1932

Abstract

Color has been scientifically investigated by linking color appearance to colorimetric measurements of the light that enters the eye. However, the main purpose of color perception is not to determine the properties of incident light, but to aid the visual perception of objects and materials in our environment. We review the state of the art on object colors, color constancy, and color categories to gain insight into the functional aspects of color perception. The common ground between these areas of research is that color appearance is tightly linked to the identification of objects and materials and the communication across observers. In conclusion, we argue that research should focus on how color processing is adapted to the surface properties of objects in the natural environment in order to bridge the gap between the known early stages of color perception and the subjective appearance of color.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091517-034231
2018-09-15
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-091517-034231.html?itemId=/content/journals/10.1146/annurev-vision-091517-034231&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott JT, Griffiths TL, Regier T 2016. Focal colors across languages are representative members of color categories. PNAS 113:11178–83
    [Google Scholar]
  2. Akbarinia A, Gegenfurtner K 2018. Color metamerism and the structure of illuminant space. J. Opt. Soc. Am. A 35:B231–38
    [Google Scholar]
  3. Allred SR, Olkkonen M 2013. The effect of background and illumination on color identification of real, 3D objects. Front. Psychol. 4:821
    [Google Scholar]
  4. Arend LE, Reeves A 1986. Simultaneous color constancy. J. Opt. Soc. Am. A 3:1743–51
    [Google Scholar]
  5. Aston S, Hurlbert A 2017. What #theDress reveals about the role of illumination priors in color perception and color constancy. J. Vis. 17:94
    [Google Scholar]
  6. Athanasopoulos P, Dering B, Wiggett A, Kuipers J-R, Thierry G 2010. Perceptual shift in bilingualism: Brain potentials reveal plasticity in pre-attentive colour perception. Cognition 116:437–43
    [Google Scholar]
  7. Bachy R, Dias J, Alleysson D, Bonnardel V 2012. Hue discrimination, unique hues and naming. J. Opt. Soc. Am. A 29:A60–68
    [Google Scholar]
  8. Baddeley R, Attewell D 2009. The relationship between language and the environment: information theory shows why we have only three lightness terms. Psychol. Sci. 20:1100–7
    [Google Scholar]
  9. Bae GY, Olkkonen M, Allred SR, Flombaum JI 2015. Why some colors appear more memorable than others: a model combining categories and particulars in color working memory. J. Exp. Psychol. 144:744–63
    [Google Scholar]
  10. Bannert MM, Bartels A 2013. Decoding the yellow of a gray banana. Curr. Biol. 23:2268–72
    [Google Scholar]
  11. Beck J 1972. Surface Color Perception Ithaca, NY: Cornell Univ. Press
  12. Berlin B, Kay P 1969. Basic Color Terms: Their Universality and Evolution Berkeley: Univ. Calif. Press
    [Google Scholar]
  13. Bloj MG, Kersten D, Hurlbert AC 1999. Perception of three-dimensional shape influences colour perception through mutual illumination. Nature 402:877–79
    [Google Scholar]
  14. Bompas A, Kendall G, Sumner P 2013. Spotting fruit versus picking fruit as the selective advantage of human colour vision. i-Perception 4:84–94
    [Google Scholar]
  15. Bornstein MH, Kessen W, Weiskopf S 1976. The categories of hue in infancy. Science 191:201–2
    [Google Scholar]
  16. Bornstein MH, Korda NO 1984. Discrimination and matching within and between hues measured by reaction times: some implications for categorical perception and levels of information processing. Psychol. Res. 46:207–22
    [Google Scholar]
  17. Bosten JM, Beer RD, MacLeod DI 2015. What is white?. J. Vis. 15:165
    [Google Scholar]
