1932

Abstract

The thalamus is the heavily interconnected partner of the neocortex. All areas of the neocortex receive afferent input from and send efferent projections to specific thalamic nuclei. Through these connections, the thalamus serves to provide the cortex with sensory input, and to facilitate interareal cortical communication and motor and cognitive functions. In the visual system, the lateral geniculate nucleus (LGN) of the dorsal thalamus is the gateway through which visual information reaches the cerebral cortex. Visual processing in the LGN includes spatial and temporal influences on visual signals that serve to adjust response gain, transform the temporal structure of retinal activity patterns, and increase the signal-to-noise ratio of the retinal signal while preserving its basic content. This review examines recent advances in our understanding of LGN function and circuit organization and places these findings in a historical context.

Keyword(s): catLGNmouseprimateretinavision
Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-082114-035920
2015-11-24
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/vision/1/1/annurev-vision-082114-035920.html?itemId=/content/journals/10.1146/annurev-vision-082114-035920&mimeType=html&fmt=ahah

Literature Cited

  1. Acuna-Goycolea C, Brenowitz SD, Regehr WG. 2008. Active dendritic conductances dynamically regulate GABA release from thalamic interneurons. Neuron 57:420–31 [Google Scholar]
  2. Alitto HJ, Moore BD 4th, Rathbun DL, Usrey WM. 2011. A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys. J. Physiol. 589:87–99 [Google Scholar]
  3. Alitto HJ, Usrey WM. 2004. Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. J. Neurophysiol. 91:2797–808 [Google Scholar]
  4. Alitto HJ, Usrey WM. 2008. Origin and dynamics of extraclassical suppression in the lateral geniculate nucleus of the macaque monkey. Neuron 57:135–46 [Google Scholar]
  5. Alitto HJ, Weyand TG, Usrey WM. 2005. Distinct properties of stimulus-evoked bursts in the lateral geniculate nucleus. J. Neurosci. 25:514–23 [Google Scholar]
  6. Alonso J-M, Usrey WM, Reid RC. 1996. Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383:815–19 [Google Scholar]
  7. Andolina IM, Jones HE, Sillito AM. 2013. Effects of cortical feedback on the spatial properties of relay cells in the lateral geniculate nucleus. J. Neurophysiol. 109:889–99 [Google Scholar]
  8. Ayaz A, Saleem AB, Schölvinck ML, Carandini M. 2013. Locomotion controls spatial integration in mouse visual cortex. Curr. Biol. 23:890–94 [Google Scholar]
  9. Barlow HB. 1953. Summation and inhibition in the frog's retina. J. Physiol. 119:69–88 [Google Scholar]
  10. Barlow HB, Fitzhugh R, Kuffler SW. 1954. Resting discharge and dark adaptation in the cat. J. Physiol. 125:28–9P [Google Scholar]
  11. Barlow HB, Hill RM, Levick WR. 1964. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. 173:377–407 [Google Scholar]
  12. Bastos AM, Briggs F, Alitto HJ, Mangun GR, Usrey WM. 2014. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations. J. Neurosci. 34:7639–44 [Google Scholar]
  13. Bastos AM, Vezoli J, Bosman CA, Schoffelen J-M, Oostenveld R. et al. 2015a. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85:390–401 [Google Scholar]
  14. Bastos AM, Vezoli J, Fries P. 2015b. Communication through coherence with inter-areal delays. Curr. Opin. Neurobiol. 31:173–80 [Google Scholar]
  15. Benardete EA, Kaplan E, Knight BW. 1992. Contrast gain control in the primate retina: P cells are not X-like, some M cells are. Vis. Neurosci. 8:483–86 [Google Scholar]
