2002. Response of MSTd neurons to simulated 3D orientation of rotating planes. J. Neurophysiol. 87:273–85 [Google Scholar]
  141. Takemura A, Inoue Y, Kawano K, Quaia C, Miles F. 2001. Single-unit activity in cortical area MST associated with disparity-vergence eye movements: evidence for population coding. J. Neurophysiol. 85:2245–66 [Google Scholar]
  142. Tanabe S, Umeda K, Fujita I. 2004. Rejection of false matches for binocular correspondence in macaque visual cortical area V4. J. Neurosci. 24:8170–80 [Google Scholar]
  143. Teller DY. 1979. The forced-choice preferential looking procedure: a psychophysical technique for use with human infants. Infant Behav. Dev. 2:135–53 [Google Scholar]
  144. Treue S, Husain M, Andersen RA. 1991. Human perception of structure from motion. Vis. Res. 31:59–75 [Google Scholar]
  145. Tsutsui K, Jiang M, Yara K, Sakata H, Taira M. 2001. Integration of perspective and disparity cues in surface-orientation-selective neurons of area CIP. J. Neurophysiol. 86:2856–67 [Google Scholar]
  146. Uka T, Tanabe S, Watanabe M, Fujita I. 2005. Neural correlates of fine depth discrimination in monkey inferior temporal cortex. J. Neurosci. 25:10796–802 [Google Scholar]
  147. Umeda K, Tanabe S, Fujita I. 2007. Representation of stereoscopic depth based on relative disparity in macaque area V4. J. Neurophysiol. 98:241–52 [Google Scholar]
  148. Wallach H, O’Connell DN. 1953. The kinetic depth effect. J. Exp. Psychol. 45:205–17 [Google Scholar]
  149. Walraven J, Janzen P. 1993. TNO stereopsis test as an aid to the prevention of amblyopia. Ophthalmic Physiol. Opt. 13:350–56 [Google Scholar]
  150. Warren PA, Rushton SK. 2008. Evidence for flow-parsing in radial flow displays. Vis. Res. 48:655–63 [Google Scholar]
  151. Wattam-Bell J. 1991. Development of motion-specific cortical responses in infancy. Vis. Res. 31:287–97 [Google Scholar]
  152. Wattam-Bell J. 1996a. Visual motion processing in one-month-old infants: habituation experiments. Vis. Res. 36:1679–85 [Google Scholar]
  153. Wattam-Bell J. 1996b. Visual motion processing in one-month-old infants: preferential looking experiments. Vis. Res. 36:1671–7 [Google Scholar]
  154. Westheimer G. 1979. Cooperative neural processes involved in stereoscopic acuity. Exp. Brain Res. 36:585–97 [Google Scholar]
  155. Williams S, Simpson A, Silva PA. 1988. Stereoacuity levels and vision problems in children from 7 to 11 years. Ophthalmic Physiol. Opt. 8:386–89 [Google Scholar]
  156. Xiao Q, Barborica A, Ferrera VP. 2006. Radial motion bias in macaque frontal eye field. Vis. Neurosci. 23:49–60 [Google Scholar]
  157. Yonas A, Bechtold AG, Frankel D, Gordon FR, McRoberts G. et al. 1977. Development of sensitivity to information for impending collision. Percept. Psychophys. 21:97–104 [Google Scholar]
  158. Yonas A, Craton LG, Thompson WB. 1987. Relative motion: kinetic information for the order of depth at an edge. Percept. Psychophys. 41:53–59 [Google Scholar]
  159. Yonas A, Granrud CE, Arterberry ME, Hanson B. 1986. Infants’ distance perception from linear perspective and texture gradients. Infant Behav. Dev. 9:247–56 [Google Scholar]
  160. Yonas A, Oberg C, Norcia A. 1978. Development of sensitivity to binocular information for approach of an object. Dev. Psychol. 14:147–52 [Google Scholar]
  161. Zhang B, Bi H, Sakai E, Maruko I, Zheng J. et al. 2005. Rapid plasticity of binocular connections in developing monkey visual cortex (V1). PNAS 102:9026–31 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error