  18. Brainard DH 1998. Color constancy in the nearly natural image. 2. Achromatic loci. J. Opt. Soc. Am. A 15:307–25
    [Google Scholar]
  19. Brainard DH 2015. Color and the cone mosaic. Annu. Rev. Vis. Sci. 1:519–46
    [Google Scholar]
  20. Brainard DH, Roorda A, Yamauchi Y, Calderone JB, Metha A et al. 2000. Functional consequences of the relative numbers of L and M cones. J. Opt. Soc. Am. A 17:607–14
    [Google Scholar]
  21. Bramao I, Reis A, Petersson KM, Faisca L 2011. The role of color information on object recognition: a review and meta-analysis. Acta Psychol 138:244–53
    [Google Scholar]
  22. Brown AM, Lindsey DT, Guckes KM 2011. Color names, color categories, and color-cued visual search: Sometimes, color perception is not categorical. J. Vis. 11:122
    [Google Scholar]
  23. Chauhan T, Perales E, Xiao K, Hird E, Karatzas D, Wuerger S 2014. The achromatic locus: effect of navigation direction in color space. J. Vis 14:125
    [Google Scholar]
  24. Chetverikov A, Ivanchei I 2016. Seeing “the Dress” in the right light: perceived colors and inferred light sources. Perception 45:910–30
    [Google Scholar]
  25. Cibelli E, Xu Y, Austerweil JL, Griffiths TL, Regier T 2016. The Sapir-Whorf hypothesis and probabilistic inference: evidence from the domain of color. PLOS ONE 11:e0158725
    [Google Scholar]
  26. Clifford A, Franklin A, Holmes A, Drivonikou VG, Ozgen E, Davies IR 2012. Neural correlates of acquired color category effects. Brain Cogn 80:126–43
    [Google Scholar]
  27. Cohen JB, Kappauf WE 1982. Metameric color stimuli, fundamental metamers, and Wyszecki's metameric blacks. Am. J. Psychol. 95:537–64
    [Google Scholar]
  28. Constable MD, Becker SI 2017. Right away: A late, right-lateralized category effect complements an early, left-lateralized category effect in visual search. Psychon. Bull. Rev. 24:1611–19
    [Google Scholar]
  29. Cropper SJ, Kvansakul JG, Little DR 2013. The categorisation of non-categorical colours: a novel paradigm in colour perception. PLOS ONE 8:e59945
    [Google Scholar]
  30. Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G et al. 2017. The biology of color. Science 357:eaan0221
    [Google Scholar]
  31. Dacey DM 2000. Parallel pathways for spectral coding in primate retina. Annu. Rev. Neurosci. 23:743–75
    [Google Scholar]
  32. Danilova MV, Mollon JD 2014. Is discrimination enhanced at the boundaries of perceptual categories? A negative case. Proc. R. Soc. B 281:20140367
    [Google Scholar]
  33. De Valois RL, De Valois KK 1993. A multi-stage color model. Vis. Res. 33:1053–65
    [Google Scholar]
  34. Delahunt PB, Brainard DH 2004. Does human color constancy incorporate the statistical regularity of natural daylight?. J. Vis. 4:257–81
    [Google Scholar]
  35. Delahunt PB, Webster MA, Ma L, Werner JS 2004. Long-term renormalization of chromatic mechanisms following cataract surgery. Vis. Neurosci. 21:301–7
    [Google Scholar]
  36. Drissi Daoudi L, Doerig A, Parkosadze K, Kunchulia M, Herzog MH 2017. The role of one-shot learning in #TheDress. J. Vis. 17:315
    [Google Scholar]
  37. Drivonikou GV, Kay P, Regier T, Ivry RB, Gilbert AL et al. 2007. Further evidence that Whorfian effects are stronger in the right visual field than the left. PNAS 104:1097–102
    [Google Scholar]
  38. Emery KJ, Volbrecht VJ, Peterzell DH, Webster MA 2017. Variations in normal color vision. VII. Relationships between color naming and hue scaling. Vis. Res. 141:66–75
    [Google Scholar]
  39. Emmerson PG, Ross HE 1987. Variation in colour constancy with visual information in the underwater environment. Acta Psychol 65:101–13
    [Google Scholar]
  40. Ennis R, Schiller F, Toscani M, Gegenfurtner KR 2018. A hyperspectral database of fruits and vegetables. J. Opt. Soc. Am. A 35:B256–66
    [Google Scholar]
  41. Fairchild MD 2013. Colour Appearance Models Hoboken, NJ: Wiley