  16. Bereshpolova Y, Stoelzel CR, Zhuang J, Amitai Y, Alonso J-M, Swadlow HA. 2011. Getting drowsy? Alert/nonalert transitions and visual thalamocortical network dynamics. J. Neurosci. 31:17480–87 [Google Scholar]
  17. Bickford ME, Wei H, Eisenback MA, Chomsung RD, Slusarczyk AS, Dankowsi AB. 2008. Synaptic organization of thalamocortical axon collaterals in the perigeniculate nucleus and dorsal lateral geniculate nucleus. J. Comp. Neurol. 508:264–85 [Google Scholar]
  18. Bishop PO, Burke W, Davis R. 1962. The interpretation of the extracellular response of single lateral geniculate cells. J. Physiol. 162:451–72 [Google Scholar]
  19. Bonin V, Mante V, Carandini M. 2005. The suppressive field of neurons in lateral geniculate nucleus. J. Neurosci. 25:10844–56 [Google Scholar]
  20. Briggs F, Mangun GR, Usrey WM. 2013. Attention enhances synaptic efficacy and signal-to-noise in neural circuits. Nature 499:476–80 [Google Scholar]
  21. Briggs F, Usrey WM. 2009. Parallel processing in the corticogeniculate pathway of the macaque monkey. Neuron 62:135–46 [Google Scholar]
  22. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. 2012. Control of sleep and wakefulness. Physiol. Rev. 92:1087–187 [Google Scholar]
  23. Carandini M, Heeger DJ. 2011. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13:51–62 [Google Scholar]
  24. Carandini M, Horton JC, Sincich LC. 2007. Thalamic filtering of retinal spike trains by postsynaptic summation. J. Vis. 7:1420 [Google Scholar]
  25. Casagrande VA. 1994. A third parallel pathway to primate area V1. Trends Neurosci. 17:305–10 [Google Scholar]
  26. Casagrande VA, Kaas JH. 1994. The afferent, intrinsic, and efferent connections of primary visual cortex in primates. Cerebral Cortex. Primary Visual Cortex in Primates 10 A Peters, KS Rockland 201–59 New York: Plenum [Google Scholar]
  27. Casale AE, McCormick DA. 2011. Active action potential propagation but not initiation in thalamic interneuron dendrites. J. Neurosci. 31:18289–302 [Google Scholar]
  28. Castelo-Branco M, Neuenschwander S, Singer W. 1998. Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat. J. Neurosci. 18:6395–410 [Google Scholar]
  29. Cheong SK, Tailby C, Solomon SG, Martin PR. 2013. Cortical-like receptive fields in the lateral geniculate nucleus of marmoset monkeys. J. Neurosci. 33:6864–76 [Google Scholar]
  30. Cleland BG. 1986. The dorsal lateral geniculate nucleus of the cat. Visual Neuroscience JD Pettigrew, KJ Sanderson, WR Levick 111–20 London: Cambridge Univ. Press [Google Scholar]
  31. Cleland BG, Dubin MW, Levick WR. 1971a. Simultaneous recording of input and output of lateral geniculate neurones. Nat. N. Biol. 231:191–92 [Google Scholar]
  32. Cleland BG, Dubin MW, Levick WR. 1971b. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J. Physiol. 217:473–96 [Google Scholar]
  33. Conley M, Raczkowski D. 1990. Sublaminar organization within layer VI of the striate cortex in Galago. J. Comp. Neurol. 302:425–36 [Google Scholar]
  34. Conway JL, Schiller PH. 1983. Laminar organization of tree shrew dorsal lateral geniculate nucleus. J. Neurophysiol. 50:1330–42 [Google Scholar]
  35. Cox CL, Sherman SM. 2000. Control of dendritic outputs of inhibitory interneurons in the lateral geniculate nucleus. Neuron 27:597–610 [Google Scholar]
  36. Cox CL. 2014. Complex regulation of dendritic transmitter release from thalamic interneurons. Curr. Opin. Neurobiol. 29:126–32 [Google Scholar]