  42. Fine I, MacLeod DIA, Boynton GM 2003. Surface segmentation based on the luminance and color statistics of natural scenes. J. Opt. Soc. Am. 20:1283–91
    [Google Scholar]
  43. Foster DH 2011. Color constancy. Vis. Res. 51:674–700
    [Google Scholar]
  44. Foster DH, Amano K, Nascimento SM, Foster MJ 2006. Frequency of metamerism in natural scenes. J. Opt. Soc. Am. A 23:2359–72
    [Google Scholar]
  45. Franklin A, Davies IRL 2004. New evidence for infant colour categories. Br. J. Dev. Psychol. 22:349–77
    [Google Scholar]
  46. Franklin A, Drivonikou GV, Bevis L, Davies IRL, Kay P, Regier T 2008. Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults. PNAS 105:3221–25
    [Google Scholar]
  47. Franklin A, Pilling M, Davies IRL 2005. The nature of infant color categorization: evidence from eye movements on a target detection task. J. Exp. Child. Psychol. 91:227–48
    [Google Scholar]
  48. Gegenfurtner KR, Bloj M, Toscani M 2015. The many colours of ‘the dress’. Curr. Biol. 25:R543–44
    [Google Scholar]
  49. Gegenfurtner KR, Kiper DC 2003. Color vision. Annu. Rev. Neurosci. 26:181–206
    [Google Scholar]
  50. Gegenfurtner KR, Rieger J 2000. Sensory and cognitive contributions of color to the recognition of natural scenes. Curr. Biol. 10:805
    [Google Scholar]
  51. Gibson E, Futrell R, Jara-Ettinger J, Mahowald K, Bergen L et al. 2017. Color naming across languages reflects color use. PNAS 114:10785–90
    [Google Scholar]
  52. Giesel M, Gegenfurtner KR 2010. Color appearance of real objects varying in material, hue, and shape. J. Vis. 10:910
    [Google Scholar]
  53. Giesel M, Hansen T, Gegenfurtner KR 2009. The discrimination of chromatic textures. J. Vis. 9:9 11 1–28
    [Google Scholar]
  54. Gilbert AL, Regier T, Kay P, Ivry RB 2006. Whorf hypothesis is supported in the right visual field but not in the left. PNAS 103:489–94
    [Google Scholar]
  55. Granzier JJM, Gegenfurtner KR 2012. Effects of memory colour on colour constancy for unknown coloured objects. i-Perception 3:190–215
    [Google Scholar]
  56. Granzier JJM, Vergne R, Gegenfurtner KR 2014. The effects of surface gloss and roughness on color constancy for real 3-D objects. J. Vis. 14:216
    [Google Scholar]
  57. Hansen T, Gegenfurtner KR 2006. Color scaling of discs and natural objects at different luminance levels. Vis. Neurosci. 23:603–10
    [Google Scholar]
  58. Hansen T, Gegenfurtner KR 2009. Independence of color and luminance edges in natural scenes. Vis. Neurosci. 26:35–49
    [Google Scholar]
  59. Hansen T, Gegenfurtner KR 2013. Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space. J. Vis. 13:126
    [Google Scholar]
  60. Hansen T, Gegenfurtner KR 2017. Color contributes to object-contour perception in natural scenes. J. Vis. 17:314
    [Google Scholar]
  61. Hansen T, Olkkonen M, Walter S, Gegenfurtner KR 2006. Memory modulates color appearance. Nat. Neurosci. 9:1367–68
    [Google Scholar]
  62. Hansen T, Walter S, Gegenfurtner KR 2007. Effects of spatial and temporal context on color categories and color constancy. J. Vis. 7:41–15
    [Google Scholar]
  63. Hardy JL, Frederick CM, Kay P, Werner JS 2005. Color naming, lens aging, and grue: what the optics of the aging eye can teach us about color language. Psychol. Sci. 16:321–27
    [Google Scholar]
  64. Hofer H, Singer B, Williams DR 2005. Different sensations from cones with the same photopigment. J. Vis. 5:5444–54
    [Google Scholar]
  65. Holmes KJ, Moty K, Regier T 2017. Revisiting the role of language in spatial cognition: categorical perception of spatial relations in English and Korean speakers. Psychon. Bull. Rev. 24:2031–36
    [Google Scholar]
  66. Huettig F, Altmann GT 2011. Looking at anything that is green when hearing “frog”: how object surface colour and stored object colour knowledge influence language-mediated overt attention. Q. J. Exp. Psychol. 64:122–45
    [Google Scholar]