  37. Crook JD, Packer OS, Troy JB, Dacey DM. 2014. Synaptic mechanisms of color and luminance coding: rediscovering the X–Y-cell dichotomy in primate retinal ganglion cells. The New Visual Neurosciences LM Chalupa, JS Werner, pp. 123–43 Cambridge, MA: MIT Press [Google Scholar]
  38. Crandall SR, Cruikshank SJ, Connors BW. 2015. A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron 86:768–82 [Google Scholar]
  39. Cruz-Martín A, El-Danaf RN, Osakada F, Sriram B, Dhande OS. et al. 2014. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507:358–61 [Google Scholar]
  40. Dacey DM, Packer OS. 2003. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr. Opin. Neurobiol. 13:421–27 [Google Scholar]
  41. Dan Y, Alonso J-M, Usrey WM, Reid RC. 1998. Coding of visual information by precisely correlated spikes in the LGN. Nat. Neurosci. 1:501–7 [Google Scholar]
  42. Demb JB, Zaghloul K, Haarsma L, Sterling P. 2001. Bipolar cells contribute to nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian retina. J. Neurosci. 21:7447–54 [Google Scholar]
  43. De Monasterio FM, Gouras P. 1975. Functional properties of ganglion cells of the rhesus monkey retina. J. Physiol. 25:167–95 [Google Scholar]
  44. Denning KS, Reinagel P. 2005. Visual control of burst priming in the anesthetized lateral geniculate nucleus. J. Neurosci. 25:3531–38 [Google Scholar]
  45. Derrington AM, Lennie PM, Wright J. 1979. The mechanism of peripherally evoked responses in retinal ganglion cells. J. Physiol. 289:299–310 [Google Scholar]
  46. Enroth-Cugell C, Robson JG. 1966. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187:517–52 [Google Scholar]
  47. Erişir A, Van Horn SC, Bickford ME, Sherman SM. 1997a. Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: a comparison with corticogeniculate terminals. J. Comp. Neurol. 377:535–49 [Google Scholar]
  48. Erişir A, Van Horn SC, Sherman SM. 1997b. Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. PNAS 94:1517–20 [Google Scholar]
  49. Erisken S, Vaiceliunaite A, Jurjut O, Fiorini M, Katzner S, Busse L. 2014. Effects of locomotion extend throughout the mouse early visual system. Curr. Biol. 24:2899–907 [Google Scholar]
  50. Fitzpatrick D, Itoh K, Diamond IT. 1983. The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey Saimiri sciureus. J. Neurosci. 3:673–702 [Google Scholar]
  51. Fitzpatrick D, Usrey WM, Schofield BR, Einstein G. 1994. The sublaminar organization of neurons in layer 6 of macaque striate cortex. Vis. Neurosci. 11:307–15 [Google Scholar]
  52. Freeman SM, Walum H, Inoue K, Smith AL, Goodman MM. et al. 2014. Neuroanatomical distribution of oxytocin and vasopressin 1a receptors in the socially monogamous coppery titi monkey (Callicebus cupreus). Neuroscience 273:12–23 [Google Scholar]
  53. Fries P, Womelsdorf T, Oostenveld R, Desimone R. 2008. The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J. Neurosci. 28:4823–35 [Google Scholar]
  54. Fukada Y. 1971. Receptive field organization of cat optic nerve fibers with special reference to conduction velocity. Vis. Res. 11:209–26 [Google Scholar]
  55. Godement P, Salaün J, Imbert M. 1984. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J. Comp. Neurol. 230:552–75 [Google Scholar]
  56. Gray EG. 1969. Electron microscopy of excitatory and inhibitory synapses: a brief review. Prog. Brain Res. 31:141–55 [Google Scholar]
  57. Guido W, Lu SM, Sherman SM. 1992. Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. J. Neurophysiol. 68:2199–211 [Google Scholar]
  58. Guillery RW. 1969. A quantitative study of synaptic interconnections in the dorsal lateral geniculate nucleus of the cat. Z. Zellforsch. 96:39–48 [Google Scholar]
  59. Guillery RW, Feig SL, Lozsádi DA. 1998. Paying attention to the thalamic reticular nucleus. Trends Neurosci. 21:28–32 [Google Scholar]
  60. Halassa MM, Chen Z, Wimmer RD, Brunetti PM, Zhao S. et al. 2014. State-dependent architecture of thalamic reticular subnetworks. Cell 158:808–21 [Google Scholar]
  61. Hamos JE, Van Horn SC, Raczkowski D, Sherman SM. 1987. Synaptic circuits involving an individual retinogeniculate axon in the cat. J. Comp. Neurol. 259:165–92 [Google Scholar]
  62. Hei X, Stoelzel CR, Zhuang J, Bereshpolova Y, Huff JM. et al. 2014. Directional selective neurons in the awake LGN: response properties and modulation by brain state. J. Neurophysiol. 112:362–73 [Google Scholar]
  63. Hendry SH, Reid RC. 2000. The koniocellular pathway in primate vision. Annu. Rev. Neurosci. 23:127–53 [Google Scholar]
  64. Hickey TL, Guillery RW. 1974. An autoradiographic study of retinogeniculate pathways in the cat and fox. J. Comp. Neurol. 156:239–53 [Google Scholar]
  65. Hochstein S, Shapley RM. 1976. Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J. Physiol. 262:265–84 [Google Scholar]
  66. Howarth M, Walmsley L, Brown TM. 2014. Binocular integration in the mouse lateral geniculate nuclei. Curr. Biol. 24:1241–47 [Google Scholar]
  67. Hubel DH, Wiesel TN. 1961. Integrative action in the cat's lateral geniculate body. J. Physiol. 155:385–98 [Google Scholar]
  68. Huberman AD, Wei W, Elstrott J, Stafford BK, Feller MB, Barres BA. 2009. Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62:327–34 [Google Scholar]
  69. Ikeda H, Wright MJ. 1972. Receptive field organization of ‘sustained’ and ‘transient’ retinal ganglion cells which subserve different function roles. J. Physiol. 227:769–800 [Google Scholar]
  70. Jahnsen H, Llinás R. 1984a. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J. Physiol. 349:205–26 [Google Scholar]
  71. Jahnsen H, Llinás R. 1984b. Ionic basis for the electro-responseiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J. Physiol. 349:227–47 [Google Scholar]
  72. Jones BE. 2004. Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. Prog. Brain Res. 145:157–69 [Google Scholar]
  73. Jones EG. 2006. The Thalamus Revisited Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  74. Jones HE, Andolina IM, Oakely NM, Murphy PC, Sillito AM. 2000. Spatial summation in lateral geniculate nucleus and visual cortex. Exp. Brain Res. 135:279–84 [Google Scholar]
  75. Kaplan E, Purpura K, Shapley RM. 1987. Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J. Physiol. 391:267–88 [Google Scholar]
  76. Kaplan E, Shapley R. 1984. The origin of the S (slow) potential in the mammalian lateral geniculate nucleus. Exp. Brain Res. 55:111–16 [Google Scholar]
  77. Kaplan E, Shapley RM. 1986. The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. PNAS 83:2755–57 [Google Scholar]
  78. Koepsell K, Wang X, Vaingankar V, Wei Y, Wang Q. et al. 2009. Retinal oscillations carry visual information to cortex. Front. Syst. Neurosci. 3:4 [Google Scholar]
  79. Kuffler SW. 1953. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16:37–68 [Google Scholar]
  80. Kuffler SW. 1952. Neurons in the retina; organization, inhibition and excitation problems. Cold Spring Harb. Symp. Quant. Biol. 17:281–92 [Google Scholar]