  67. Hunt RWG, Pointer MR 2011. Measuring Colour Chichester, UK: John Wiley & Sons
  68. Ishihara S 2004. Ishihara's Tests for Colour Deficiency Tokyo, Japan: Kanehara Trading Inc.
  69. Jameson KA, D'Andrade RG 1997. It's not really red, green, yellow, blue: an inquiry into perceptual color space. Color Categories in Thought and Language CN Hardin, L Maffi 295–319 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  70. Jordan G, Deeb SS, Bosten JM, Mollon JD 2010. The dimensionality of color vision in carriers of anomalous trichromacy. J. Vis. 10:812
    [Google Scholar]
  71. Judd DB 1952. Color in Business, Science and Industry Oxford, UK: Wiley
  72. Kanematsu E, Brainard DH 2014. No measured effect of a familiar contextual object on color constancy. Color Res. Appl. 39:347–59
    [Google Scholar]
  73. Kay P, Kempton W 1984. What is the Sapir-Whorf hypothesis?. Am. Anthropol. 86:65–79
    [Google Scholar]
  74. Kay P, Regier T 2003. Resolving the question of color naming universals. PNAS 100:9085–89
    [Google Scholar]
  75. Kimura A, Wada Y, Masuda T, Goto S, Tsuzuki D et al. 2013. Memory color effect induced by familiarity of brand logos. PLOS ONE 8:e68474
    [Google Scholar]
  76. Kingdom FAA, Beauce C, Hunter L 2004. Colour vision brings clarity to shadows. Perception 33:907–14
    [Google Scholar]
  77. Kirby S, Dowman M, Griffiths TL 2007. Innateness and culture in the evolution of language. PNAS 104:5241–45
    [Google Scholar]
  78. Koenderink JJ 2010. The prior statistics of object colors. J. Opt. Soc. Am. A 27:206–17
    [Google Scholar]
  79. Koenderink J, van Doorn A, Gegenfurtner K 2018. Color weight photometry. Vis. Res In press. https://doi.org/10.1016/j.visres.2017.06.006
    [Crossref]
  80. Kraft JM, Brainard DH 1999. Mechanisms of color constancy under nearly natural viewing. PNAS 96:307–12
    [Google Scholar]
  81. Kraft JM, Werner JS 1999. Aging and the saturation of colors. 2. Scaling of color appearance. J. Opt. Soc. Am. A 16:231–35
    [Google Scholar]
  82. Krauskopf J, Gegenfurtner KR 1992. Color discrimination and adaptation. Vis. Res. 32:2165–75
    [Google Scholar]
  83. Kuehni RG 2014. Unique hues and their stimuli—state of the art. Color Res. Appl. 39:279–87
    [Google Scholar]
  84. Kwok V, Niu Z, Kay P, Zhou K, Mo L et al. 2011. Learning new color names produces rapid increase in gray matter in the intact adult human cortex. PNAS 108:6686–88
    [Google Scholar]
  85. Lafer-Sousa R, Conway BR 2017. #TheDress: categorical perception of an ambiguous color image. J. Vis. 17:1225
    [Google Scholar]
  86. Lafer-Sousa R, Hermann KL, Conway BR 2015. Striking individual differences in color perception uncovered by ‘the dress’ photograph. Curr. Biol. 25:R545–46
    [Google Scholar]
  87. Lee RJ, Smithson HE 2016. Low levels of specularity support operational color constancy, particularly when surface and illumination geometry can be inferred. J. Opt. Soc. Am. A 33:A306–18
    [Google Scholar]
  88. Lindsey DT, Brown AM 2006. Universality of color names. PNAS 103:16608–13
    [Google Scholar]
  89. Lindsey DT, Brown AM 2009. World Color Survey color naming reveals universal motifs and their within-language diversity. PNAS 106:19785–90
    [Google Scholar]
  90. Lindsey DT, Brown AM 2014. The color lexicon of American English. J. Vis. 14:217
    [Google Scholar]
  91. Lindsey DT, Brown AM, Brainard DH, Apicella CL 2015. Hunter-gatherer color naming provides new insight into the evolution of color terms. Curr. Biol. 25:2441–46
    [Google Scholar]
  92. Lindsey DT, Brown AM, Brainard DH, Apicella CL 2016. Hadza color terms are sparse, diverse, and distributed, and presage the universal color categories found in other world languages. i-Perception 7:2041669516681807
    [Google Scholar]
  93. Lindsey DT, Brown AM, Reijnen E, Rich AN, Kuzmova YI, Wolfe JM 2010. Color channels, not color appearance or color categories, guide visual search for desaturated color targets. Psychol. Sci. 21:1208–14
    [Google Scholar]
  94. Ling Y, Hurlbert A 2008. Role of color memory in successive color constancy. J. Opt. Soc. Am. A 25:1215–26
    [Google Scholar]