  81. Lee BB. 1996. Receptive field structure in the primate retina. J. Comp. Neurol. 36:631–44 [Google Scholar]
  82. Lesica NA, Stanley GB. 2004. Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. J. Neurosci. 24:10731–40 [Google Scholar]
  83. Levine MW, Cleland BG. 2001. An analysis of the effect of retinal ganglion cell impulses upon the firing probability of neurons in the dorsal lateral geniculate nucleus of the cat. Brain Res. 902:244–54 [Google Scholar]
  84. Livingstone MS, Hubel DH. 1981. Effects of sleep and arousal on the processing of visual information in the cat. Nature 291:554–61 [Google Scholar]
  85. Lu SM, Guido W, Sherman SM. 1992. Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance. J. Neurophysiol. 68:1285–98 [Google Scholar]
  86. Mante V, Bonin V, Carandini M. 2008. Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli. Neuron 58:625–38 [Google Scholar]
  87. Marshel JH, Kaye AP, Nauhaus I, Callaway EM. 2012. Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus. Neuron 76:713–20 [Google Scholar]
  88. Martinez LM, Molano-Mazón M, Wang X, Sommer FT, Hirsch JA. 2014. Statistical wiring of thalamic receptive fields optimizes spatial sampling of the retinal image. Neuron 81:943–56 [Google Scholar]
  89. Masland RH. 2011. Cell populations of the retina: the Proctor lecture. Investig. Ophthalmol. Vis. Sci. 52:4581–91 [Google Scholar]
  90. Masland RH. 2012. The neuronal organization of the retina. Neuron 76:266–80 [Google Scholar]
  91. Mastronarde DN. 1987. Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. J. Neurophysiol. 57:381–413 [Google Scholar]
  92. McAdams CJ, Maunsell JH. 1999. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19:431–41 [Google Scholar]
  93. McAlonan K, Cavanaugh J, Wurtz RH. 2006. Attentional modulation of thalamic reticular neurons. J. Neurosci. 26:4444–50 [Google Scholar]
  94. McAlonan K, Cavanaugh J, Wurtz RH. 2008. Guarding the gateway to cortex with attention in visual thalamus. Nature 456:391–94 [Google Scholar]
  95. McCormick DA, McGinley MJ, Salkoff DB. 2015. Brain state dependent activity in the cortex and thalamus. Curr. Opin. Neurobiol. 31:133–40 [Google Scholar]
  96. McCormick DA. 1992. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobiol. 39:337–88 [Google Scholar]
  97. Merigan WH, Maunsell JH. 1993. How parallel are the primate visual pathways?. Annu. Rev. Neurosci. 16:369–402 [Google Scholar]
  98. Moore BD 3rd, Rathbun DL, Usrey WM, Freeman RD. 2014. Spatiotemporal flow of information in the early visual pathway. Eur. J. Neurosci. 39:593–601 [Google Scholar]
  99. Murphy PC, Sillito AM. 1996. Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. J. Neurosci. 16:1180–92 [Google Scholar]
  100. Nassi JJ, Callaway EM. 2009. Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci. 10:360–72 [Google Scholar]
  101. Neuenschwander S, Singer W. 1996. Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature 379:728–32 [Google Scholar]
  102. Niell CM, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:472–79 [Google Scholar]
  103. O’Connor DH, Fukui MM, Pinsk MA, Kastner S. 2002. Attention modulates responses in the human lateral geniculate nucleus. Nat. Neurosci. 5:1203–9 [Google Scholar]
  104. Olsen SR, Bortone DS, Adesnik H, Scanziani M. 2012. Gain control by layer six in cortical circuits of vision. Nature 483:47–52 [Google Scholar]
  105. Ortuño T, Grieve KL, Cao R, Cudeiro J, Rivadulla C. 2014. Bursting thalamic responses in awake monkey contribute to visual detection and are modulated by corticofugal feedback. Front. Behav. Neurosci. 8:198 [Google Scholar]
  106. Parent A, Paré D, Smith Y, Steriade M. 1988. Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys. J. Comp. Neurol. 277:281–301 [Google Scholar]
  107. Percival KA, Koizumi A, Masri RA, Buzás P, Martin PR, Grünert U. 2014. Identification of a pathway from the retina to koniocellular layer K1 in the lateral geniculate nucleus of marmoset. J. Neurosci. 34:3821–25 [Google Scholar]
  108. Piscopo DM, El-Danaf RN, Huberman AD, Niell CM. 2013. Diverse visual features encoded in mouse lateral geniculate nucleus. J. Neurosci. 33:4642–56 [Google Scholar]
  109. Polack P-O, Friedman J, Golshani P. 2013. Cellular mechanisms of brain state–dependent gain modulation in visual cortex. Nat. Neurosci. 16:1331–39 [Google Scholar]
  110. Rathbun DL, Alitto HJ, Weyand TG, Usrey WM. 2007. Interspike interval analysis of retinal ganglion cell receptive fields. J. Neurophysiol. 98:911–19 [Google Scholar]
  111. Rathbun DL, Warland DK, Usrey WM. 2010. Spike timing and information transmission at retinogeniculate synapses. J. Neurosci. 30:13558–66 [Google Scholar]
  112. Reese BE. 1988. ‘Hidden lamination’ in the dorsal lateral geniculate nucleus: The functional organization of this thalamic region in the rat. Brain Res. 472:119–37 [Google Scholar]
  113. Reid RC, Usrey WM. 2004. Functional connectivity in the pathway from retina to visual cortex. The Visual Neurosciences LM Chalupa, JS Werner 673–79 Cambridge, MA: MIT Press [Google Scholar]
  114. Rodieck RW. 1965. Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis. Res. 5:583–601 [Google Scholar]
  115. Rodieck RW, Stone J. 1965. Analysis of receptive fields of cat retinal ganglion cells. J. Neurophysiol. 28:833–49 [Google Scholar]
  116. Rowe MH, Fischer Q. 2001. Dynamic properties of retino-geniculate synapses in the cat. Vis. Neurosci. 18:219–31 [Google Scholar]
  117. Ruiz O, Royal D, Sáry G, Chen X, Schall JD, Casagrande VA. 2006. Low-threshold Ca2+-associated bursts are rare events in the LGN of the awake behaving monkey. J. Neurophysiol. 95:3401–13 [Google Scholar]
  118. Schiller PH, Logothetis NK. 1990. The color-opponent and broad-band channels of the primate visual system. Trends Neurosci. 13:392–98 [Google Scholar]
  119. Schneider KA, Kastner S. 2009. Effects of sustained spatial attention in the human lateral geniculate nucleus and superior colliculus. J. Neurosci. 29:1784–95 [Google Scholar]
  120. Scholl B, Tan AYY, Corey J, Priebe NJ. 2013. Emergence of orientation selectivity in the mammalian visual pathway. J. Neurosci. 33:10616–24 [Google Scholar]
  121. Shapley RM, Victor JD. 1980. The effect of contrast on the non-linear response of the Y cell. J. Physiol. 302:535–47 [Google Scholar]
  122. Sherman SM. 2001. Thalamic relay functions. Prog. Brain Res. 134:51–69 [Google Scholar]
  123. Sherman SM, Guillery RW. 2009. Exploring the Thalamus and Its Role in Cortical Function Cambridge, MA: MIT Press, 2nd ed.. [Google Scholar]
  124. Sillito AM, Jones HE. 2002. Corticothalamic interactions in the transfer of visual information. Philos. Trans. R. Soc. Lond. B 357:1739–52 [Google Scholar]
  125. Sincich LC, Adams DL, Economides JR, Horton JC. 2007. Transmission of spike trains at the retinogeniculate synapse. J. Neurosci. 27:2683–92 [Google Scholar]
  126. Sincich LC, Horton JC, Sharpee TO. 2009. Preserving information in neural transmission. J. Neurosci. 29:6207–16 [Google Scholar]