  95. Linhares JM, Pinto PD, Nascimento SM 2008. The number of discernible colors in natural scenes. J. Opt. Soc. Am. A 25:2918–24
    [Google Scholar]
  96. Linnell KJ, Foster DH 2002. Scene articulation: dependence of illuminant estimates on number of surfaces. Perception 31:151–59
    [Google Scholar]
  97. Logvinenko AD, Funt B, Godau C 2014. Metamer mismatching. IEEE Trans. Image Process. 23:34–43
    [Google Scholar]
  98. Logvinenko AD, Funt B, Mirzaei H, Tokunaga R 2015. Rethinking colour constancy. PLOS ONE 10:e0135029
    [Google Scholar]
  99. Lucassen MP, Walraven J 1996. Color constancy under natural and artificial illumination. Vis. Res. 36:2699–711
    [Google Scholar]
  100. Lupyan G 2015. Object knowledge changes visual appearance: semantic effects on color afterimages. Acta Psychol 161:117–30
    [Google Scholar]
  101. MacAdam DL 1942. Visual sensitivities to color differences in daylight. J. Opt. Soc. Am. 32:247–74
    [Google Scholar]
  102. Malkoc G, Kay P, Webster MA 2005. Variations in normal color vision. IV. Binary hues and hue scaling. J. Opt. Soc. Am. A 22:2154–68
    [Google Scholar]
  103. Masaoka K, Berns RS, Fairchild MD, Moghareh Abed F 2013. Number of discernible object colors is a conundrum. J. Opt. Soc. Am. A 30:264–77
    [Google Scholar]
  104. Milojevic Z, Ennis R, Toscani M, Gegenfurtner KR 2018. Categorizing natural color distributions. Vis. Res. In press. https://doi.org/10.1016/j.visres.2018.01.008
    [Crossref]
  105. Mitterer H, de Ruiter JP 2008. Recalibrating color categories using world knowledge. Psychol. Sci. 19:629–34
    [Google Scholar]
  106. Mitterer H, Horschig JM, Müsseler J, Majid A 2009. The influence of memory on perception: It's not what things look like, it's what you call them. J. Exp. Psychol. Learn. Mem. Cogn. 35:1557–62
    [Google Scholar]
  107. Møller P, Hurlbert AC 1996. Psychophysical evidence for fast region-based segmentation processes in motion and color. PNAS 93:7421–26
    [Google Scholar]
  108. Morgan MJ, Adam A, Mollon JD 1992. Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proc. R. Soc. B 248:291–95
    [Google Scholar]
  109. Moss AE, Davies IRL, Corbett GG, Laws G 1990. Mapping Russian basic color terms using behavioural measures. Lingua 82:313–32
    [Google Scholar]
  110. Munsell Color Services 2007. The Munsell Book of Color - Glossy Collection Grandville, MI: x-rite
  111. Murray IJ, Daugirdiene A, Vaitkevicius H, Kulikowski JJ, Stanikunas R 2006. Almost complete colour constancy achieved with full-field adaptation. Vis. Res. 46:3067–78
    [Google Scholar]
  112. Naor-Raz G, Tarr MJ, Kersten D 2003. Is color an intrinsic property of object representation. ? Perception 32:667–80
    [Google Scholar]
  113. Neitz J, Carroll J, Yamauchi Y, Neitz M, Williams DR 2002. Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron 35:783–92
    [Google Scholar]
  114. Neitz J, Neitz M 2011. The genetics of normal and defective color vision. Vis. Res. 51:633–51
    [Google Scholar]
  115. Ocklenburg S, Beste C, Arning L, Peterburs J, Güntürkün O 2014. The ontogenesis of language lateralization and its relation to handedness. Neurosci. Biobehav. Rev. 43:191–98
    [Google Scholar]
  116. Olkkonen M, Hansen T, Gegenfurtner KR 2008. Color appearance of familiar objects: effects of object shape, texture, and illumination changes. J. Vis. 8:5 13 1–16
    [Google Scholar]
  117. Olkkonen M, Hansen T, Gegenfurtner KR 2009. Categorical color constancy for simulated surfaces. J. Vis. 9:12 6 1–18
    [Google Scholar]
  118. Olkkonen M, Witzel C, Hansen T, Gegenfurtner KR 2010. Categorical color constancy for real surfaces. J. Vis. 10:916
    [Google Scholar]
  119. Özgen E 2004. Language, learning, and color perception. Curr. Dir. Psychol. Sci. 13:95–98
    [Google Scholar]
  120. Özgen E, Davies IRL 2002. Acquisition of categorical color perception: a perceptual learning approach to the linguistic relativity hypothesis. J. Exp. Psychol. 131:477–93
    [Google Scholar]
  121. Ozturk O, Shayan S, Liszkowski U, Majid A 2013. Language is not necessary for color categories. Dev. Sci. 16:111–15
    [Google Scholar]
  122. Parraga CA, Troscianko T, Tolhurst DJ 2002. Spatiochromatic properties of natural images and human vision. Curr. Biol. 12:483–87