  127. Solomon SG, White AJ, Martin PR. 2002. Extraclassical receptive field properties of parvocellular, magnocellular, and koniocellular cells in the primate lateral geniculate nucleus. J. Neurosci. 22:338–49 [Google Scholar]
  128. Stafford DK, Dacey D. 1997. Physiology of the A1 amacrine: a spiking, axon-bearing interneuron of the macaque monkey retina. Vis. Neurosci. 14:507–22 [Google Scholar]
  129. Steriade M. 2003. The corticothalamic system in sleep. Front. Biosci. 8:878–99 [Google Scholar]
  130. Steriade M. 2004. Acetylcholine systems and rhythmic activities during the waking–sleep cycle. Prog. Brain Res. 145:179–96 [Google Scholar]
  131. Steriade M. 2006. Grouping of brain rhythms in corticothalamic systems. Neuroscience 137:1087–106 [Google Scholar]
  132. Stone C, Pinto LH. 1993. Response properties of ganglion cells in the isolated mouse retina. Vis. Neurosci. 10:31–39 [Google Scholar]
  133. Swadlow HA, Gusev AG. 2001. The impact of ‘bursting’ thalamic impulses at a neocortical synapse. Nat. Neurosci. 4:402–8 [Google Scholar]
  134. Ulrich D, Besseyrias V, Bettler B. 2007. Functional mapping of GABAB-receptor subtypes in the thalamus. J. Neurophysiol. 98:3791–95 [Google Scholar]
  135. Usrey WM, Alonso J-M, Reid RC. 2000. Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J. Neurosci. 20:5461–67 [Google Scholar]
  136. Usrey WM, Reid RC. 2000. Visual physiology of the lateral geniculate nucleus in two species of new world monkey: Saimiri sciureus and Aotus trivirgatis. J. Physiol. 523:755–69 [Google Scholar]
  137. Usrey WM, Reppas JB, Reid RC. 1998. Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature 395:384–7 [Google Scholar]
  138. Usrey WM, Reppas JB, Reid RC. 1999. Specificity and strength of retinogeniculate connections. J. Neurophysiol. 82:3527–40 [Google Scholar]
  139. Usrey WM. 2002a. Spike timing and visual processing in the retinogeniculocortical pathway. Philos. Trans. R. Soc. Lond. B 357:1729–37 [Google Scholar]
  140. Usrey WM. 2002b. The role of spike timing for thalamocortical processing. Curr. Opin. Neurobiol. 12:411–17 [Google Scholar]
  141. van Kerkoerle T, Self MW, Dagnino B, Gariel-Mathis MA, Poort J. et al. 2014. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. PNAS 111:14332–41 [Google Scholar]
  142. Wang X, Hirsch JA, Sommer FT. 2010. Recoding of sensory information across the retinothalamic synapse. J. Neurosci. 30:13567–77 [Google Scholar]
  143. Wang X, Sommer FT, Hirsch JA. 2011a. Inhibitory circuits for visual processing in thalamus. Curr. Opin. Neurobiol. 21:726–33 [Google Scholar]
  144. Wang X, Vaingankar V, Soto Sanchez C, Sommer FT, Hirsch JA. 2011b. Thalamic interneurons and relay cells use complementary synaptic mechanisms for visual processing. Nat. Neurosci. 14:224–31 [Google Scholar]
  145. Wässle H. 2004. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5:747–57 [Google Scholar]
  146. Weyand TG, Boudreaux M, Guido W. 2001. Burst and tonic response modes in thalamic neurons during sleep and wakefulness. J. Neurophysiol. 85:1107–18 [Google Scholar]
  147. Weyand TG. 2007. Retinogeniculate transmission in wakefulness. J. Neurophysiol. 98:769–85 [Google Scholar]
  148. Zhuang J, Bereshpolova Y, Stoelzel CR, Huff JM, Hei X. et al. 2014. Brain state effects on layer 4 of the awake visual cortex. J. Neurosci. 34:3888–900 [Google Scholar]
/content/journals/10.1146/annurev-vision-082114-035920
Loading
/content/journals/10.1146/annurev-vision-082114-035920
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error