    [Google Scholar]
  123. Pearce B, Crichton S, Mackiewicz M, Finlayson GD, Hurlbert A 2014. Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations. PLOS ONE 9:e87989
    [Google Scholar]
  124. Philipona DL, O'Regan JK 2006. Color naming, unique hues, and hue cancellation predicted from singularities in reflection properties. Vis. Neurosci. 23:331–39
    [Google Scholar]
  125. Pilling M, Wiggett A, Özgen E, Davies IRL 2003. Is color “categorical perception” really perceptual?. Mem. Cogn. 31:538–51
    [Google Scholar]
  126. Pinna B, Reeves A 2015. On the purposes of color for living beings: toward a theory of color organization. Psychol. Res. 79:64–82
    [Google Scholar]
  127. Radonjić A, Cottaris NP, Brainard DH 2015.a Color constancy in a naturalistic, goal-directed task. J. Vis. 15:133
    [Google Scholar]
  128. Radonjić A, Cottaris NP, Brainard DH 2015.b Color constancy supports cross-illumination color selection. J. Vis. 15:613
    [Google Scholar]
  129. Radonjić A, Brainard DH 2016. The nature of instructional effects in color constancy. J. Exp. Psychol. Hum. Percept. Perform. 42:847–65
    [Google Scholar]
  130. Radonjić A, Pearce B, Aston S, Krieger A, Dubin H et al. 2016. Illumination discrimination in real and simulated scenes. J. Vis. 16:112
    [Google Scholar]
  131. Regier T, Kay P, Cook RS 2005. Focal colors are universal after all. PNAS 102:8386–91
    [Google Scholar]
  132. Regier T, Kay P, Khetarpal N 2007. Color naming reflects optimal partitions of color space. PNAS 104:1436–41
    [Google Scholar]
  133. Regier T, Kemp C, Kay P 2015. Word meanings across languages support efficient communication. The Handbook of Language Emergence B MacWhinney, W O'Grady 237–63 Hoboken, NJ: Wiley-Blackwell
    [Google Scholar]
  134. Rinner O, Gegenfurtner KR 2000. Time course of chromatic adaptation for color appearance and discrimination. Vis. Res. 40:1813–26
    [Google Scholar]
  135. Roberson D, Davidoff J 2000. The categorical perception of colors and facial expressions: the effect of verbal interference. Mem. Cogn. 28:977–86
    [Google Scholar]
  136. Roberson D, Davidoff J, Davies IRL, Shapiro LR 2005. Color categories: evidence for the cultural relativity hypothesis. Cogn. Psychol. 50:378–411
    [Google Scholar]
  137. Roberson D, Davies IRL, Davidoff J 2000. Color categories are not universal: replications and new evidence from a stone-age culture. J. Exp. Psychol. Gen. 129:369–98
    [Google Scholar]
  138. Roberson D, Hanley JR, Pak H 2009. Thresholds for color discrimination in English and Korean speakers. Cognition 112:482–87
    [Google Scholar]
  139. Roberson D, Pak H, Hanley JR 2008. Categorical perception of colour in the left and right visual field is verbally mediated: Evidence from Korean. Cognition 107:752–62
    [Google Scholar]
  140. Roberson D, Pak HS 2009. Categorical perception of color is restricted to the right visual field in Korean speakers who maintain central fixation. J. Cogn. Sci. 10:41–51
    [Google Scholar]
  141. Rosch Heider E 1972. Universals in color naming and memory. J. Exp. Psychol. 93:10–20
    [Google Scholar]
  142. Rüttiger L, Braun DI, Gegenfurtner KR, Petersen D, Schonle P, Sharpe LT 1999. Selective color constancy deficits after circumscribed unilateral brain lesions. J. Neurosci. 19:3094–106
    [Google Scholar]
  143. Schiller F, Gegenfurtner KR 2016. Perception of saturation in natural scenes. J. Opt. Soc. Am. A 33:3A194–206
    [Google Scholar]
  144. Schiller F, Valsecchi M, Gegenfurtner KR 2017. An evaluation of different measures of color saturation. Vis. Res In press. https://doi.org/10.1016/j.visres.2017.04.012
    [Crossref]
  145. Shepard TG, Lahlaf SI, Eskew JRT 2017. Labeling the lines: a test of a six-mechanism model of chromatic detection. J. Vis. 17:139
    [Google Scholar]
  146. Skelton AE, Catchpole G, Abbott JT, Bosten JM, Franklin A 2017. Biological origins of color categorization. PNAS 114:5545–50
    [Google Scholar]
  147. Smithson HE 2005. Sensory, computational and cognitive components of human colour constancy. Philos. Trans. R. Soc. B 360:1329–46
    [Google Scholar]
  148. Smithson HE, Zaidi Q 2004. Colour constancy in context: roles for local adaptation and levels of reference. J. Vis. 4:9693–710
    [Google Scholar]
  149. Steels L, Belpaeme T 2005. Coordinating perceptually grounded categories through language: A case study for colour. Behav. Brain Sci. 28:469–529
    [Google Scholar]
  150. Stockman A, Sharpe LT 2000. The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vis. Res. 40:1711–37
    [Google Scholar]
  151. Suegami T, Aminihajibashi S, Laeng B 2014. Another look at category effects on colour perception and their left hemispheric lateralisation: no evidence from a colour identification task. Cogn. Proc. 15:217–26
    [Google Scholar]
  152. Tanaka JW, Weiskopf D, Williams P 2001. The role of color in high-level vision. Trends Cogn. Sci. 5:211–15
    [Google Scholar]
  153. Thierry G, Athanasopoulos P, Wiggett A, Dering B, Kuipers J-R 2009. Unconscious effects of language-specific terminology on preattentive color perception. PNAS 106:4567–70
    [Google Scholar]
  154. Toscani M, Gegenfurtner KR, Doerschner K 2017. Differences in illumination estimation in #thedress. J. Vis. 17:122
    [Google Scholar]
  155. Toscani M, Valsecchi M, Gegenfurtner KR 2013. Optimal sampling of visual information for lightness judgments. PNAS 110:11163–68
    [Google Scholar]
  156. Troscianko T, Benton CP, Lovell PG, Tolhurst DJ, Pizlo Z 2009. Camouflage and visual perception. Philos. Trans. R. Soc. B 364:449–61
    [Google Scholar]
  157. Tuten WS, Harmening WM, Sabesan R, Roorda A, Sincich LC 2017. Spatiochromatic interactions between individual cone photoreceptors in the human retina. J. Neurosci. 37:9498–509
    [Google Scholar]
  158. Uchikawa K, Morimoto T, Matsumoto T 2017. Understanding individual differences in color appearance of “#TheDress” based on the optimal color hypothesis. J. Vis. 17:810
    [Google Scholar]
  159. Valberg A 2001. Unique hues: an old problem for a new generation. Vis. Res. 41:1645–57
    [Google Scholar]
  160. Vandenbroucke AR, Fahrenfort JJ, Meuwese JD, Scholte HS, Lamme VA 2016. Prior knowledge about objects determines neural color representation in human visual cortex. Cereb. Cortex 26:1401–8
    [Google Scholar]
  161. Vazquez-Corral J, O'Regan JK, Vanrell M, Finlayson GD 2012. A new spectrally sharpened sensor basis to predict color naming, unique hues, and hue cancellation. J. Vis. 12:67
    [Google Scholar]
  162. Vurro M, Ling Y, Hurlbert AC 2013. Memory color of natural familiar objects: effects of surface texture and 3-D shape. J. Vis. 13:720
    [Google Scholar]
  163. Wallisch P 2017. Illumination assumptions account for individual differences in the perceptual interpretation of a profoundly ambiguous stimulus in the color domain: “the dress.”. J. Vis. 17:45
    [Google Scholar]
  164. Webster MA, Kay P 2012. Color categories and color appearance. Cognition 122:375–92
    [Google Scholar]
  165. Webster MA, Miyahara E, Malkoc G, Raker VE 2000. Variations in normal color vision. II. Unique hues. J. Opt. Soc. Am. A 17:1545–55
    [Google Scholar]
  166. Weiss D, Witzel C, Gegenfurtner KR 2017. Determinants of colour constancy and the blue bias. i-Perception 8:1–29
    [Google Scholar]
  167. Werner A 2006. The influence of depth segmentation on colour constancy. Perception 35:1171–84
    [Google Scholar]
  168. Werner JS, Delahunt PB, Hardy JL 2004. Chromatic-spatial vision of the aging eye. Opt. Rev. 11:226–34
    [Google Scholar]
  169. Wichmann FA, Sharpe LT, Gegenfurtner KR 2002. The contributions of color to recognition memory for natural scenes. J. Exp. Psychol. Learn. Mem. Cogn. 28:509
    [Google Scholar]
  170. Winawer J, Witthoft N, Frank MC, Wu L, Wade AR, Boroditsky L 2007. Russian blues reveal effects of language on color discrimination. PNAS 104:7780–85
    [Google Scholar]
  171. Winkler AD, Spillmann L, Werner JS, Webster MA 2015. Asymmetries in blue-yellow color perception and in the color of ‘the dress’. Curr. Biol. 25:R547–48
    [Google Scholar]
  172. Witthoft N, Winawer J, Wu L, Frank M, Wade A, Boroditsky L 2003. Effects of language on color discrimability Paper presented at the 25th Annual Meeting of the Cognitive Science Society Mahwah, NJ: Jul. 31–Aug 2
  173. Witzel C 2016.a An easy way to show memory color effects. i-Perception 7:1–11
    [Google Scholar]
  174. Witzel C 2016.b New insights into the evolution of color terms or an effect of saturation. ? i-Perception 7:1–4
    [Google Scholar]
  175. Witzel C 2018. Misconceptions about colour categories. Rev. Philos. Psychol. In press
  176. Witzel C, Cinotti F, O'Regan JK 2015. What determines the relationship between color naming, unique hues, and sensory singularities: illuminations, surfaces, or photoreceptors?. J. Vis. 15:819
    [Google Scholar]
  177. Witzel C, Franklin A 2014. Do focal colors look particularly “colorful”?. J. Opt. Soc. Am. A 31:A365–74
    [Google Scholar]
  178. Witzel C, Gegenfurtner KR 2011. Is there a lateralized category effect for color?. J. Vis. 11:1216
    [Google Scholar]
  179. Witzel C, Gegenfurtner KR 2013. Categorical sensitivity to color differences. J. Vis. 13:71
    [Google Scholar]
  180. Witzel C, Gegenfurtner KR 2015. Categorical facilitation with equally discriminable colors. J. Vis. 15:822
    [Google Scholar]
  181. Witzel C, Gegenfurtner KR 2016. Categorical perception for red and brown. J. Exp. Psychol. Hum. Percept. Perform. 42:540–70
    [Google Scholar]
  182. Witzel C, Gegenfurtner KR 2018. Are red, yellow, green, and blue perceptual categories. ? Vis. Res. In press. https://doi.org/10.1016/j.visres.2018.04.002
    [Crossref]
  183. Witzel C, Olkkonen M, Gegenfurtner KR 2016.a Memory colours affect colour appearance. Behav. Brain Sci. 39:51–52
    [Google Scholar]
  184. Witzel C, Olkkonen M, Gegenfurtner KR 2018. A Bayesian model of the memory colour effect. i-Perception 9:1–16
    [Google Scholar]
  185. Witzel C, O'Regan JK, Hansmann-Roth S 2017.a The dress and individual differences in the perception of surface properties. Vis. Res. 141:76–94
    [Google Scholar]
  186. Witzel C, Racey C, O'Regan JK 2017.b The most reasonable explanation of “the dress”: implicit assumptions about illumination. J. Vis. 17:11
    [Google Scholar]
  187. Witzel C, Valkova H, Hansen T, Gegenfurtner KR 2011. Object knowledge modulates colour appearance. i-Perception 2:13–49
    [Google Scholar]
  188. Witzel C, van Alphen C, Godau C, O'Regan JK 2016.b Uncertainty of sensory signal explains variation of color constancy. J. Vis. 16:158
    [Google Scholar]
  189. Wuerger SM, Atkinson P, Cropper S 2005. The cone inputs to the unique-hue mechanisms. Vis. Res. 45:3210–23
    [Google Scholar]
  190. Wuerger SM, Maloney LT, Krauskopf J 1995. Proximity judgments in color space: tests of a Euclidean color geometry. Vis. Res. 35:827–35
    [Google Scholar]
  191. Wyszecki G, Stiles WS 1982. Color Science: Concepts and Methods, Quantitative Data and Formulae New York: John Wiley & Sons
  192. Xiao B, Hurst B, MacIntyre L, Brainard DH 2012. The color constancy of three-dimensional objects. J. Vis. 12:46
    [Google Scholar]
  193. Yang J, Kanazawa S, Yamaguchi MK, Kuriki I 2016. Cortical response to categorical color perception in infants investigated by near-infrared spectroscopy. PNAS 113:2370–75
    [Google Scholar]
  194. Yang JN, Maloney LT 2001. Illuminant cues in surface color perception: tests of three candidate cues. Vis. Res. 41:2581–600
    [Google Scholar]
  195. Yendrikhovskij SN 2001. A computational model of colour categorization. Color Res. Appl. 26:S235–38
    [Google Scholar]
  196. Yoonessi A, Kingdom FA, Alqawlaq S 2008. Is color patchy?. J. Opt. Soc. Am. A 25:1330–38
    [Google Scholar]
  197. Yoonessi A, Zaidi Q 2010. The role of color in recognizing material changes. Ophthalmic Physiol. Opt. 30:626–31
    [Google Scholar]
  198. Zhang X, Funt B, Mirzaei H 2016. Metamer mismatching in practice versus theory. J. Opt. Soc. Am. A 33:A238–47
    [Google Scholar]
  199. Zhou K, Mo L, Kay P, Kwok VPY, Ip TNM, Tan LH 2010. Newly trained lexical categories produce lateralized categorical perception of color. PNAS 107:9974–78
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091517-034231
Loading
/content/journals/10.1146/annurev-vision-091517-034231
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error